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Quantum error correction technology is a vital method to eliminate noise

during the operation of quantum computers. To solve the problem caused by

noise, in this paper, reinforcement learning is used to encode defects of Semion

codes, and the experience replay technique is used to realize the design of

decoder. Semion codes are quantum topological error correction codes with

the same symmetry group Z2 as Kitaev toric codes, we used the topological

characteristics of error correction codes to map qubits to multi-dimensional

space, and error correction accuracy of the decoder is calculated to be 77.5%.

Calculate the threshold of topological quantum Semion code, depending on

the code distance, resulting in different thresholds, pthreshold = 0.081574 when

the code distance is d= 3, 5, 7 and threshold pthreshold = 0.09542when the code

distance is d = 5, 7, 9. And we design the Q-network to optimize the cost of

quantum circuit gates and compare the size of the cost reduction under

different thresholds. Reinforcement learning is an important method for

designing Semion code decoders and optimizing numerical values, providing

more general error models and error correction codes for future machine

engineering decoders.
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1 Introduction

Quantum computing and quantum information have made tremendous progress

over the years, and technologies based on quantum communication and quantum error

correction (QEC) are developing rapidly [1–4]. The robustness of quantum memory to

outer noise and noise removal is an extremely significant resource for quantum fault

tolerance [5–9]. Among quantum memories, Among quantum memories, Kitaev toric

code [10] is the first proposed topological torus code, which is a simple two-dimensional
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lattice gauge theory with the Z2 gauge group. A double-Semion

model is a model with the same gauge group theory as Kiteav but

with not the same topological properties [11,12]. Although the

double Semion model and Kitaev have the same standard set,

there are some differences. Double Semion codes weave two

elementary quasiparticle excitations that will give ± i phase,

showing the statistic of anyons, while Kitaev toric codes only

give a ±1 phase factor. The topological order provides a wide

range of new topological codes with non-Pauli stabilizers, such as

error correction codes: Semion code, which is topologically

ordered, respect the stabilizer formalism, but due to Pauli X

and Pauli Z existing in the square operator, it is not Pauli’s code,

it can not be represented as a tensor product of Pauli matrices, so

it is not Calderbank-Shor-Steane (CSS) code [13].

Threshold is an effective means of characterizing fault

tolerance performance. Specifically, when the physical error

rate of qubits is lower than a certain threshold, quantum error

correction can be applied to perform effective quantum

computing, and the logical error rate can be suppressed to an

arbitrarily low level. Due to the fragile nature of quantum

information, future universal quantum computers could

diagnose syndromes based on the logic qubits of stabilizers.

To prevent error propagation and logical failures, a decoder

needs to be designed that provides a set of recovery operations to

correct errors given a specific syndrome, must include the

corresponding error statistics [13] for any given syndrome,

and must account for the defects of the syndrome due to

measurement errors of the stabilizer, requiring QEC. At

present, there are many decoders designed based on

topological codes, not only toric codes [14,15], but also color

codes [16,17]. The logical qubit is composed of a large number of

entangled physical qubits. It can prevent local disturbance caused

by errors such as bit flips when the logic operation requires global

changes.

Reinforcement learning (RL) combined with deep learning

has achieved great success in many fields [18–20]. Techniques

frommachine learning have begun to find applications in various

fields of quantum physics and to fast solve decoding problems

[21–23], decoders of many kinds of neural networks have been

proposed, although such methods have obvious advantages, it

promises extremely fast decoding times, flexibility relative to

underlying code and noise models, and the ability to scale to large

code distances, there is room for improvement and application.

At present, there are many decoders designed based on toric

codes and color codes [24,25], but few decoders based on Semion

code are involved. Although the performance of our proposed

decoder is not better than the current decoder, its value lies in the

show that it is feasible to implement the design of Semion code

using RL. The paper studies a decoder to find the optimal error

correction strategy for quantum topological Semion codes. In the

field of quantum computing, it is necessary to try to measure the

logical errors generated by the decoder given the syndrome, and

to detect the logical errors generated by the decoder through

intelligent algorithms. We apply deep learning to quantum

computing, decoding for future universal self-training devices

provides ideas.

The following contents are arranged as follows. In Section 2, a

brief background on quantum topological Semion codes and RL.

In Section 3, an algorithm was designed for quantum topological

Semion codes. In Section 4, analysis of error correction

performance, and conclude in Section 5.

2 Background

2.1 Quantum topological semion code

The double Semion model plays a principal role in the fields

of gapped systems and new topological orders [26], and the

Semion code is an error correction code that needs to be studied

in depth in topological codes. Semion code is a QEC code with

the characteristics of the double Semion model. The Semion code

has a topological protection effect on quantum information and

will not affect the global error due to local errors. Semion code is a

non-CSS and non-Pauli topological code described as a

hexagonal lattice Λ. We map the qubits in three-dimensional

space and use the topology of the code to convert qubits into

qubits in multi-dimensional space. The edges represent physical

qubits and the vertices represent stabilizer operators. The vertex

operator is represented by VQ, and vertex Q is represented as

shown in Figure 1(1), and the Pauli Z operator is represented as:

VQ � ZiZjZk (1)

Plaquette operator is represented by PG, and apply the Pauli

X operator on the sides of the hexagon:

PG � ∏
k∈zG

Xk ∑
�j

pG
�j( )| �j〉〈 �j| (2)

�j in the above formula represents the bit string of a state on the

basis of calculation, zG belongs to the edge of the plaquette

boundary, the value of pG( �j) is {±1, ±i}. The diagonal operator∑ �jpG( �j)| �j〉〈 �j| acts on the twelve qubits in Figure 1(2).

2.2 Reinforcement learning

RL problems consider an agent that interacts with the

environment [27]. The agent can manipulate and observe

parts and perform a sequence of actions to accomplish a

particular problem. Through RL, we can find the optimal

policy of the action subject in the system. The optimal policy

is the policy that proxies the best return in the process of

interacting with the system. Discrete problems are usually

considered. At each time step t, the environment can be

represented by a state st ∈ S, where S is the state space. Given
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a state, the agent can choose to perform an action at ∈ A, where A
is the action space. According to the result after the agent selects

the action, the state is updated accordingly, entering a new state

st+1, and providing the agent with feedback on the action

selection in the form of reward rt+1, starting from time t, the

return Rt = rt+1 + λrt+1 + λ2rt+1 + /, where λ ≤ 1 is the discount

factor that quantifies how one wants to value immediate and

subsequent returns [28]. There will be a constant return r = 1 for

each step. To formalize the agent’s decision-making process, we

define the agent’s policy as π, and π(a, s) is the probability that the

agent chooses at = awhen the state is in st = s. By using a measure

of discounted cumulative reward, the value of any given state

depends not only on immediate rewards from that state following

a particular policy but also on expected rewards in the future.

3 Algorithmic process

3.1 Explore semion code

As shown in Figure 1(4), the subscript q runs over the vertices

belonging to the plaquette G. βq can be represented by twelve

qubits as

Σq∈Gβq � in
+
7 n+1 n

−
6−n−1 n+6( )in−8 n−1 n

−
2−n+1 n+2( )

� in
−
9 n+2 n

+
3−n−2 n−3( )in+10 n−3 n

+
4−n+3 n−4( )

� in
−
11 n−4 n

−
5−n+4 n+5( )in−12 n+5 n

+
6−n−5 n−6( )

(3)

and

n±i �
1
2

1 ± Zi( ) (4)

According to the above analysis, pG( �j) can be clearly

defined as

∑
j

pG
�j( )| �j〉〈 �j| � ∏

k∈zG

−1( )n−k−1n+k ∏
q∈G

βq (5)

Therefore, according to the above reasoning, we add βq to PG′ on
each vertex, and we can obtain a PG′ expression that conforms to

the entire Hilbert space.

PG′ � ∏
k∈zG

Xk ∏
k∈zG

−1( )n−k−1n+k (6)

PG′ satisfies the commutate [29] principle of the operator, and the

plaquette operator allows the definition based on stability

topological error-correcting code in agent form.

The same as the string operator in Kitaev toric code, TZ in

Semion code is expressed as a string operator that generates grid

excitation [30], that is, TZ is a string of Z operators. Each stabilizer

commutes with these operators except the grid operator at the end of

the string, and the string X produces the string operator of the vertex

excitation, as shown in Figure 1(3). We commute the characters on

the pathG. The string ismarked asT+
G and is supported by coon.T+

G

can only act on the coon set of qubits non-trivially. According to the

constraints: (1)The square of the string operator is 1. (2)It must be

determined by exchanging with the stabilizer. The system of linear

equations can be withdrawn from F( �j),

FIGURE 1
Hexagonal lattice diagram, the outermost hexagonal frame is only for aesthetics and does not represent a bounded hexagonal diagram. (1)
Vertex operator VQ. (2)Plaquette operator PG, the plaquette operator not only includes the blue hexagon, but also the outputting legs connecting the
hexagon. (3)The path G of the positive or negative chirality string operator T±

G is represented by the blue path, the connecting line represents the T±
G

support Conn(G), and the yellow dots represent a pair of vertex excitations generated at the endpoints of the path G. (4)Phase factor diagram
expanded from (2).
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F �j( ) � F �j ⊕ �i( ) (7)

the qubit of F( �j) in Coon(G) [11] is 0, and the ⊕ sign represents

the sum of the remainder of the bit string to Z. The value of F( �j)
is {±1, ±i}. So the string T+

G is:

T+
G � ∏

k∈G

Xk ∑
j

F �j( )| �j〉〈 �j| (8)

The quasiparticle vertex excitation behavior generated by T+
G is

the same as that of anyons.

The positive chirality string is defined as T+, the negative chirality

string is T−, and the negative chirality string can be got by calculating

the TZ string operator, that is, T− = TZT+. The operator commutes

with the Z operator, and the Z operator and T± do not commute. In

conclusion, the commutation principle to be followed is:

T±, T±[ ] � 0, T∓ , T±[ ] � 0, TZ, T±[ ] � 0 (9)

The Hamiltonian is used as the coding space, Semion codes

are alike to Kitaev toric codes, with vertex and plaquette

operators. Embedding the Semion code in Kitaev toric code

results in two quantum memories with logical qubits. The

logical operator consists of T+
L and T+

H, H(L) is any

homogeneous non-trivial path in the horizontal (vertical)

direction, and the other pair logical operator is T−
L and T−

H,

which are non-self-intersecting or overlapping the composition

of each path is shown in Figure 2(1). Two logical qubits of the

code require two pairs of logical operators, which are defined as

X1 and X2:

X1 � T−
H, Z1 � TZ

L , X2 � T+
L, Z2 � TZ

H (10)

The set of these operators satisfies the inverse

relationship. The hexagonal lattice makes the distance of the

X operator twice that of the Z operator, which can better avoid

errors. To perform error correction, the stabilizers have to be

measured periodically, and the excitations have to be annihilated

by bringing them together using the string operators.

3.2 Build noise models

The error-correcting ability [31] of QEC codes depends on

the type and strength of qubit manager errors [32–34]. In the

context of topological codes, two error models have been

extensively studied, namely depolarizing noise and

independent bit-flip and phase errors. In the depolarizing

noise model, each qubit has an error according to the

following probability (1−perror) for no error, and perror

3 for X, Y,

and Z errors. perror is a parameter between 0 and 1. The model is

symmetric between X, Y, Z.

In the independent bit-flip and phase errors, each qubit will

be affected by the error, we record the probability of X error, Y

error, and Z error as pXYZ, so the probability of error is

perror � 2pXYZ − p2
XYZ. As shown in Table 1.

Assuming that the X operator is applied to a qubit, for three

possible edge orientations, the probability of a syndrome error

can be obtained, with the “+” sign indicating the excitation on a

given plaquette. Table 2 shows the probabilities of calculating a

given flux pattern, corresponding to Figure 2(2).

Consider that the error operator of the n-qubit Pauli

operator is E. In the stabilizer, errors are detected by

measuring the stabilizer generator. If no errors occur, these

measurements will output +1 eigenvalues. If an error E occurs,

the same as The stabilizer generator against E commutation

will output −1, and the output of the stabilizer measurement is

the error syndrome. To correct the error, the inverse operator

of the error is applied, and in the case of the self-inverse Pauli

error, the same operator can be applied [35,36]. The main task

of error correction is to determine the correction operator to

apply to a given syndrome. The decoder is designed to give an

error model and output a correction operator after analyzing

the probabilities of all possible errors consistent with the

observed syndrome. The optimal decoder is to choose the

most suitable correction chain, and this choice will depend

heavily on the specific error model.

FIGURE 2
(1)Uncomplicated example of two sets of logical operators on a torus, with arrows denoting the identified boundaries. (2)The three possible
edge orientations on the X operator can be applied. The qubitmarked 3 is influenced in any case, in addition to this, it may leave flux excitations on the
four surrounding plaquettes labeled by G1, G2, G3, G4.
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3.3 Convert to square form

Embed the Semion code into the torus. We improved it and

used the Ref. [37] programming framework to map the

hexagonal lattice of Semion code to square, Ref. [11] provided

an idea for our conversion process. As shown in Figure 3, the left

picture is a schematic diagram of a hexagonal lattice, the numbers

with blue circles represent half calculations, there are sixteen

symbols in total, the red numbers are vertex operators, and there

are thirty-two in total. The data outside of the square is the period

filling used, which shows the periodic boundary condition of the

Semion code. The figure on the right is a converted square lattice,

and the numbers with blue circles represent plaquette operators.

The “|” in the figure is to ensure hexagonal space structure. Its

value is always recorded as zero and does not correspond to any

element measured by the stabilizer. The numbers in the blue

circles represent companion calculations. Letters were used to

represent vertices and plaquette operators, when the code

TABLE 1 Error model.

Noise model X error Y error Z error

Depolarizing noise perror

3
perror

3
perror

3

Independent bit-flip and phase errors 2pXYZ − p2
XYZ 2pXYZ − p2

XYZ 2pXYZ − p2
XYZ

TABLE 2 Different probabilities of plaquette excitation.

T (G1, G2, G3,
G4)

Orientation (a) Orientation (b) Orientation (c)

(+ + ++) 1
16

1
16

1
16

(− − ++) 1
16

1
16

1
16

(− + −+) 1
16

1
16

1
16

(+ −−+) 1
16

9
16

1
16

(− + +−) 1
16

1
16

1
16

(+ − +−) 1
16

1
16

1
16

(+ + −−) 1
16

1
16

1
16

(− −−−) 9
16

1
16

9
16

FIGURE 3
Lattice transformation square diagram. The left picture is a schematic diagram of a hexagonal lattice. The numbers with blue circles represent
half calculations. There are 16 symbols in total, the red numbers are vertex operators, and there are 32 in total. The figure on the right is a converted
square lattice. The numbers with blue circles represent plaquette operators, and red “|” represents the spatial structure. Extra values do not have any
meaning, other numbers are vertices. In the previous figure, letters were used to represent vertices and plaquette operators. Due to the large
number here, we use numbers to represent.
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distance is d, there are 2d2 vertices and d2 plaquettes, so there are

3d2 stabilizers in total. Map the Semion code into a square and

choose d = 4, so a square image of 8 × 8 is obtained. We assume

that vertex and plaquette operators are marked from right to left

and top to bottom. The syndrome of vertex s corresponds to the

Wk,m of an image element, where k and m are expressed as

follows:

k � 2 × ⌊q − 1
2d

⌋ + 1 (11)

m � mod q − 1 + 1 − 2d( )⌊q − 1
2d

⌋, 2d( ) + 1 (12)

The syndrome of plaquette G corresponds to the Wk,m of the

image element, where k and m are expressed as follows:

k � 2 × ⌊G − 1
2d

⌋ + 2 (13)

m � mod 2G + 1 − 4d( )⌊G − 1
d

⌋, 2d( ) + 1 (14)

3.4 Emulate semion codes decoder

Quantum computers are affected by the noise of the

external environment, which makes the operations perform

defects. Therefore, an error correction mechanism is needed

to improve the defects. The decoding algorithm needs to count

the homology of each particle to restore topological

information [6,38]. Stabilizer code allows errors to be

detected by measuring stable code operators without

changing the encoding information and correcting errors

by performing recovery operations [39]. If the encoding

task has a specific structure, the decoding task can be easier

to handle, and an efficient decoder with better performance

can be obtained. The topological code stabilizer is

geometrically local, and the abnormal return value

indicates that some qubits have errors [40]. Local errors

can be detected and corrected by encoding quantum

information in a non-local manner. Error syndromes

consist of measurements of non-trivial stabilizer operators,

and syndrome analysis can infer what errors have occurred

and how to correct them.

Using the Q function to represent the action-value function

of a set of actions and the cumulative reward of the

corresponding transition, update the estimate of Q using the

formula:

Q s, a( ) + δ r + λmaxa′Q s′, a′( )( ) −Q s, a( )[ ] → Q s, a( ) (15)

where δ < 1 is the learning rate. The action-value functionQ(s, a)
represents the payoff of taking action a in state s and following a

certain strategy at π. In the next step ofQ-learning,Q(s, a) � r +
λmaxa′Q(s′, a′) is used to quantifyQ, s→ s′ is the optimal policy

to follow for the current estimate of Q. The policy is given by

maxaQ(s, a) taking action a will eventually converge to the

optimal policy, and it is quite useful to follow the ε-greedy

policy, which takes the optimal action for the estimate of

Q(s, a) with probability (1 − ε), but take a random action

with probability ε. For a large state-action space, it is

impossible to store a complete action-value function. In deep

Q-learning, a deep neural network is used to represent the action-

value function. The input layer is the representation of a certain

state, and the output layer is possible the value of the action, using

Q(s, a, θ) to denote the parameterization of the Q-function by

the neural network, and θ to denote the network’s complete set of

weights and biases.

The RL decoder used is the evaluation of the capability of

generated action by an agent through reinforcement information

provided by the environment, without telling the agent how to

generate corrective action. Since the outer environment offers a

little piece of information, an agent must learn through

experience. It learns a mapping from the environment state to

the behavior so that the selected behavior can get the maximum

reward of the environment, and the system dynamically adjusts

the parameters. To achieve themaximum enhancement signal. In

a larger state-action space, it is impossible to save a complete

action-value function, using depth Q-learning, a deep neural

network represents the action-value function, and the input layer

represents a specific state. The output layer is the value of some

earthly actions. This simulation part uses a neural network-based

decoder [41,42], uses RL methods to optimize the observation of

Semion code syndrome, and gradually proposes the recovery

chain of a syndrome.

Training of decoder adopts deep Q-network algorithm,

which uses experience playback technology to store

experience gained by an agent in the form of a conversion

tuple in-memory buffer. A specific process is to first send

syndrome to an agent in the action part, according to the

defect of Q-network, select action store results in a buffer in

the form of a tuple, and then enter the learning process, and

use stochastic gradient descent algorithm to reduce

Q-network prediction for a gap between target and sample

target, according to the requirements of the target network,

network parameters are optimized, and then a new training

sequence is started, the weight of Q-network is synchronized

with the weight of target network. In terms of sample

selection, the samples are divided into three independent

parts, namely the training set, validation set, and test set.

The training set is used to estimate the model, the validation

set is used to determine the network structure or parameters

that control the complexity of the model, and the test set tests

the performance of the final selected optimal model. 50% of

the sample is the training set, 25% of the sample is the

validation and test sets, and all three parts are randomly

selected from the sample.
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4 Error correction performance
analysis

4.1 Error correction performance

Taking depolarization noise as an example, through the

training of the decoder, the data map shown in Figure 4 is

obtained. It is found that the performance of the decoder is better,

and the accuracy of error correction can reach 77.5%. The

decoder in this paper is to calculate the threshold of the

Semion code. The logical error rate is drawn in the range of

the physical error rate for different code distances, and the

threshold is generally determined as the physical error rate

value at the intersection of the two. For physical error rates

below the intersection of the two, the logical error rate will

decrease as the code distance increases. For each physical error

rate, the logical error rate is calculated as the average of multiple

independent instances, and for experimental certainty, it must be

determined that a certain number of logical errors are observed

each time in an actual experiment. For the code distance d, the

logical error rate plogical should have the following

correspondence:

plogical � perror − pthreshold( ) × d
1
vo (16)

where perror is the physical error rate, pthreshold is the threshold, vo
is the scaling exponent. Based on the above formula, this paper

obtains the data graph as shown in Figure 5. It can be observed in

Figure 5(1) that when the logical error rate plogical = 0.31257, the

threshold pthreshold = 0.081574. Figure 5(2) can be observed, but

when the logical error rate plogical = 0.2642, the threshold

pthreshold = 0.09542. Thresholds vary due to code distances and

qubits. It is considered to compare the outcome of this paper with

a series of previous estimates of thresholds, some small difference

between estimates is reasonable due to not the same execution of

decoding algorithms and numerical simulations. As can be seen

from the two graphs in Figure 5, when the physical error rate is

below the threshold, the greater the code distance the more errors

can be corrected, so the logical error rate will be lower. When the

physical error rate is above the threshold, although a larger code

distance can correct more errors, the logical error rate will be

greater as the code itself has more quantum bits and more errors

will occur.

Our threshold is significantly lower than that of other papers,

this difference seems to be related to the definition of logical error

rate, some papers define logical error rate plogical as the error rate

measured per round [43–45], according to the analysis of Ref.

[46], with the d increase, the perror of continuous curve

intersection will decrease, and this definition will lead to an

overestimation of the threshold. This is roughly the same as the

data of some articles. Therefore, it is difficult for this paper to

make a conclusive statement on the difference in the results.

Nonetheless, this paper achieves the feasibility of implementing

Q-networks for Semion code decoders.

4.2 Quantum circuit performance

RL has a good effect on optimization problems. It can extract

non-local laws from noise and perform transfer learning in

various tasks. Applying this advantage to the cost of qubits

passing through the quantum gate can reduce the cost of

qubits. The qubits contain auxiliary qubits in the process of

comprehensive measurement, and the logic overhead is the cost

of auxiliary qubits in the process of comprehensive measurement.

In this paper, theQ-network of RL is used to experiment, and the

number of simulated qubits ranges from 3 × 107 to 2.1 × 108, and

compare the original overhead under different thresholds and the

optimized overhead of the Q-network, Figure 6(1) shows that

when the threshold is pthreshold = 0.081574, as the number of

qubits increases, both the original overhead and the Q-network

overhead increase, but the Q-network optimized overhead is

significantly lower than the original overhead. Figure 62) shows

that when the threshold is pthreshold = 0.09542, as the number of

qubits increases, the optimized overhead of theQ-network is also

much lower than the original overhead, although when the

number of qubits is 2.1 × 108, the optimized Q-network has

the overhead is slightly higher than the original, but this does not

affect our overall results in the slightest. At the same time,

comparing the results under different thresholds in Figure 6,

we can find that the larger the threshold, the greater the overhead

of the quantum circuit gate.

FIGURE 4
The number of training times corresponds to the function of
training error rate and training accuracy. The horizontal axis
represents the number of training times, and the vertical axis
represents the training error rate and accuracy rate. Training
error and accuracy are marked in blue and orange, respectively.
For accurate viewing, zoom plots are set to make it easier to
observe the data.
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FIGURE 5
(1)Function correspondence of physical error rate perror, logical error rate plogical, and code distance d = 3, 5, 7. Threshold pthreshold = 0.081574.
(2)Function correspondence of physical error rate perror, logical error rate plogical, and code distance d = 5, 7, 9. Threshold pthreshold = 0.09542. The
abscissa represents the physical error rate, the ordinate represents the logical error rate. For better numerical analysis, the different code distances d
are marked in different colours, d = 3 in green, d = 5 in blue, d = 7 in purple and d = 9 in brown.

FIGURE 6
Quantum circuit gate overhead data graph. (1)When the threshold pthreshold=0.081574, the original cost is comparedwith the optimized cost of
the Q-network. (2)When the threshold pthreshold = 0.09542, the original cost is compared with the optimized cost of the Q-network. Among them,
the abscissa represents the number of qubits, which is displayed in scientific notation, and the ordinate is the logical cost. The original cost is marked
in orange, and the Q-network optimized cost is marked in blue.
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5 Conclusion

In this paper, topological QEC codes based on Semion codes

in the case of noise are studied. It is a novel error correction

method. Make sure that the perturbations of local errors do not

destroy the global degrees of freedom through periodic

measurement and inspection. Error-correcting codes protect

the security and correctness of quantum information. Semion

code is more innovative and flexible. The hexagonal lattice is

transformed into a quadrilateral lattice through mathematical

thinking, and the deep RL algorithm is input to get the error-

corrected experimental results. In addition, the optimization

problem of quantum circuits is also involved. Of course, this

work leaves a lot to be desired. For example, the current Semion

code decoder can only be input into the decoder in the form of

squares and has not been completely input in the form of

hexagonal grids. And we only realized that the RL decoder

embedded in Semion code is feasible, but the threshold is not

optimal. The follow-up work still needs to be further explored.
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