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Conformational changes and stability of interacting double-stranded DNA chains
under high hydrostatic pressure in biological systems are striking topics of
importance to study several biomolecular phenomena. For example, to unravel
the physiological conditions at which life might occur and to ensure the right
functionality of the biochemical processes into the cell under extreme
thermodynamic conditions. Furthermore, such processes could shed light on the
physicochemical properties of the DNA under high confinement and how, through
different mechanisms, a virus releases its genome in order to infect a cell and,
therefore, to promote the process of viral replication. To achieve a few steps toward
this direction, we propose an all-atomistic molecular dynamics approach in the NPT
isothermal-isobaric ensemble to account for how the interplay of DNA—DNA
interaction, hydrogen bonding, and the hydrostatic pressure modifies both the
DNA conformational degrees of freedom and the spatial organization of the DNA
chains in the available volume. We consider two interacting double-stranded DNA
chains immersed in an explicit aqueous solution, i.e., water and ions. Our preliminary
results highlight the role of hydrogen bonding and electrostatic interactions between
DNA strands to avoid denaturation and, therefore, to provide mechanical stability for
the DNA molecules. However, the structural evolution, whose kinetics depends on
the relaxation of the stresses induced by the pressure, indicates that almost in all
pressure conditions, the equilibrium configuration corresponds to an alignment of
the two double-stranded DNA molecules along their main axis of symmetry; the
rearrangement between the two approaching DNA dodecamers does not always
correspond to complementary base pairs and becomes a function of the
thermodynamic conditions.
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1 Introduction

Among the millions of biochemical processes and physicochemical activities involved in the
proper functionality of living matter, perhaps one of the most interesting phenomena is the
structural organization of double-stranded DNA (dsDNA) chains into some specific type of
bio-macromolecules [1–6]. All of them protecting in some manner the genome from external
agents. From the atomic composition of dsDNA, it is well-known that this polyelectrolyte has
an effective negative charge due to the phosphate groups along the chain [7]. This type of charge
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distribution causes that the DNA interacts electrostatically with itself
and other molecules, such as proteins, enzymes and ions, leading to a
complex self-organization of the DNA chains that is linked to their
functionality. Thus, the full understanding of the DNA properties
under controlled experimental conditions is critical to improve our
knowledge of its function and relation to certain biochemical activities.

Under bulk conditions, the pioneering contributions of Rau and
Parsegian, who carried out X-ray diffraction experiments for long
(length ≫ cross section) and parallel DNA strands, elucidated the
effects of osmotic pressure on the interstrand distance and the
emergence of the so-called hydration forces [8, 9], as well as the
consequence of varying the ionic conditions on the interstrand
interactions, which can be switched from repulsive to attractive to
promote, for example, DNA condensation, depending on the
polyvalency of the buffer [10, 11]. These experiments were carried
out under thermodynamic conditions that allowed the interchange of
water and ion molecules with the buffer in order to keep an
homogeneous chemical potential at several polyethylene glycol
concentrations, which established an osmotic pressure that induced
the ordering of DNA strands.

In Biology, there are some examples of bio-particles, such as cells,
sperm and viruses that, in addition to their complex internal
components, have DNA chains with a characteristic length [12].
Notably, this DNA is tightly packed into a small volume, which
gives rise to a high DNA packing density, whose structural
arrangement is influenced by the temperature, interstrand
interaction (mediated by the ionic strength of the buffer) and DNA
persistence length (bending stress). Evenmore, the internal pressure of
such biomacromolecules plays a key role in the appropriate function of
them as the case, for example, of the lytic life cycle of viruses [13]. For
example, in the wild-type bacteriophage lambda and herpes simplex
virus type 1 [14, 15], due to the high packing of the viral DNA into the
capsid, there is experimental evidence of the huge internal pressure,
which is of some tens of atmospheres. This high pressure environment
facilitates the rapid ejection of the DNA from the capsid into the host
cell, which will be infected to initiate the process of viral replication.

Providing knowledge on the physical properties of DNA at high
pressures, either hydrostatic or osmotic, could help in, for example, the
development of new technologies, such as antiviral molecules [16], as
well as to explain pathological processes that might be associated with
cancer [17, 18] and the formation of new vectors for gene therapy [19,
20]. Another highlighting phenomenon is the so-called pressure-
driven dsDNA denaturation process, which is mainly related to
ionic strength variations [21, 22]. In this case, the increase of ionic
concentration causes an osmotic pressure difference, which
corresponds to a completely different physical scenario than the
Rau and Parsegian’s experiments discussed above. In particular,
pressure-driven dsDNA denaturation has been described in terms
of a thermal-electrostatic competition, i.e., under certain
thermodynamic conditions, thermo-mechanical variations can lead
to DNA denaturation [21, 22]; pressure-induced DNA melting is
basically achieved when the breaking of the hydrogen bonds between
base pairs takes place. This mechanism can also be associated with
irreversible damage caused to DNA that might be linked to the onset of
cancer [23]. This issue plays a key role in the transcription of genomic
information, particularly in the synthesis of other biomolecules.

On the other hand, in recent years, there has been a growing
interest in the self-assembly and the thermodynamic behavior of
bioparticles, such as lysozyme [24–26] and monoclonal antibodies

[27, 28], to investigate the mechanisms that give rise to, for instance,
the phase separation and aggregation (or particle clustering); processes
that are crucial and may affect the functionality of such biomolecules
[29, 30]. Typically, the interaction between bioparticles is mediated by
the heterogeneous surface charge distribution [31–33], i.e., proteins
and enzymes have regions or specific active sites that are electrically
charged to recognize other agents in order to bind them, and lock
them or catalyze them, mainly, to complete a specific biochemical
function [34–36]. This type of process implies a specific orientation or
spatial organization of the bioparticles in the available volume, which
should also depend on the thermodynamic conditions. This
contribution explores the organization and stability of two double-
stranded and electrostatically interacting DNA chains under high
hydrostatic pressures, i.e., our interest is focused on the hydrostatic
pressure exerted by solvent molecules over DNA chains and its effect
on their spatial organization. To this end, we have performed all-
atomistic molecular dynamics (MD) simulations of two short DNA
chains to provide some preliminary insights into the effects of high
pressurization and finite particle size on the self-assembly of DNA
chains. The MD simulations include explicitly the presence of water
molecules and ions to emulate, as close as possible, the physiological
conditions where the DNA is typically embedded. We have also
explored hydrostatic pressures that are biologically relevant.

2 Molecular dynamics simulation of DNA
strands

The results discussed in this work are based on atomistic MD
trajectories for two interacting double-stranded B-DNA dodecamers
using the parmbsc1 force field [37–39] in conjunction with the
GROMACS software package version 2019 [40]; parmbsc1 can be
found in GROMACS as amber99bsc1. The parmbsc1 is a general-
purpose atomistic force field that takes into account high-level
quantum mechanical data [37] and has been tested over a wide

FIGURE 1
Snapshot of the initial configuration; two double-stranded B-DNA
dodecamers (d(CGCGAATTCGCG)2) located at the center of the
simulation box and initially separated by 3 nm. Water molecules and
neutralizing and salt ions are not explicitly shown. Code color:
Ochre-cytosine, green-guanine, cyan-adenine and pink-thymine.
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variety of DNA sequences. In a coarse-grained picture, we have
simulated two strongly screened like-charged flexible rods,
immersed in a salty aqueous medium, whose interaction at the
cytosine and guanine ends is of electrostatic nature.

The sequence and starting structure of each oligomer were
obtained from the Protein Data Bank with code 1BNA. This DNA
structure is typically used as a benchmark for the development of
force-fields [37]. Each MD run was performed using two double-
stranded B-DNA dodecamers (d(CGCGAATTCGCG)2) initially
separated by 3 nm and centered in a cubic box of around 8.5 nm,
i.e., 2.1 the linear size of a DNA chain (see Figure 1). Although the
cubic simulation box has the computational disadvantage of requiring
a greater number of water molecules, as compared to other simulation
cells with different geometrical shape, it gives rise to the same spatial
freedom in the three spatial directions. Therefore, the dodecamers
have the same possibility of translational and rotational motion. In
addition, other simulation boxes, such as the rhombic dodecahedron
and truncated octahedron, are more suitable for globular
biomolecules. Several initial conditions and starting DNA
arrangements, i.e., parallel, perpendicular and oblique, were used in
order to disregard any effect associated with the initial configuration.
Structures were then solvated with the TIP3P water model with a
minimum of 1.2 nm buffer solvation layer beyond the solute,
neutralized, and 0.5 M excess NaCl was added. A typical simulated
system consisted of around 18600 water molecules and a total number
of 58000 atoms. Larger systems were also considered to discard finite
size effects (data not shown). DNA chains, water and salt molecules
are in a closed thermodynamic system, so we are essentially testing the
effects of hydrostatic pressure.

MD simulations using the standard leap-frog integrator at the
absolute temperature of 300 K and six different hydrostatic pressure
values, namely, p = 1, 10, 20, 30, 40, and 50 bar, were carried out using
the Verlet cut-off scheme [40]; periodic boundary conditions were
applied in all spatial directions. An integration step of 2 fs in
conjunction with SHAKE to constrain and fix the X-H bonds to
the corresponding default values were considered [41]. The Lennard-
Jones and Coulomb interactions were used and computed within a
cutoff radius of 1.0 nm, and long-range electrostatic interactions were
calculated using the particle mesh Ewald (PME) method [42] with
cubic interpolation; GROMACS automatically tunes the load balance
by scaling the short-range electrostatic cutoff and grid spacing.

The water-ion-DNA system at 1 bar was optimized using the
standard steepest descent energy minimization, followed by a
thermalization process during 5 ns using the NVT canonical
ensemble. During this equilibration, the temperature was kept
constant using the velocity-rescale thermostat [43], with the
restriction of fixing the position of heavy atoms to equilibrate the
solvent and ions around both DNA molecules. The last configuration
of this process was used as the initial configuration in the following
steps. After reaching the desired equilibrium temperature, a further
pre-equilibrated run for 5 ns in the NPT isobaric-isothermal ensemble
was performed using the so-called Berendsen barostat [44] to reach in
each case the equilibrium hydrostatic pressure. Subsequently, we have
equilibrated each water-ion-DNA system at the targeted hydrostatic
pressure for an additional 10 ns period using the Parrinello-Rahman
[45] barostat with a 2 ps relaxation time and compressibility of 4.5 ×
10−5 bar−1. Finally, a run of 240 ns for each water-ion-DNA system,
i.e., p = 1–50 bar, was carried out for gathering statistics and
production. We make sure that both DNA chains freely rotate

their own size in a timescale shorter than the time window used in
the MD simulations. Conformational configurations were saved every
50 ps given a total of 4800 configurations, and visualization snapshots
were prepared with the VMD software [46].

3 Results

We now show the results of the MD computer simulations of two
short DNA chains immersed in an explicit aqueous solution under
different hydrostatic pressures. This work focuses on the evolution of
the relative separation between DNA chains. This information is
explicitly reported in Figure 2. We show the results that were
obtained by considering that both DNA molecules are initially
distributed in a parallel configuration and located at a relative
distance (measured from the centers of mass (COM)) of 3 nm.
However, as mentioned above, we have used other initial
configurations and considered larger simulation boxes (keeping
fixed the total density) within an extended time window, obtaining
practically the same result (data not shown). As seen in the figure, in
most pressure conditions, both chains reach an equilibrium co-linear
configuration, except for the p = 10 bar case (see snapshots at t =
240 ns). The fact that the two dsDNA chains align along the same
main axis is, of course, a consequence of the finite size of the chains.
This phenomenology contrasts with the completely different scenario
reported for the DNA at the bulk under high osmotic pressure
conditions [8, 9], where the osmolyte induced a parallel ordering of
the DNA strands. Although hydrostatic and osmotic pressures are not
the same, either type can induce a chain-like arrangement of DNA
oligomers. Thus, the structural evolution towards the co-linear state
clearly depends on the thermodynamic conditions, i.e., hydrostatic
pressure. No mechanical instability or denaturation of the DNA
molecules is observed. Interestingly, at low and high pressures, the
relative distance between chains is the same, about 4 nm, whereas at
p = 10 bar, it reaches a value of 3 nm.

More explicitly, at p = 1 bar (see Figure 2A), the structural
reorganization of the DNA molecules occurs monotonically and
very fast (at around 10 ns), and the fluctuations around the
equilibrium state do not exceed 0.25 nm. This behavior can be
understood as follows. Under this pressure condition, the couple of
dsDNA molecules start to evolve from a quasi-parallel configuration;
however, the electrostatic interactions strongly dominate over the
solvent-mediated interaction, which causes the fast rearrangement of
chains, looking for the most favorable configuration that minimizes
the energy; see Figure 3A. On the other hand, at p = 10 bar (see
Figure 2B), the evolution towards the co-linear configuration is not
monotonous anymore and, in fact, it is not the predominant one, but,
instead, an L-type conformation appears. For this particular
hydrostatic pressure condition, one can clearly appreciate that the
DNA biomolecules explore an extended configurational landscape and
it seems that during an extended time window, they try to be far away
from each other. This scenario can be linked to the competition
between the electrostatics and the solvent-mediated interaction,
i.e., mechanical stresses; the latter enhanced by the pressure; see
Figure 3B. Furthermore, the structural relaxation takes a much
longer time (~ 80 ns) as compared with the previous case, but now
the DNA chains are closer each other although the relative distance
between them exhibits stronger variations around the equilibrium
state; fluctuations that occur at a distance of roughly 3 nm measured
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FIGURE 2
Relative distance between the COM of two dodecamers under different hydrostatic pressure conditions: (A) 1 bar, (B) 10 bar, (C) 30 bar, and (D) 50 bar.
The snapshots in each case correspond to the initial (upper) and final configurations (bottom). Code color: Ochre-cytosine, green-guanine, cyan-adenine and
pink-thymine.

FIGURE 3
Evolution of the main energetic contributions relative to the total energy of the two-dodecamer system under different hydrostatic pressure conditions:
(A) 1 bar, (B) 10 bar and (C) 50 bar. Insets show a close view of the electrostatic fluctuations. In all conditions, the electrostatic contribution dominates over the
other ones.
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from the COM. As seen in Figure 3, at all hydrostatic pressure
conditions, the electrostatic contribution clearly dominates over the
other ones.

It is quite interesting the fact that an increase of one order of
magnitude of the pressure value induces a slower structural relaxation.
Nevertheless, if the pressure is further increased, Figures 2C, D, which
corresponds to pressure values of p = 30 and 50 bar, respectively, the
chains are twisted to each other and, at earlier times, they try to
explore, again, a rich set of configurations in order to reach the most
stable one. The latter being, once again, a co-linear spatial organization
whose chain distance fluctuations are much smaller than the previous
pressure conditions, describing a persistent equilibrium conformation;
see, e.g., Figure 3C. We should point out that the results presented in
Figure 2 are very robust in the sense that different initial conditions
and several starting DNA configurations were tested and the outcome
in all cases was basically the same, even the case p = 10 bar exhibited
the same L-type configuration regardless the initial configuration or
distribution of dsDNA molecules. In appendix, we discuss in more
detail the effect of the initial conditions and the biomolecular
recognition on the final configuration state reached by the dsDNA
molecules at p = 10 bar.

4 Discussion

The values of the hydrostatic pressure covered in the MD
simulations and explored in this work are commonly found in
biological environments; larger pressure values, although of
academic interest, might not be realistic. Under these conditions,
since the density of the whole water-ion-DNA system is basically
determined by the water density, as expected, the volume (or
dimensions of the simulation box) where the dsDNA molecules are
immersed did not change significantly (data not shown), i.e., the water
behaves as an incompressible fluid under the thermodynamic
conditions here considered. However, it was interesting to note
that the relaxation of the internal stresses (produced by the

hydrostatic pressure) in the fluid clearly affected the exploration of
the configurations that minimize the energy. As discussed in the
previous section, except for p = 10 bar, the equilibrium state in the
other cases corresponded to a co-linear configuration, which resulted
from a delicate interplay of electrostatic interactions and hydrogen
bonding between base pairs; the kinetics or speed of the exploration of
the configurational states seemed to be mainly determined by both the
hydrostatic pressure and molecular recognition, as discussed further
below. Other cases at p = 20 and 40 bar were also studied and the co-
linear configuration was again the equilibrium state achieved by the
dsDNA chains (data not shown). This reflects the generality of the
preliminary results reported in this contribution.We should also point
out that the fluctuations of the COM could be further elucidated by
characterizing the relative dynamics of the two DNA dodecamers,
i.e., it is appropriate to determine if those fluctuations are induced, for
instance, by hydrodynamic correlations or if they are entirely inherent
to the DNA backbone of each dodecamer. This point will be reported
elsewhere.

More importantly, we have observed a co-linear arrangement
during the different pressure conditions with a non-specific
interaction. For example, in the situations at p = 1 and 30 bar, the
rearrangement between the DNA dodecamers is generated between
terminal cytosine-guanine chains A and B, respectively, but at p =
50 bar it shows that the base pair interaction was between terminal
cytosine-cytosine and guanine-guanine of the A and B chains,
respectively. The most interesting case was at p = 10 bar, where the
pair base interaction is, as already discussed, like an L form. This kind
of interaction is due to the structural complementarity or
biomolecular recognition, which seemed to result from the pressure
exerted on the water-ion-DNA system. However, as displayed in
Figure 3, the electrostatic energy became the most important
energetic contribution of the water-ion-DNA system, then another
aspect that could shed light on the feasibility of the L-shape
configuration observed for p = 10 bar is the spatial organization of
the ions around the dodecamers. In Figure 4, two snapshots of the
water-ion-DNA system are displayed. As illustrated in the figure, the

FIGURE 4
Layer of water (red and grey objects) and ions (Na+; blue spheres, andCl−; cyan spheres) within a cutoff distance of 0.8 nm around the two dodecamers at
p = 10 bar and different times, namely, (A) t = 0 ns and (B) t = 100 ns.

Frontiers in Physics frontiersin.org05

Herrera-Velarde et al. 10.3389/fphy.2023.1076787

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1076787


Na+ ions are preferentially distributed on the surface of the DNA
chains, indicating that they dominate on the DNA-DNA interaction,
as expected. The L-type conformation in dsDNA chains has also been
observed in DNA molecules confined between lipid membranes [47].
We should stress out that, however, at all pressure conditions here
studied, intrastrand complementarity (G-C) was preserved at the sites
of co-linearity of the dsDNAs (see snapshots of Figure 2).

During the analysis of the structural evolution of both dsDNA
molecules, we also focused on the local structural changes of the
typical conformation of B- to non-B-DNA, since it is well-known that
they can be induced by changes in the environmental conditions,
protein effects, and superhelical tension [48]. These conformational
variations directly affect replication, gene expression, recombination,
and mutagenesis. Our results indicate that the dodecamers maintained
a DNA canonical structure, keeping backbone angles and helical
parameters within the expected values for a B-DNA duplex (data
not shown). In general, highly charged polyelectrolytes, such as duplex
DNA, exhibit significant chain stiffness compared to neutral polymers
of similar molecular length due to electrostatic repulsion arising from
localized point charges along the molecular boundary. Within our
preliminary findings, we have observed a different behavior at p =
10 bar. Under this pressure condition, the water-ion-DNA system
reached an equilibrium configuration at a similar time to the other
states, but the relative distance between the COM of the dodecamers is
1 nm lower, as a result of the arrangement in L between the dsDNA
molecules.

On the other hand, the sugar-phosphate backbone of DNA is
hydrophilic. The internal portion of the bases (the rings) has less
polar characteristics, although not totally hydrophobic, than the
rest of the molecule [49]. The interactions generated between the
faces of the rings of the bases of each nucleotide are of the
“stacking” type and are highly stable [50, 51]. These aromatic
interactions have been proposed to consist of vdW scattering,
electrostatic, and hydrophobic forces, but each component’s
relative contribution and magnitude still need to be
determined [50, 52]. There are three reported representative
conformations of pi-stacking interactions with different
energy of conformation. These conformations include face-to-
face (−1.48 kcal/mol), edge-to-face or T-shaped (−2.46 kcal/mol)
and offset (−2.48 kcal/mol) [52]. The offset interaction is present
in the interior of the dsDNA chain and on the edge of the co-
linear interactions observed in our MD simulations, since it
represents the lowest conformation energy. In contrast, a ring-
interacting T-shaped conformation seems to be responsible of
the L-shaped conformation at p = 10 bar. In this sense, the co-
linear conformation generated by the interaction between two
ends in the dsDNA sequences is more stable than that created by
a single interaction, such as in the L-shaped conformation.
Therefore, our hypothesis is that the L-shaped conformation
corresponds with a local minimum that is very close to the global
one (see appendix). This hypothesis will be tested with further
computer simulations.

Although the outcome of this contribution is centered on the
very dilute regime at biologically relevant hydrostatic pressures,
in contrast, there have been others all-atomistic computer
simulation efforts to understand the phase transition of DNA
molecules at finite concentration. Most notably, a novel
computational method on a multiscale simulation based on
AdResS [53, 54] has shown some interesting results at different

DNA densities. In particular, it has been reported the influence of
the osmotic pressure on the transition of the DNA spatial
organization from cholesteric to hexagonal to orthorhombic
arrays [55–57], as well as the effect of the ionic strength,
concluding that hydration forces are the dominant interaction
at high DNA packing, as experimentally highlighted a while ago
[10, 11]. This confirms the importance of the explicit inclusion of
solvent molecules in order to consider, as much as possible, all
fundamental interactions involved in the phase state of any kind
of biomacromolecule. Even though the high stress on DNA chains
via hydrostatic or osmotic pressures describes different
biophysical scenarios, both of them clearly influence the DNA
arrangement into the available volume and shed light on our
understanding of the thermodynamic conditions that the DNA
faces into living matter.

As stated above, we have reported preliminary results that
point toward an interesting structural evolution of interacting
dsDNA molecules under the influence of hydrostatic pressure. Of
course, there are many routes that can be further explored. For
example, to carry out a systematic analysis of the pressure-
induced self-assembly of a larger number of dsDNA chains, to
study longer DNA sequences to mimic the biological conditions
and to examine the effect of hydration forces on the structural
organization of dsDNA. Work along these lines is currently in
progress.
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Appendix

Analysis of the case p = 10bar: Effects of
the initial conditions

Among the pressure conditions we have examined, the p= 10 bar case
revealed a unique feature that was not seen in the other cases. As was
discussed in the main text, the L-type shape that the dsDNA strands
reached could be linked to a local energy minimum. This non-specific
contact among dodecamers could result from a process involving the first
hydration layers and the unrestrictedmobility of the dsDNA chains in the
aqueous medium; see snapshots displayed in Figure 4. It has been
discovered that DNA exhibits a hydration sphere, which is thought to
be crucial for its structure and biological function [58], as well as water
molecules that form a chiral skeleton in the minor groove of DNA, whose
biological function is unknown [59]. Several spectroscopic [60] and
molecular dynamics [61] methods were used to make these
observations. As previous works have shown, DNA-water interactions
are crucial for the helical stability and conformational variability of DNA
itself. In the same way, they are essential to modulate DNA binds to other
biomolecules and ligands [61]. Although we did not directly investigate
this process in our work, the data show that it has an electrostatic
component that is pressure dependent.

It is interesting to note that in our study, two dodecamers of
double-stranded B-DNA (d (CGCGAATTCGCG)2) exhibited
remarkable stability in their structure because of end positions
of cytosine (ochre) and guanine (green) in their sequence which are
well known to be triple-bonded and being stronger than the
double-bonded thymine and adenine, which are located in the
middle of DNA sequence. This structural conformation of each

double-chain makes them stable without any possibility of fracture
or denaturation. For p = 10 bar, we specifically noticed an L
conformation between the two double chains during the
simulations. This configuration is related with the molecular
interaction between the thymine in the eighth position of one
chain and the guanine in the 12th position of the juxtaposed chain
in an unspecific but steady manner, see Figure A1A). Visually
speaking, in the simulations, one can notice that this thymine-
guanine interaction caused a tiny compaction in the DNA double
strand itself. The backbone of both nucleotides, and the
interactions between their polar atoms played a role in the
interactions between thymine and guanine. Experimental
observations show that this kind of interaction occurs in the
minor groove, since the shortening of the distance in this region
inhibits the establishment of stable hydrogen bonds [62]. This
makes it easier for the polar atoms of the nearby nucleotides to be
exposed.

Finally, we should highlight that a second MD simulation was
produced using as initial condition the L configuration at p = 50 bar to
either confirm or disregard the existence of a local minimum at p = 10 bar.
The simulations revealed again the development of the co-linear structure
after 25 ns; see Figure A1B), indicating that the increase of the hydrostatic
pressure likely enables the rehydration of the thymine-guanine
interaction site and the rearrangement of the two duplexes into
a co-linear conformation (Figure 2D). The collinear conformation
is produced by non-specific interactions between interphase
nucleotides. They can be formed between bases of the same type
or crossing, it has been noted. The interaction is between purine
and pyrimidine bases in the cases for p = 1 bar and p = 30 bar, while
in p = 20 bar and p = 50 bar, it is between identical bases.

FIGURE A1
Interaction and biomolecular recognition between pairs of DNA at (A) p = 10 bar and (B) p = 50 bar. The snapshots in each case corresponds to a closed
view of the intermolecular interactions. Code color: Ochre-cytosine, green-guanine, cyan-adenine and pink-thymine. Color of the DNA chains is just for a
better visualization.
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