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Oblivious transfer (OT) is one of the keystones of secure multi-party

computation. It is generally believed that unconditionally secure OT is

impossible. In this article, we propose a practical and secure quantum all-

or-nothing oblivious transfer protocol based on the quantum one-way

function. The protocol is built upon a quantum public-key encryption

construction, and its security relies on the no-cloning theorem and no-

communication theorem. Practical security is reflected in limitations on

non-demolition measurements.
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1 Introduction

Rabin pioneered the concept of oblivious transfer in 1981 [1]. In Rabin’s OT (also

called all-or-nothing OT) protocol, Alice sends a message m to Bob, and Bob receives the

message m with a probability of 1/2. Toward the end of the protocol interaction, Alice

does not know whether Bob received the message m while Bob does. Later in 1985, Even

et al. [2] proposed a more practical OT called 1-out-of-2 oblivious transfer, which can be

used to implement a wide variety of protocols [2, 3]. In this version of OT, Alice has a

message pair (m0,m1), Bob makes a choice, and one of the messages is chosen. At the end

of the protocol, Bob is allowed to retrieve one message from Alice’s message pair

corresponding to his choice without knowing anything about the other message,

while Alice is unaware of Bob’s choice. However, Crépeau demonstrated that the two

kinds of oblivious transfer protocols are similar when the messages are single bits,

meaning that one may be created from the other and vice versa [4]. Furthermore, one can

build a 1-out-of-2 oblivious transfer protocol that transmits bit-string messages from a 1-

out-of-2 oblivious transfer protocol for single bits [5–7].

The versatility of these protocol settings motivates a wider study on the power of

secure two-party computation. Classical OT relies on computational hardness

assumptions. Typically, these assumptions fall into two categories: general hardness

assumptions such as the existence of one-way functions (OWFs) and specific hardness
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assumptions such as factoring integers, discrete logarithms, and

lattice-based problems, also known as trapdoor one-way

functions. However, Shor’s algorithm [8] can be used to solve

difficult mathematical problems such as integer factorization,

discrete logarithms, and elliptic curve discrete logarithms, posing

a risk that the security of trapdoor one-way functions generated

by certain existing number-theoretic-based cryptography is

threatened. Moreover, OT protocols that rely only on the

assumption of the existence of one-way functions are resistant

to quantum attacks.

The principles of quantum mechanics can be used to design

more secure cryptographic protocols. In 1983, Wiesner proposed

that the uncertainty principle [9] could be used in cryptography [10].

In 1984, Bennett and Brassard used the quantum no-cloning

theorem to implement basic cryptographic protocols, proposing

the first unconditionally secure quantum key distribution protocol,

BB84 [11, 12]. However, Mayers [13], Lo, and Chau [14, 15] proved

that all previously proposed quantum bit commitment (QBC)

protocols and quantum oblivious transfer (QOT) protocols are

not unconditionally secure. Because the sender Alice can almost

always cheat successfully by using an Einstein–Podolsky–Rosen

(EPR)-type attack and delaying the measurement until disclosing

her commitment. Moreover, OT generally requires a secure BC, so

unconditionally secure OT is also impossible. The no-go theorem

(based on the Hughston–Jozsa–Wootters (HJW) theorem [16, 17])

was proposed, resulting in the non-existence of unconditionally

secure BC and unconditionally secure OT being widely accepted.

Following the classical equivalence [4] between the two

flavors of oblivious transfer, one might conclude that the

impossibility of having an unconditionally secure 1-out-of-

2 oblivious transfer would imply the same for oblivious

transfer. However, the laws of quantum physics allow for a

greater range of scenarios, potentially jeopardizing classical

reduction theories. One must run numerous oblivious transfer

protocols as black boxes to create the 1-out-of-2 oblivious

transfer, and this raises the risk of so-called coherent attacks

(joint quantum measurements on several black boxes). Thus,

having a secure quantum all-or-nothing oblivious transfer

protocol does not necessarily mean that it is possible to

construct a secure 1-out-of-2 oblivious transfer. We can

implement all-or-nothing OT multi-party computation

without using the BC protocol. As a consequence, no matter

how high the security level our all-or-nothing OT has, this fact

alone is not in contradiction with the Lo–Chau–Mayers no-go

theorem. The alternative, ensuring practical security of such

protocols, is to consider noisy or bounded memories [18–20].

Recently, a (quantum) computationally secure version of the

oblivious transfer protocol was presented in [21].

In 2017, João et al. proposed a practical all-or-nothing QOT

[22] based on single-qubit rotations in which the authors

improve the public-key encryption scheme. However, there

are two issues in the scheme that need to be addressed, which

are also the main concerns of this article: 1) if all the secret keys si

are indeed chosen uniformly at random, then some of them will

be close to 0 or π/2, and this part of the measurement will always

be correct. Therefore, the authors added the step of checking

whether s is likely to be a possible output of a random process to

avoid Alice cheating. Nevertheless, when Bob chooses the wrong

direction of rotation, the state of each qubit becomes

| ~mi〉 � cos(2siθn+miπ
2 )|0〉 + sin(2siθn+miπ

2 )|1〉. It is obvious that

when Bob follows the protocol honestly, the two

measurements do not collapse with the same probability, and

the measurement he gets is not a complete meaningless random

number. This departs from the original purpose of the all-or-

nothing OT, which was to give Bob a message with a probability

of 1/2 or nothing at all. 2) The protocol only discusses the fact

that Bob has no strategy to get the whole message and does not

consider the fact that a dishonest Bob can get more than half of

the message. More specifically, the protocol encodes the message

directly on the quantum public key and divides the message into

units, each of which corresponds to a parity bit (hash value).

Dishonest Bob’s cheating strategy is to measure a limited number

of message units and compare them with the corresponding

parity bits, thereby determining whether the rotation direction

chosen is correct, and if it is not, he can always change the

rotation direction to get the rest of the message. It is considered

that t units are sufficient to determine that, as the number of units

increases, corruption of the t-unit message is negligible for the

whole message. This is fatal to the probabilistic transfer

properties of the OT protocol. Considering the

aforementioned two problems, we design a higher optimal all-

or-nothing OT protocol based on one-way functions.

The one-way function is one of the most fundamental

cryptographic primitives, as it can be used as a component of

other, more complex cryptographic protocols. Recently, two

independent works [23, 24] proved that secure one-way

functions imply secure computation in a quantum world.

They showed that quantum oblivious transfer can be obtained

from the black-box use of any statistically binding, quantum

computationally hidden commitment. Additionally, they pointed

out that such commitments can be constructed by quantum-

secure one-way functions (classic one-way functions that can be

resistant to quantum attacks). Although exhaustive search is the

only way to attack classical ideal secure one-way functions,

cryptographic protocols based on classical secure one-way

functions require the assumption that the attacker’s

computing power is limited. If we can design one-way

functions based on physical laws, i.e., quantum mechanics

principles, then we can potentially obtain secure quantum

one-way functions. Thus, it is possible for us to construct

secure OTs. In view of this, we will focus on the design of

specific quantum one-way functions (QOWFs). Following that,

we build more complex quantum oblivious transfer protocols

based on the one-way function.

In this article, we study the design of quantumone-way functions

as well as introduce and enhance a quantum public-key encryption
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(qPKE) construction. Then, we design a practical secure quantum all-

or-nothing OT protocol based on a specific QOWF. The soundness

of the protocol relies on secure communication by applying qPKE.

The security of the protocol can be reduced to one-wayness of the

quantum one-way function, the no-cloning theorem, and the no-

communication theorem. It is worth mentioning that the application

of the hash function (digest algorithm) and the idea of secret sharing

ensures that honest Bob can check whether he has obtained the

message and dishonest Bob gets nothing about the message. More

specifically, the distributor divides a secret into t-shared units, such

that any of the t-shared units can be combined to reconstruct the

secret, but no information about the secret is available to any of the

t− 1-shared units. The t-shared units are transferred to Bob in cipher,

and each shared unit corresponds to exactly one check unit,

attempting to necessarily check and destroy the shared units.

The rest of the article is organized as follows:first, in Section 2, we

discuss the definition of quantum one-way functions and prove the

security of a rotation-based quantum one-way function. Then, in

Section 3, we introduce and improve the quantum public-key

encryption system based on the classical-to-quantum one-way

function. In Section 4, we describe in detail the construction of

the all-or-nothing oblivious transfer protocol based on the qPKE. In

Section 5, we analyze the proposed OT protocol and show that the

security of the new scheme can be reduced to the one-wayness of the

quantum one-way function. Finally, we give a summary in Section 6.

2 Quantum one-way functions

A function f: {0,1}*→ {0,1}* is one-way if f can be computed by a

polynomial-time algorithm, but any polynomial-time randomized

algorithm F that attempts to compute a pseudo-inverse for f succeeds

with negligible probability. That is, a one-way function is a function

that is easy to compute on every input but hard to invert given the

image of random input. By definition, the function must be “hard to

invert” in the average-case sense, rather than the worst-case sense

[25]. The existence of such one-way functions is still an open

conjecture. In fact, their existence would prove that the

complexity classes P and NP are not equal. The converse is not

known to be true, i.e., the existence of proof that P ≠ NP would not

directly imply the existence of one-way functions.

Generally, a one-way function designed based on quantum

mechanical principles (such as the no-cloning theorem [9]) is

called a quantum one-way function. One-wayness needs to be

satisfied, i.e., the function can effectively (polynomial time) get the

output according to the input, while the input cannot be obtained

according to the output. The concept of classical-to-quantum one-

way function (CQ-OWF) was first proposed by Gottesman and

Chuang [26], who showed that such a function can be obtained by

mapping classical bit strings to quantum states of a collection of

qubits, and designed a quantum signature scheme based on it, where

the classical-to-quantum one-way function is defined as a function

that can be easily solved by quantum algorithms but cannot be

inverted by any polynomial-time quantum algorithm [26]. That is,

we can obtain a natural generalized version of the classical one-way

function for quantum one-way functions by extending the

probabilistic polynomial-time Turing machine to quantum

algorithms.

Definition 1. (Quantum one-way function). Let

f: 0, 1{ }n → H2( )⊗m
be a classical-to-quantum function that maps n bits of input tom

qubits of output, where

H2( )⊗m � H2 ⊗/⊗ H2 � H2m

is a 2m-dimensional Hilbert space made up ofm copies of a single

qubit space H2.

Denote the function as f: x↦|f(x)〉. Then, f is a quantum one-

way function if it satisfies the following three properties:

Deterministic: the same input always gives the same output.

Easy to compute: for any input x, one can get the output |f(x)〉
in polynomial time.

Hard to invert: given |f(x)〉, it is impossible to invert x by

virtue of the fundamental quantum information theory.

The input and output of a classical one-way function involve only

classical bits, and given a pair (input, output), one can efficiently

verify whether the output is generated by f according to the input.

However, for quantum one-way functions, because the input and

output involve quantum states, it is not always the case that we can

verify the pair (input, output) effectively. Furthermore, given two

outputs |f(x)〉 and |f(x′)〉, we are not able to definitively determine

whether they are equal or not. This involves the comparison of

quantum states, such as the swap-test, and the result of the test is

probabilistic. If the states are the same, the swap-test is always passed,

but if they are different, the swap-test is sometimes failed.

Nikolopoulos [27] constructed a practical CQ-OWF using

single-qubit rotations, explored the one-wayness of functions

mapping integers to single quantum bit states, and proposed a

quantum public-key cryptographic theoretical framework based

on it, which is provably secure even against powerful quantum

eavesdropping strategies. The scheme proposed in this article will

also make use of this cryptosystem. To have a clearer understanding

of the characteristics of this CQ-OWF, we re-elaborate this function

in formal language, define its constituent elements as single-qubit

OWFs, and give rigorous proof that this function satisfies one-

wayness under the constraint of the no-cloning theorem.

2.1 Single-qubit OWF

The single-qubit OWF can be defined as fcq: {0, 1}n → H2,

whose input is an integer s ∈ Z2n and whose output is the state of
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a quantum system, say |ψs(θn)〉. For the sake of simplicity, we

present a specific single-qubit OWF in the context of single-qubit

states lying on the x − z plane of the Bloch-sphere. A general

qubit state lying on the x − z plane can be written as

ψ θ( )∣∣∣∣ 〉 � cos
θ

2
( ) 0| 〉 + sin

θ

2
( ) 1| 〉,

where 0 ≤ θ < 2π, ϕ = 0, is shown in Figure 1. Hence, unlike the

classical bit, which can store a discrete variable taking only two

real values (that is “0” and “1”), a qubit may represent a

continuum of states on the x − z plane. Introducing the

rotation operator about the y axis, R̂(θ) � e−iθŶ/2 with

Ŷ � i(|1〉〈0| − |0〉〈1|), we may alternatively write

Ô(θ): |ψ(θ)〉 � R̂(θ)|0〉.
The input of the proposed single-qubit OWF is a random

integer s ∈ Z2n ≔ {0, 1, . . . ., 2n − 1|n ∈ N} uniformly distributed

over Z2n with n ≫ 1, and a qubit initially prepared in |0〉. Thus,
n-bit strings suffice as labels to identify the input s for fixed n. For

given values of n ∈ N and s ∈ Z2n , the qubit state is rotated by sθn
around the y axis with θn = π/2n−1. For some fixed n ∈ N, the

output of the OWF pertains to the class of states

Qn � |ψs(θn)〉 | s ∈ Z2n , θn � π/2n−1{ }, with

Ô(n, s): |ψs(θn)〉 ≡ R̂(sθn)|0〉 � cos(sθn/2)|0〉 + sin(sθn/2)|1〉.
Therefore, the single-qubit OWF fcq described previously maps

from an arbitrary n-bit classical string to the two-dimensional

Hilbert space, which can also be expressed as

fcq: {n, s} → |ψs(θn)〉.
However, in quantum public-key encryption, we use a one-

way function with multiple integers input and multiple qubits

output, so we define the CQ-OWF based on the single-qubit

OWF as follows: consider two sets, S and Q, which involve

numbers and quantum states of a physical system, respectively.

The input S includes an arbitrary integer string s of length k,

i.e., s � (s1, s2, . . . , sk), with ∀sj ∈ Z2n independently. The output

Q contains k-qubit states, which are mapped independently

depending on each item sj of the input set S to obtain

|Ψs(θn)〉 ≡ ⊗k
j�1|ψsj

(θn)〉j. The mapping of the CQ-OWF is

Fcq: {n, s} → |Ψs(θn)〉, which operates the mapping procedure

of the single-qubit OWF fcq: {n, s} → |ψs(θn)〉 k times.

Theorem 1. The function denoted as Fcq: {n, s} → |Ψs(θn)〉
consisting of k single-qubit OWF blocks, is a secure CQ-OWF

with the following properties:

Deterministic: the same input always results in the same

output.

Easy to compute: for any input x = {n, s}, one can get the

output Fcq(x) in polynomial time.

Hard to invert: given |Ψs(θn)〉, it is impossible to invert x = {n,

s} by virtue of the fundamental quantum information theory.

Proof. As follows, we first prove the one-wayness of the

single-qubit OWF and then the one-wayness of the CQ-OWF.

2.2 One-wayness of the single-qubit OWF

To further illustrate the two expressions “easy to compute” and

“hard to invert,” a quantum system initially prepared in a state of |0〉
is considered, and let H2 be its corresponding Hilbert space. We

apply an operation Ô(n, s): H2 ↦ H2 on the system with a

randomly selected s ∈ Z2n . This operation converts the initial

state such that |0〉 → |ψs(θn)〉 � Ô(n, s). The ensemble of all

probable output states of the single-qubit OWF is

Qn ≡ |ψs(θn)〉|s ∈ Z2n{ }, and corresponds to H2. In case, the

FIGURE 1
Superposition quantum state.
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mapping M: Z2n ↦ Qn is a bijection, there is a unique s ∈ Z2n ,

i.e., M is one-to-one and |Z2n | � |Qn|. Consequently, we conclude
that the single-qubit OWF meets the properties “deterministic.”

It is common knowledge that the mapping {n, s} → |ψs(θn)〉
must be “easy to compute.” For a given s ∈ Z2n , the

transformation on the system |0〉 → |ψs(θn)〉, can be

efficiently executed on a single-qubit OWF. For a given pair

of integers n, s{ }, the function |0〉 → |ψs(θn)〉 is easy to compute

since it involves single-qubit rotations only. In particular, it is

known that any single-qubit operation can be simulated to an

arbitrary accuracy of ϵ > 0 by a quantum algorithm involving a

universal set of gates (i.e., Hadamard, phase, controlled-NOT,

and π/8 gates) [28]. Additionally, this simulation is efficient since

its implementation requires an overhead of resources that scales

polynomially with log(ϵ−1). In a nutshell, there is always a family

of quantum circuits C � {Ci}i> 0 involving a universal set of gates
for fcq such that ∀s ∈ {0,1}n, ‖Ci‖≤O(log(ϵ−1)).

Inversion of the map {n, s} → |ψs(θn)〉 must be a “hard”

problem by virtue of some fundamental principles of quantum

mechanics. The number of non-orthogonal states increases as we

increase n, whereas for n≫ 1 we have the nearest-neighbor overlap

|ψs(θn)〉〈ψs+1(θn)| � cos(θn/2) → 1. Distinguishing between the

two can be infeasible by virtue of the quantum uncertainty principle.

To get the detailed information of the quantum state |ψs(θn)〉, we
must resort to measurements, which inevitably interfere with the

quantum state. According to the theorem ofHolevo [28], the classical

information extracted from a single quantum bit by measurement is

at most 1 bit. When n is fixed, a random selection of s ∈ Z2n requires

n bits for recognition. Thus, we can conclude that the mapping is

hard to invert when n is larger than 1 and sufficiently large. In fact, we

do not publish n, whichmakes itmore difficult to invert themapping.

Given a state |ψs(θn)〉 chosen at random from an unknown set

Qn ≡ |ψs(θn)〉|s ∈ Z2n{ }, there is no efficient quantum algorithm

C−1 � {C−1i }i> 0 to recover the integer s from the given state |ψs(θn)〉
with a non-negligible probability. In other words, for all the family of

quantum circuits C−1 and for all n sufficiently large, it is always the

case that their probability of getting back the correct input x is

Pr(C−1i (fcq(x)) � x)≤ 1
2n.

Hence, we see that for a given n ≫ 1, the map

{n, s} → |ψs(θn)〉 acts as a secure QOWF that is “easy to

compute” but “hard to invert,” and the quantum one-way

function under consideration is provably secure [27].

Furthermore, we will discuss the CQ-OWF proposed by

Nikolopoulos, which consists of a number of single-qubit

OWF blocks stitched together and whose validity can be

statistically compared to a single-qubit OWF.

2.3 One-wayness of the CQ-OWF

In general, there will always exist a family of quantum circuits

C � {Ci}i> 0 involving a universal set of gates for Fcq such that ∀s ∈
{0,1}nk, ‖Ci‖≤O(klog(ϵ−1)). For all families of quantum circuits

C−1 and for all n sufficiently large, it is always the case that their

probability of getting back the correct input x is

Pr(C−1i (Fcq(x)) � x)≤ ( 1
2n)kt. Eventually, we can conclude that

the function Fcq: {n, s} → |Ψs(θn)〉 is one-way function, which is
“easy to compute” but “hard to invert.”

3 Quantum public-key encryption

In this section, we will discuss and improve the quantum public-

key encryption construction proposed by Nikolopoulo [27], which

has been proven to be secure. Based on the CQ-OWF mentioned in

Section 3, when it comes to two consecutive rotations, the map

s ↦ |ψs(θn)〉 can act as a trapdoor OWF. Let us assume that after

R̂(sθn), a second rotation R̂(mθn) is applied to the same qubit, with

a randomly chosen integerm ∈ Z2n , such that s +m= cmod 2n. After

the second rotation is applied, the qubit’s state becomes

|ψc(θn)〉 � R̂(cθn)|0〉 � R̂(mθn)R̂(sθn)|0〉. In general, we are

interested in extrapolating m because it usually represents clear

textual information. However, this assignment (for eavesdroppers)

requires more explicit information about the figures s and c, which is

impossible for n ≫ 1. More strictly speaking, the information about

the randomly chosen s extracted from the state |ψs(θn)〉 is negligible,
so it remains practically unknown. Similarly, for a legitimate user with

only information s, it is impossible to extract m from

|ψm(θn)〉 � R̂(mθn)|0〉, and the number m remains practically

hidden. In the following, through the analysis of the quantum

public-key encryption scheme, we will have a clearer

understanding of the one-way and trapdoor properties of the map

s ↦ |ψs(θn)〉. The specific quantum public-key encryption scheme

consists of the following three stages.

3.1 Stage 1—Key generation

Choose a random integer string s of length k,

i.e., s � (s1, s2, . . . , sk), with sj chosen independently of Z2n

and then apply R̂(j)(sjθn) rotations to the j-th qubit. Until

here, we defined the secret key as Sk � n, s{ } and the public

key as e � k, |Ψ(pk)
s (θn)〉{ }, with the k-qubit state

|Ψ(pk)
s (θn)〉 ≡ ⊗k

j�1|ψsj
(θn)〉j. Clearly, in the proposed

protocol, the secret key is classical, whereas the public key is

quantum as it involves the state of k qubits, and |ψsj
(θn)〉 are

presented in Section 3. Moreover, note that its copying does not

violate the no-cloning theorem.

3.2 Stage 2—Encryption

Assume a sender wants to transfer a k-bit string m ≜ m1, m2,

. . .,mk, withmj ∈ 0, 1{ } to a receiver. To encrypt the message, the

sender will take the following steps without altering the order of

the public-key qubits:
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(1) Obtain authentic public key e.

(2) When encrypting the jth bit of message, say mj, by applying

the rotation R̂(j)(mjπ + bπ
2 ) where b ∈ {0, 1}

(i.e., R̂(j)(mjπ) or R̂(j)(mjπ + π
2)) on the corresponding

qubit of the public key, whose state becomes

|ψsj,mj
(θn)〉j � R̂(j)(mjπ + bπ

2 )|ψsj
(θn)〉j. In general, b is

defined as the coding basis.

(3) Now that, we generate the quantum ciphertext (or else cipher

state) that is the new state of the k qubits,

i.e., |Ψ(c)
s,m(θn)〉 � ⊗k

j�1|ψsj,mj
(θn)〉j.

3.3 Stage 3—Decryption

To recover the plaintext m from the cipher state |Ψ(c)
s,m(θn)〉,

the receiver needs to perform the following steps:

(1) Undo initial rotations, i.e., to apply R̂(j)(sjθn)−1 to the j-th

qubit of the cipher state.

(2) Measure each qubit of the cipher state on the basis of

|0〉, |1〉{ } or | + 〉, | − 〉{ } corresponding to the coding basis

b. This completes the process of secure communication.

In the introduction to quantum public-key cryptography [27],

only one encryption method is included, which is R̂(j)(mjπ).
Under this situation, it is always easy for the receiver (with the

secret key) to get the encodedmessagem (here, b defaults to 0) when

he receives the cipher state. In other words, the information encoded

on the public key is plaintext information to the receiver. Given that

we are designing an all-or-nothing OT protocol, the protocol

requires that the receiver Bob cannot learn the message in more

than 50% of the cases. Therefore, we will make relevant

improvements to qPKE construction to satisfy the probabilistic

transfer condition. In our improved version, we extend the

encryption method into two, namely,

R̂(j)(mjπ) and R̂(j)(mjπ + π
2), corresponding to the coding

basis b = 0 and b =, respectively. Note that if the coding basis is

known, Bob can get the encoded message m with probability 1.

However, if Bob does not possess the coding basis, after undoing

initial rotations, Bob will not be able to determine the measurement

basis to get the exact encoded m. In this article, we set the coding

basis at R̂(j)(mjπ + bπ
2 ) where b ∈ {0, 1}. Here, we define basis

|0〉, |1〉{ } as computational and basis | + 〉, | − 〉{ } as Hadamard. In

the following section, we will discuss why Bob can receive bit mj′ �
mj with a probability of 1 when choosing the correct basis.

In Section 3.2, we would like to analyze the encryption

encoding method |ψsj,mj
(θn)〉j � R̂(j)(mjπ + bπ

2 )|ψsj
(θn)〉j in

further detail. It means that when mj = 0 and b = 0, there is

ψsj ,0
θn( )

∣∣∣∣∣ 〉j � R̂ j( )
0( ) ψsj

θn( )
∣∣∣∣∣ 〉j

� cos
sjθn
2

( ) 0| 〉j + sin
sjθn
2

( ) 1| 〉j.

When b = 1, there is

ψ′sj,0 θn( )
∣∣∣∣∣ 〉j � R̂ j( ) π

2
( ) ψsj

θn( )
∣∣∣∣∣ 〉j

� cos
sjθn
2

( ) +| 〉j + sin
sjθn
2

( ) −| 〉j,

where | + 〉 � R̂(π/2)|0〉, | − 〉 � R̂(π/2)|1〉. We would like to

point out that for a single qubit, the cipher states |ψsj,0
(θn)〉j and

|ψ′sj,0(θn)〉j are non-orthogonal when encoding the same binary

bit with different encoding methods, and no quantum circuit can

distinguish them, i.e., the indistinguishability of non-orthogonal

states of quantum physics. Similarly, it means that when mj = 1,

b = 0, there is

ψsj ,1
θn( )

∣∣∣∣∣ 〉j � R̂ j( )
π( ) ψsj

θn( )
∣∣∣∣∣ 〉j

� cos
sjθn
2

( ) 1| 〉j + sin
sjθn
2

( ) 0| 〉j.

When b = 1, there is

ψ′sj,1 θn( )
∣∣∣∣∣ 〉j � R̂ j( )

π + π

2
( ) ψsj

θn( )
∣∣∣∣∣ 〉j

� cos
sjθn
2

( ) −| 〉j + sin
sjθn
2

( ) +| 〉j.

In contrast, encoding different binary bits with the same

encoding method, the cipher states |ψ′sj,0(θn)〉j and |ψ′sj,1(θn)〉j
are orthogonal and can be distinguished by performing a

measurement with a probability of 1.

In Section 3.3, we would like to point out that the

aforementioned two steps are basically equivalent to a von

Neumann measurement, which projects the jth qubit onto the

basis |ψsj
(θn)〉, R̂(π)|ψsj

(θn)〉{ }. Here, we notice that

R̂(j)(α)−1 � R̂(j)(α)† � R̂(j)(−α), while different rotations

around the same axis commute, i.e., [R̂(j)(α), R̂(j)(β)] � 0.

Next, we first describe the state after undoing the initial rotations

in further detail, which means that when mj = 0, b = 0, there is

R̂ j( )
sjθn( )−1 ψsj,0

θn( )
∣∣∣∣∣ 〉j � cos 0( ) 0| 〉j + sin 0( ) 1| 〉j � 0| 〉j → mj

� 0,

where |0〉 � 1�
2

√ (| + 〉 + | − 〉) and when b = 1, there is

R̂ j( )
sjθn( )−1 ψ′sj,0 θn( )

∣∣∣∣∣ 〉j � cos 0( ) +| 〉j + sin 0( ) −| 〉j
� +| 〉j → mj � 0,

where | + 〉 � 1�
2

√ (|0〉 + |1〉). It means that when mj = 1, b = 0,

there is

R̂ j( )
sjθn( )−1 ψsj,1

θn( )
∣∣∣∣∣ 〉j � cos 0( ) 1| 〉j + sin 0( ) 0| 〉j � 1| 〉j → mj

� 1.

When b = 1, there is
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R̂ j( )
sjθn( )−1 ψ′sj ,1 θn( )

∣∣∣∣∣ 〉j � cos 0( ) −| 〉j + sin 0( ) +| 〉j
� −| 〉j → mj � 1.

We can see that the quantum state after undoing the original

rotation will only be in one of the four most common states

{|0〉, | + 〉, |1〉, | − 〉}, which is the reason why we additionally

picked R̂(j)(mjπ + bπ
2 ). So far, we can record the measurements

with the two common measurement bases, namely,

computational and Hadamard. If Bob has chosen the correct

basis, the correct mj is obtained with a probability of 1.

Otherwise, the correct mj is obtained with a probability of

just 1/2.

In summary, the improvement version, which does not

change the original features of qPKE construction, still

guarantees secure communication. To be compatible with the

proposed oblivious transfer scheme, new encryption has been

added to ensure that Bob cannot distinguish between the two

encryption methods. In addition, the inherent property of qPKE

is not broken, i.e., the message can always be correctly decrypted

by following the correct steps. Lastly, we have agreed on only two

bases, computational and Hadamard, to ensure that the protocol

is oblivious.

Notice that, unlike the classical public keys that can be reused

unlimited times, in the qPKE construction, the same public key e

can also be reused, but it cannot be reused unlimited times. The

public and secret keys need to be replaced after the security factor

is exceeded, i.e., the upper bound needs to be bounded as follows:

I(x, d) ≤ kN. When N copies of the public key circulate

simultaneously, the mutual information between Eve and the

key I(x, d) increases, and the confidentiality of the secret key is

always guaranteed if log2(| ~N|) + k�n≫ kN. In the proposed OT

scheme, the public key is not required to be used many times, so

the communication process of qPKE is still secure within this

boundary. As a result, while the qPKE is not strictly speaking

public-key encryption, it can still be used to design an all-or-

nothing OT scheme.

4 New quantum all-or-nothing
oblivious transfer

In this section, we will design a secure all-or-nothing

oblivious transfer protocol based on the aforementioned CQ-

OWF as well as qPKE. Moreover, the hash function is applied in

this scheme, along with the idea of secret sharing.

A hash function creates a digest (a string that is shorter) of a

message in such a way that 1) the probability of generating at

random strings with the same hash value is negligible; and 2) the

hash values are distributed almost uniformly over the set of all

possible digests. A digest algorithm (hash function) is a method

used to prevent a message from being altered privately, and Bob’s

choice of the wrong decryption method is considered a private

alteration of the message. Therefore, Bob can verify whether the

message was obtained or not after the opening phase. In the

proposed scheme, the proposed hash function to be used to

generate the digest is: Consider dividing a random key r into t

successive blocks of bits �ri, (1≤ i≤ t), each of length k, where
�ri � rk(i−1)+1rk(i−1)+2 . . . rk(i−1)+k. The hash value d �
h(�r1�r2 . . . �rt) ≜ d1d2 . . . dt has a value of rk(i−1)+1 ⊕ rk(i−1)+2
⊕. . .⊕rk(i−1)+k for each bit di. Essentially, di is the parity bit of

the ith unit of the random key. As a result, each bit in hash value

is independent of the others. Assume that the hash value enables

the recovery of the random key with a non-negligible probability

p. With the same probability p, the bit di = rk(i−1)+1 ⊕ rk(i−1)+2
⊕. . .⊕rk(i−1)+k then specifically aids in recovering the potential

unit �ri. If the cryptographic system [27], used to create the

proposed protocol, is secure, then we assert that this is

impossible. Here, t is a threshold sufficient to determine

whether the message was obtained or not, and the probability

that Bob will mistake an altered message as a correct message is

negligible, i.e., 12
t.

Shamir’s secret sharing, formulated by Adi Shamir, is one of

the first secret-sharing schemes in cryptography. It is based on

polynomial interpolation over finite fields [29]. The basic idea is

that the distributor divides a secret into n-shared units by a

polynomial, such that any of the t-shared units can be combined

to reconstruct the secret, but no information about the secret is

available to any of the t − 1-shared units. As mentioned

previously, consider dividing the random key r into t

successive units of bits �ri, (1≤ i≤ t); the random key of each

unit represents the shared unit. Thus, for k = n, the message be

recovered only by assembling the shared units of each unit, and

inaction on any unit will result in getting nothing. In summary,

with the idea of secret sharing, it is possible to achieve that only

honest Bob (measure all qubits on the same measurement basis)

can recover the message, with a probability of 1/2. Shamir’s secret

sharing based on the Lagrange interpolation theorem is an

inefficient implementation. Fortunately, for t = n, there is also

a simple and efficient implementation of Shamir’s secret sharing,

to which the proposed scheme applies. The message that will be

transmitted is the shared secret. That is, take any t − 1 random

numbers (�r1, �r2, . . . , �rt−1) and for message m computing
�rt � m ⊕ �r1 ⊕ �r2 ⊕ . . .⊕ �rt−1. This enables the message m �
⊕t
i�1�ri to be obtained, while any t − 1-shared units will get

nothing about the message.

The framework of the proposed all-or-nothing OT protocol

is shown in Figure 2. The detailed steps are described as follows:

Notations:

Security parameters: n, k, t ∈ N, with k ≫ t, θn = π/2n−1;

Secret key: s = (s1, s2, . . ., skt), where each si ∈ {0,1}n;

Random key: r � �r1�r2 . . . �rt � r1 . . . rkrk+1 . . . r2kr2k+1 . . . rkt;
Hash function: h: {0,1}kt → {0,1}t;

Message to transfer: m = m1m2. . .mk.

Transferring phase:
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(1) Alice uniformly at random takes any t − 1 random numbers

(�r1, �r2, . . . , �rt−1) and for message m � ⊕t
i�1�ri computes �rt,

where the random key

r � �r1�r2 . . . �rt � r1r2 . . . rkt, rj ∈ 0, 1{ }. To encrypt the bit

string r, Alice prepares the secret key as Sk � n, s{ } and

chooses one of the two encryption encoding methods as

b ∈ {0, 1}. Then, she encodes her bit string r as a sequence of

qubits on the same basis, using the same encryption scheme

as before without altering the order of the public key qubits:

Ψ c( )
s,r θn( )∣∣∣∣ 〉 � ⊗

kt

j�1
R̂ sjθn + bπ

2
+ rjπ( ) 0| 〉.

(2) After coding, she sends the result, |Ψ(c)
s,r (θn)〉, to Bob.

Opening phase:

(3) Alice sends to Bob the secret key as Sk � n, s{ } and the hash

as d = h(r).

(4) Bob applies R̂(siθn)−1 to each qubit of |Ψ(c)
s,r (θn)〉.

(5) Bob chooses uniformly at random b′ ∈ {0, 1} and measures

each qubit of the cipher state on the basis of

|0〉, |1〉{ } or | + 〉, | − 〉{ } corresponding to b′.
(6) Let r′ be the random key that Bob recovers. He checks if d =

h(r′). If that is the case, then Bob is almost sure that r′ = r;

otherwise, he knows that r′ is not the correct random key.

Finally, if r′ = r, dividing the random key r′ into t successive
units of bits �ri, he will get m � ⊕t

i�1�ri.

This ends the proposed protocol.

5 Security analysis and discussion

In the proposed protocol, Bob’s main goal is to recover

plaintext information from the cipher state, a goal that seems

too ambitious to achieve under the quantum no-cloning

theorem, and he may use different methods to try to

compromise the security of the protocol. Alice’s main goal is

to know whether Bob received the correct message or not. As

long as one of these two goals is accomplished, the OT protocol is

considered invalid. The security of the proposed OT protocol is

then examined. All-or-nothing OT must fulfill the following four

requirements (the first expresses correctness, while the next three

ensure the security of the protocol):

(1) Soundness: if Bob and Alice are both honest, there is a 1/2

probability that Bob will get the correct message m. Bob is

aware of whether he received the correct message or not, but

Alice is not.

(2) Concealing: Bob cannot learn the message Alice intended to

transfer before the opening phase if Alice is honest.

(3) Probabilistic transfer: after the opening phase, Bob is unable

to learn the message in more than 50% of instances.

(4) Oblivious: if Bob is honest, Alice can only guess with a

probability of 1/2 as to whether Bob received the message.

Definition 2.when a function f(x), for each polynomial function

P(x), has the following equation held,

∃k ∈ N such that ∀n> k, f(n)< 1/P(n) can be said to be

negligible.

FIGURE 2
All-or-nothing oblivious transfer based on CQ-OWF.
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5.1 Soundness

In the following paragraphs, we prove the soundness of the

proposed protocol: if both Alice and Bob are honest, then with a

probability of 1/2 + ϵ(k), Bob will get the correct message, where

ϵ(k) is a negligible function of the size of the message m =

m1m2. . .mk. Bob is aware of whether he received the correct

message or not, but Alice is not. As mentioned previously, the

message can be recovered using the random key, and the

information Bob receives about the random key consists of

two parts: one belonging to the cipher state sent by Alice, and

the other belonging to its hash value. It has shown that, by the

nature of the digest algorithm, the hash function does not help

Bob recover the random key r. This is because the hash is

obtained in a lossy and irreversible way.

Without loss of generality, assume that Alice chooses b = 0,

i.e., the computational method R̂(j)(mjπ) is chosen to encode

each qubit of the cipher state. The qubits Alice sent to Bob are the

following:

ψ
∣∣∣∣ 〉 � ⊗

kt

j�1
R̂ sjθn + rjπ( ) 0| 〉

� ⊗
kt

j�1
cos

sjθn + rjπ

2
( ) 0| 〉 + sin

sjθn + rjπ

2
( ) 1| 〉.

In the opening phase, Bob receives the secret key Sk from

Alice, where s = s1s2. . .sk. Later, he undoes their initial rotations,

i.e., to apply R̂(j)(−sjθn) to the jth qubit of the cipher state. The

states he gets are either |0〉 or |1〉. In fact:

ψ′
∣∣∣∣ 〉 � ⊗

kt

j�1
R̂ −sjθn( )R̂ sjθn + rjπ( ) 0| 〉 � ⊗

kt

j�1
R̂ rjπ( ) 0| 〉

� ⊗
kt

j�1
cos

rjπ

2
( ) 0| 〉 + sin

rjπ

2
( ) 1| 〉 � rj

∣∣∣∣ 〉.

By the assumption b′ = 0, Bob chooses to measure each qubit

on the basis of |0〉, |1〉{ }, and the result is rj with a probability 1.

Clearly, there is r′ = r and h(r′) = d. Moreover, he can get the

whole message m � ⊕t
i�1�ri.

By the assumption b′ = 1, Bob chooses to measure each qubit

on the basis of | + 〉, | − 〉{ }, and the result rj′ is rj with a

probability 1/2. More specifically, if rj = 0, then the

aforementioned state becomes |0〉 � cos(π/4)| + 〉 + sin(π/4)| −
〉 and by measuring the qubit with {| + 〉, | − 〉} Bob gets the

correct result with a probability cos2(π/4) = 1/2. Likewise, if rj = 1,

then the aforementioned state becomes |1〉 � cos(π/4)| − 〉 −
sin(π/4)| + 〉 and again Bob gets the correct bit with the

probability 1/2. Not knowing b, Bob might make the wrong

measurement basis on each qubit, and thus obtains a random key

r′ differing from r in 1/2 of its bit positions (of course Bob does

not know which ones). In this case, for Bob, the end of the

protocol is just getting a random number with no meaning.

The two cases, b′ = b and b′ ≠ b, occur both with a probability

of 1/2. While in the first case Bob always gets r correctly, in the

second case, the probability of getting correct rj is 1/2. Hence, the

probability that Bob will get the whole random key r is

Pr ψ′
∣∣∣∣ 〉 → r( ) � Pr b′ � b( ) × Pr r|b′ � b( )

+ Pr b′ ≠ b( ) × Pr r|b′ ≠ b( )
� 1
2
+ 1
2
∏kt
j�1

cos2
π

4
( ) � 1

2
+ 1
2kt+1

,

where ϵ(k) = 1/2kt+1 is negligible. Therefore, Alice is unaware of

whether Bob received the correct message or not.

However, Bob can check whether he has recovered the

correct random key r by comparing his hash value h(r′) with
the second part of the received information d. According to the

properties of the hash function, the probability of the first part of

the hash value matching the second part is negligible in the case

of Alice’s coding basis being different from the measurement

basis chosen by Bob.

5.2 Concealing

In this section, we show that if Alice is honest, the probability

of Bob recovering the message to transfer before the opening

phase is negligible.

This part of the statement follows directly from the security

of the qPKE construction. The entropy of the entire secret key is

given by the joint entropy H(n, s) of the unknown n and s.

H d( ) � H n( ) +H s|n( )

� log2 ~N
∣∣∣∣ ∣∣∣∣( ) + ∑

v∈ ~N

p v( )H s|n � v( ) � log ~N
∣∣∣∣ ∣∣∣∣( ) + k nu + n1( )/2,

where n is distributed uniformly over a finite interval ~N �
(n1, nu), n1 ≫ 1. It can be seen that the secret key space is

related to the range of n and the number of qubits (k).

Obviously, the space of secret keys can be huge, and it is

meaningless to pick them randomly from an infinite space. It

follows that from the quantum public key, the possibility of

achieving the inverse operation to obtain the secret key is

negligible, which guarantees the unidirectionality of the one-

way function.

In addition, the secrecy of the secret key is guaranteed by the

fact that the preparation of the public key state is unknown to

everyone except Alice before the opening phase. The state of each

qubit of the public key is randomly chosen by Alice and is

independent of the other qubits. As proven in [27], with a proper

choice of n, the qPKE construction is secure against unauthorized

users based on the uncertainty principle. Therefore, with the

same choice of a proper n, the unidirectionality of the one-way

function ensures that Bob cannot learn the message that Alice

meant to send before the opening phase, and the protocol is a

concealing one.

Frontiers in Physics frontiersin.org09

Wang et al. 10.3389/fphy.2022.979838

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.979838


5.3 Probabilistic transfer

Furthermore, after the opening phase, Bob recovers the

message with, up to a negligible value, a probability 1/2 +

ϵ(k). This part of the description can be attributed to the fact

that after Bob receives the secret key from Alice in the opening

phase, there is still no strategy to get the whole encoded

random key.

The proposed scheme divides the random key r into t

successive units of bits �ri, (1≤ i≤ t), the random key of each

unit represents the shared unit, and the message remains secret

for any t − 1-shared units. To retrieve the message, dishonest Bob

needs to know information about every shared unit, i.e., he needs

to infer the correct measurement basis without destroying any of

the shared units. This cannot be carried out.

Now consider dishonest Bob. First, we analyze the optimal

cheating strategy if Bob has infinite ability. Bob chooses a basis to

measure the quantum state, and if the projection is successful,

i.e., the correct basis is chosen, he will further calculate to get the

message. If the projection fails, Bob recovers the quantum state

and then chooses another measurement basis and measures the

quantum state again to obtain the message. However, both non-

demolition measurements of qubits are out of technological

reach today and could remain hard for a very long time for

high k values [30]. Bob must therefore seek other strategies, such

as utilizing the several qubits present in a shared unit to infer the

coding basis with a probability greater than 1/2.

After undoing the initial rotation of the quantum state, Bob

will get the following state:

ψ′
∣∣∣∣ 〉 � ⊗

kt

j�1
R̂ −sjθn( )R̂ sjθn + bπ

2
+ rjπ( ) 0| 〉

� ⊗
kt

j�1
cos

bπ/2 + rjπ

2
⎛⎝ ⎞⎠ 0| 〉 + sin

bπ/2 + rjπ

2
⎛⎝ ⎞⎠ 1| 〉.

Let |0〉x � | + 〉, |1〉x � | − 〉; there is |ψ′〉 � ⊗kt
j�1|rj〉 if b = 0,

and there is |ψ′〉 � ⊗kt
j�1|rj〉x if b = 1. However, to Bob, |ψ′〉j is

randomly in one of the states {|0〉, |1〉} or {| + 〉, | − 〉}, i.e., |ψ′〉j
is a maximally mixed state whose density matrices are

ρ � 1
2 (|0〉〈0| + |1〉〈1|) � I

2. No measurement that Bob made

could distinguish the maximally mixed state. Furthermore, for

more effective cheating, Bob might perform a joint measurement

on |ψ′〉 to replace the one qubit measurement. But his capability

of cheating should not increase, as this is equal to measuring a

maximally mixed state with multi-dimension. Consequently,

dishonest Bob can only guess the basis successfully with a

probability of 1/2.

In summary, Bob can only infer whether the measurement

basis is correct by parity bits, i.e., he has to try one basis to

measure several shared units. According to the idea of secret

sharing (any t − 1-shared units will get nothing about the

message), these shared units would also be irreversibly

damaged, making it impossible for him to obtain the message.

5.4 Oblivious

To conclude our discussion on security, we demonstrate that

the protocol is oblivious. At the end of the protocol, Alice is

unaware of whether Bob has received the message or not. The no-

communication theorem may be referenced in this section of the

statement. It should be noted that Alice’s attacks should not have

the effect of making it difficult for Bob to know for sure whether

he obtained the correct message or not, as this would go against

the original objective of OT.

Theorem 2. (No-communication theorem). During the

measurement of an entangled quantum state, it is not possible

for one observer, by measuring a subsystem of the total state, to

communicate information to another observer. The theorem

gives conditions under which such transfer of information

between two observers is impossible.

As can be seen, Alice communicates with Bob in one-way

communication, in which Bob performs local operations and

measurements without communicating with Alice. Here, no

follow-up communication of entanglement can be used to

exchange and obtain information; therefore Alice has no way

of knowing through entanglement whether Bob has chosen the

correct measurement basis. Otherwise, one could achieve faster-

than-light communication, thus explicitly violating causality and

the principle of relativity. Indeed, what entanglement effects are

the correlations: Bell inequalities are given in terms of various

correlation functions, and the violation of local realism can be

observed only upon distant observers exchanging the results of

their local measurements. Alice honestly chooses the coding

basis, sends the quantum state to Bob, and does not receive

any feedback from Bob. Therefore, based on the no-

communication theorem, Alice is oblivious to whether Bob

gets the message or not.

On the one hand, dishonest Alice could not convince Bob

that the lack of access to the message was his own business

without being detected as cheating. For this reason, Bob can

check whether Alice is cheating by following the steps as follows:

first, Bobmeasures the quantum bits at position [1, kt/2]. Each bit

di of the hash value d = h(r) is the parity of the ith unit of the

message; hence, all the bits of the digest are mutually

independent. If he always observes the parity bit di matching

the shared unit �ri in the opening phase, Bob can be sure that Alice

is not cheating. Otherwise, he will choose another basis to

measure the remaining quantum bits, and if he fails to

observe matching parity bits, this means that Alice cheated

and the protocol is terminated. Alice still does not know

which basis Bob will use to check the second half. Therefore,

she has to be honest, and she does not know whether Bob

received the correct message or not.

On the other hand, dishonest Alice cannot ensure that Bob

always gets the message. Entanglement attacks do not work, so

Alice will look for other strategies, such as the existence of a
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quantum state that will collapse to a certain bit rj with a high

probability, regardless of Bob’s choice. In the proposed scheme,

Bob getting the correct message depends on whether he chooses

the basis that is consistent with Alice’s basis {|0〉, |1〉} and

{| + 〉, | − 〉}. Any single quantum state can be written in the

following form:

ψ
∣∣∣∣ 〉 � α 0| 〉 + β 1| 〉 � α + β�

2
√ +| 〉 + α − β�

2
√ −| 〉,

where |α|2 + |β|2 � 1. It is obvious that such a quantum state does

not exist. Therefore, it does not convince Bob that he has chosen

the correct measurement basis because d and h(r′) are not always
the same.

Finally, we discuss the relationship between an all-or-nothing

oblivious transfer protocol and the no-go theorem in two aspects. On

the one hand, it is clear that the all-or-nothing OT protocol is based

on a one-way function rather than any quantum bit commitment

scheme, so it does not conflict with the result that an unconditionally

secure QBC scheme cannot be achieved within non-relativistic

physics [13]. On the other hand, the purposes of malicious Alice’s

attack are different. In bit commitment, Alice may want to change

what she has committed, while in oblivious transfer, Alice may want

to knowwhether Bob receives the right state. Therefore, in the all-or-

nothing OT, Alice may use coherence to change the coding basis,

however, which is not Alice’s purpose.

6 Conclusion

In this article, we study the design methods and security analysis

of the quantum all-or-nothingOTprotocol based on secure quantum

one-way functions, mainly in soundness, concealing, probabilistic

transfer, and obliviousness. The proposed scheme does not violate the

no-go theorem, and its security is based on the laws of quantum

physics. In practice, the security of the protocol will remain very

reliable for high k values because of limitations on non-demolition

measurements.Moreover, the design of secureQOTs is important for

building highly trusted cryptographic protocols and algorithms and is

the foundation of quantum cryptographic protocols.
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