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The Hirota equation is a higher-order non-linear Schrödinger equation by
incorporating third-order dispersion. Two pairs of non-local Hirota equations are
studied. One is a parity transformed conjugate pair, and the other is a conjugate PT-
symmetric pair. For the first pair, rational solitons are derived by the Darboux
transformation, and are shown computationally to exhibit robust propagation
properties. These rational solitons can exhibit both elastic and inelastic
interactions. One particular case of an elastic collision between dark and “anti-
dark” solitons is demonstrated. For the second pair, a “cascading mechanism”

illustrating the growth of higher-order sidebands is elucidated explicitly for these
non-local, conjugate PT-symmetric equations. These mechanisms provide a
theoretical confirmation of the initial amplification phase of the growth-and-
decay cycles of breathers. Such repeated patterns will serve as a manifestation of
the classical Fermi-Pasta-Ulam-Tsingou recurrence.
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1 Introduction

The non-linear Schrödinger (NLS) equation is an intensively studied, completely
“integrable” equation. Physically, it describes various non-linear propagation phenomena in
hydrodynamics (oceanic waves), Kerr media, optical pulses and plasma physics [1–7]. Solitons,
breathers and rogue waves have been established theoretically as exact solutions, and also
observed experimentally in water channels and optical fibers [3, 7–20]. From the perspective of
mathematical physics, these three kinds of non-linear wave modes can be derived by elegant
techniques like Darboux and Hirota transformations applied to NLS-type equations [20–28].
Existence of solitons is usually attributed to a balance between non-linearity and dispersion
[21–25]. Rogue waves are unexpectedly large displacements from an otherwise tranquil
background, and usually have peak amplitudes more than twice the significant wave height
[26]. While the generationmechanism and growth process of rogue waves are still under intense
debates, one school of thought has associated these rogue modes with the amplification and
decay of breathers of the underlying evolution equations under periodic boundary conditions
[5, 9, 13, 29]. Breathers generally initiate from the growth phase of small perturbation due to
modulation instability. Subsequent amplification demands the restoration of non-linear effects
and saturation of the growth phase. Typically higher harmonics attain the same order of
magnitude as the fundamental frequency at the maximum displacement of the breather [20].

An immediate and widely studied extension of NLS is the Hirota equation, which
incorporates third order dispersion [30, 31].
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iqt + 1
2
qxx + q

∣∣∣∣ ∣∣∣∣2q + iε qxxx + 6 q
∣∣∣∣ ∣∣∣∣2qx( ) � 0. (1)

This equation was first introduced in the 1970s, and has been
shown to possess multi-solitons, doubly periodic patterns and rogue
wave modes [32–35].

Recently there have been tremendous interest in non-local
evolution equations, especially those from the NLS family [36–38].
For example, rational soliton solutions for focusing and defocusing
NLS equations have been studied [37, 38]. One motivation is the
existence of purely real spectra for parity-time-symmetric (PT-
symmetric), non-Hermitian systems [39–42]. As optics is widely
believed to be a plausible testing ground for such PT-symmetric
systems, it is natural to consider extensions relevant to this branch
of physics. One physical interpretation of a complex potential is that
the real and imaginary parts may correspond to the self-phase
modulation and gain/loss respectively [43].

The counterpart of a parity symmetry principle in optics is the
condition n(–r) = n*r), where n and r are the refractive index profile
and the position vector respectively. Such condition cannot hold for
naturally occurring materials, but can be fabricated for metamaterials
with modern technology [44]. Indeed these special modulations of
gain and loss mechanisms permit novel phenomena like switching and
symmetry breaking. Transformation optics can be further advanced.
Another exciting development arises from electronic circuits. A
dynamical model is a sequence of dimers, consisting of a pair of
split-ring resonantors, one with gain and the other with the identical
amount of loss [45]. The absence or presence of non-linearity then
generates intriguing properties of the spectrum and oscillating modes
known as breathers.

Third order dispersion will be needed for short (femtosecond)
pulses. Hence we shall consider models of non-local Hirota
equations in this work. Indeed integrable non-local Hirota
equations have been demonstrated [46]. In this paper, we will
focus on two cases of non-local Hirota equations including a parity
transformed conjugate pair and a conjugate PT-symmetric pair
[46]. For the case of a parity transformed conjugate pair, the first-
and second-order rational solutions will be studied. While for a
conjugate PT-symmetric pair, the cascading mechanism will be
investigated. In terms of analytical progress, symmetry broken and
preserving soliton solutions, breather and rogue wave solutions
have been obtained [47, 48].

The sequence of presentation in this paper can now be explained.
The first- and second-order rational soliton solutions are derived
(Section 2). The robustness of the rational solution also is studied. The
cascading mechanism of a conjugate PT-symmetric pair non-local
Hirota equation is elucidated (Section 3). Finally, conclusions are
drawn (Section 4).

2 A parity transformed conjugate pair
non-local Hirota equation

A parity transformed, conjugate pair of non-local Hirota equation
[46] is given as

iqt x, t( ) + α qxx x, t( ) + 2κq2 x, t( )r x, t( )[ ]
−β qxxx x, t( ) + 6κq x, t( )r x, t( )qx x, t( )[ ] � 0, (2a)

irt x, t( ) − α rxx x, t( ) + 2κq x, t( )r2 x, t( )[ ]
−β rxxx x, t( ) + 6κβq x, t( )r x, t( )rx x, t( )[ ] � 0, (2b)

where r(x, t) � q*(−x, t), and α, β are real numbers. In contrast with
works in the literature on non-local, non-linear Schrödinger equation
[37, 38], Eq. 2 incorporates third order dispersion and a special form of
“self-steepening” cubic non-linearity which maintains the appropriate
parity and symmetry. Furthermore, we shall demonstrate that exact,
rational solutions with displacements both below and above a mean
level will exist for Eq. 2. These entities will bear resemblance to similar
units for the non-linear Schrödinger case, and can be termed “dark”
and “anti-dark” solitons (for below and above mean level respectively).
The parity transformed conjugate pair non-local Hirota equation
admits the Lax pair

Φx � UΦ,Φt � VΦ, (3)
where Φ � Φ(x, t) is a column vector function,

U � iλ iκr x, t( )
iq x, t( ) −iλ( ), (4a)

V � λ3
−4β 0

0 4β
( ) + λ2

2iα −4βκr x, t( )
−4βκq x, t( ) −2iα[ ]

+λ 2βκq x, t( )r x, t( ) 2iακr x, t( ) + 2iβκrx x, t( )
2iαq x, t( ) − 2iβqx x, t( ) −2βκq x, t( )r x, t( )[ ]

+ −iκr αq − βqx( ) − iβκqrx 2βκ2qr2 + ακrx + βκrxx

2βκq2r − αqx + βqxx iκr αq − βqx( ) + iβκqrx
[ ],

(4b)

The compatibility condition of Eq. 3, namely,
Ut − Vx + [U,V] � 0, gives rise to Eq. 2. Through the loop group
method, the Darboux matrix for Eq. 3 can be represented as

T 1[ ] � I − λ1* + λ1( )z1 x, t( )z1† −x, t( )σ
λ + λ1*( )z1† −x, t( )σz1 x, t( ) , (5)

where σ � diag(1,−κ), z1(x, t) � v(x, t)Φ(x, t), Φ(x, t) is a solution
of Eq. 3 with λ � λ1, and v(x, t) is a non-zero function, † denotes the
Hermite conjugation.

We can use Eq. 5 to get a new solution of Eq. 3, i.e.,

Φ 1[ ]
x � U q 1[ ]; λ( )Φ 1[ ],Φ 1[ ]

t � V q 1[ ]; λ( )Φ 1[ ], (6)
where Φ[1] � T[1]Φ. The entities Φ[j] (j � 1, 2, . . . , N) denote N
different solutions of Eq. 3 with the initial solution q(x, t) and
λ � λj. The N-fold Darboux matrix can be expressed as

T N[ ] � I − Z x, t( )M−1 λI + S( )−1Z† −x, t( )σ, (7)
and the N-fold Darboux transformation between old and new
potential functions is

q N[ ] � q +
2det

M Z1
† −x, t( )

Z2 x, t( ) 0
[ ]

detM
, (8)

where

S � diag λ1*, λ2*, . . . , λN*( ), (9a)
Z x, t( ) � z1 x, t( ), z2 x, t( ), . . . , zN x, t( )[ ],
zj x, t( ) � vj x, t( )Φj x, t( ) (9b)

M � Mjk( )
N×N

,Mjk � zj
† −x, t( )σzk x, t( )/ λj + λk*( ) (9c)

where vj(x, t) denotes a non-zero function, and Zj(x, t) is the jth row
of Z(x, t).
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We now start from the plane wave solution q � ρ exp(2iακρ2t) of Eq.
2 for the iteration process of the Darboux transformation (Eq. 8), where ρ
denotes the amplitude of the planewave.We can postulateΦ � GHΨ with

G � 1 0
0 ρ exp 2iακρ2t( )[ ], H � iκρ iκρ

−iλ + μ1 −iλ + μ2
( ), (10)

and hence Ψ satisfies the equation as follows:

Ψx � ÛΨ, Ψt � V̂Ψ, (11)
where

Û � diag μ1, μ2( ), V̂ � 2 αλ + 2iβλ2 − iβκρ2( )Û + iακρ2I, (12a)
μ1 � −

��������
−λ2 − κρ2
√

, μ2 �
��������
−λ2 − κρ2
√

. (12b)

Thus, we can construct the solution of Eq. 3 as

Φ � GHQ,Q � diag Q1, Q2( ), (13a)
Q1 � exp μ1x + 2 αλ + 2iβλ2 − iβκρ2( )μ1t + iακρ2t[ ], (13b)
Q2 � exp μ2x + 2 αλ + 2iβλ2 − iβκρ2( )μ2t + iακρ2t[ ]. (13c)

Setting

v1 x, t( ) � exp −iακρ2t( ), λ � iρ
�
κ

√
h, l1 � χ1 exp η1( ), l2 � −χ2 exp η2( ),

(14a)
χ1,2 �

1����������
h ±

�����
h2 − 1

√√ �����
h2 − 1

√ , η1,2 � ± ρ
�
κ

√ �����
h2 − 1

√
F, (14b)

and we can establish

z1 x, t( ) � v1 x, t( )Φ l1
l2

( ) � G
i χ1 exp B( ) − χ2 exp −B( )( )κρ
ρ
�
κ

√
χ2 exp B( ) − χ1 exp −B( )( )[ ],

(15)
where B � ρ

�
κ

√ �����
h2 − 1

√ [x + 2ihα
�
κ

√
ρt − 2i(1 + 2h2)βκρ2t + F], and F

is an arbitrary complex number.
To derive the higher-order rational solutions of Eq. 2, we set

h � 1 + ε2, Fj �∑j
k�1

skε
2 k−1( ), G−1z1 x, t, ε( ) �∑+∞

k�1
fk x, t( )ε2k, (16)

where sk is arbitrary complex constant. Consequently, the general
rational solutions of Eq. 1 can be obtained by

q N[ ] � ρ exp 2iακρ2t( ) det A − 2
ρΞ1

† −x, t( )Ξ2 x, t( )[ ]
detA

, (17)
where

Ξ x, t( ) � f0 x, t( ), f1 x, t( ), . . . , fN−1 x, t( )[ ], (18a)
A � Ajk( )

N×N
,

Ajk � 1
2ρ
∑j+k−2
i1�0

∑min k−1,i1( )

i2�max 0,i1−j+1( )
−1
2

( )i1Ci2
i1
f†
j−1−i1+i2 −x, t( )fk−1−i2 x, t( ),

(18b)
Ξj(x, t) is the jth row of Ξ(x, t) (j � 1, 2).

2.1 First-order rational soliton solution

The first-order rational soliton solution [49, 50] with s1 = i can be
obtained as

q � −ρ−3 + 4ρ2 + 2i −1 + ρ( )Ω2* + Ω1 −2i 1 + ρ( ) + Ω2*[ ]
1 + 4ρ2 − 2iρΩ1 + 2iρ + Ω1( )Ω2*

exp iγt( ),
(19a)

Ω1 � 2ρx − 4αρ2 − 12iβρ3( )t,Ω2 � −2ρx − 4αρ2 − 12iβρ3( )t, (19b)
where γ � 2ακρ2. On computing the modulus of the complex valued
envelope q of Eq. 19a, both dark solitons (with maximum displacements
below the mean position) and “anti-dark” solitons (those with
displacements above the mean) are possible. A rational dark soliton
and a rational anti-dark soliton can collide elastically (Figure 1A).

In particular, qI being a dark soliton maintains its shape after the
collision at t = 0. Furthermore, qII being an anti-dark soliton also remains
unchanged after the collision. To substantiate this dynamical property, we
use the asymptotic analysis to investigate the rational soliton solutions.

(1) Along the line Ω1 ~ 0 as |x| → ∞

q → qI: � −ρ 2i −1 + ρ( ) + Ω1

2iρ +Ω1
exp iγt( ). (20)

(2) Along the line Ω2 ~ 0 as |x| → ∞

q → qII :� −ρ−2i 1 + ρ( ) + Ω2*
−2iρ + Ω2*

exp iγt( ). (21)

To study the computational robustness of the rational soliton, we
employ the split-step Fourier method for the simulations of Eq. 2. The
linear part is solved in Fourier space while the non-linear part is
handled by the fourth-order Runge-Kutta method. The mesh size in x
direction is 0.0614, and the step size in t axis is equal to 5 × 10−4. The
initial condition is selected as the rational soliton solution at
t = −3 plus a small perturbation. The analytical prediction agrees
well with the numerical results (Figure 1B). The significant
interactions between the two localized modes (dark and anti-dark
solitons) occur at t = 0. After this elastic collision, the two solitons then
propagate with their original shapes and velocities.

2.2 Second-order rational soliton solution

For N = 2 in Eq. 17, we can get the second-order rational soliton
solution for Eq. 2. The expressions for the second-order rational
soliton solution are given by

f0 � κρ −i + 2is1
�
κ

√
ρ + 2ix

�
κ

√
ρ − 4ακρ2t + 12βκ

�
κ

√
ρ3t( )�

κ
√

ρ + 2 s1 + x( )κρ2 + 4iακ
�
κ

√
ρ3t − 12iβκ2ρ4t

[ ], (22a)

f1 � f11

f21
( ), (22b)

f11 � 1
12

κρ

3i + 2
�
κ

√
ρ

3i s1 + 4s2 + x( ) − 6i s1 + x( )2 − 5iαt( ) �κ√
ρ

+2 2i s1 + x( )3 + 12 s1 + x( )αt + 57βt( )κρ2
−24 α s1 + x( )2 − iαt( ) + 3 s1 + x( )β( )tκ �

κ
√

ρ3

+24t −2it s1 + x( )α2 + 3 s1 + x( )2 − 2iαt( )β( )κ2ρ4
+8t2 4α3t + 27iβ 4/3 s1 + x( )α + β( )( )κ2 �

κ
√

ρ5

−144βt2 2α2t + 3i s1 + x( )β( )κ3ρ6 + 864αβ2κ3
�
κ

√
ρ7t3

−864β3ρ8t3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

(22c)
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f21 � −
�
κ

√
ρ

4
+ 1
2

s1 + 4s2 + x( )κρ2 + s1 + x( )2 + 5iαt[ ]κ3/2ρ3
+1
3

2 s1 + x( ) s1 + x( )2 + 6iαt( ) − 57iβt[ ]κ2ρ4
+4it α s1 + x( )2 + iαt( ) − 3 s1 + x( )β[ ]κ5/2ρ3
−4t 2α2 s1 + x( )t + 3i s1 + x( )2β − 6αβt[ ]κ3ρ6
+4
3
t2 −4iα3t + 9β 4α s1 + x( ) − 3β( )[ ]κ7/2ρ7

+24βt2 2iα2t − 3β s1 + x( )[ ]κ4ρ8
−144iαβ2κ9/2ρ9t3 + 144iβ3κ5ρ10t3.

(22d)
Both propagating and transient pulses are possible for these

second-order solutions (Figure 2). By varying the parameters s1
and s2, these rational solutions may exhibit novel dynamical
properties, e.g., collision between two solitons as an example of
“propagating” modes (Figure 2A).

By choosing different values of the parameters, we obtain rational
solutions with combined-peak-valley profiles (Figure 2B). Indeed as
many as four transient pulses can appear. These pulses will be loosely

termed “rogue waves” in the present context. This whole sequence of mode
interactions can be interpreted as roguemodes on a two-soliton background.

To gain further insight, we shall use pole analysis [51] in the
complex plane to study the locations of maximum displacements of
these transient pulses. The underlying conjecture is that the maximum
displacement of these rogue modes in the physical plane will coincide
with the turning points of the trajectories in the complex plane, if the
spatial variable x is allowed to be complex (while time t remains real).
The poles of the exact solutions occur at the roots of the denominator.
Numerical computations show excellent agreements between the
physical locations of the largest amplitude of the rogue modes and
the real parts of the poles in the complex plane (Table 1).

3 A non-local, conjugate PT-symmetric
pair of Hirota equations

We now turn the attention to a non-local, conjugate PT-
symmetric pair of Hirota equations given by [46].

FIGURE 1
(A) Analytical and (B)Numerical elastic interaction between a rational dark soliton and a rational anti-dark soliton. Parameters chosen are κ= −1, α= 1, β =
0.001, ρ = 1.

FIGURE 2
(A) Inelastic collision between two solitons with parameters κ = −1, α = 1, β = 0.001, s1 = 0.1i, s2 = 4i, ρ = 1. (B) Second-order rational soliton solution with
parameters κ = −1, α = 1, β = 0.001, s1 = 2i, s2 = 0, ρ = 1.
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qt x, t( ) � iα qxx x, t( ) − 2κq x, t( )2r x, t( )[ ]
−β qxxx x, t( ) − 6κq x, t( )r x, t( )qx x, t( )[ ], (23a)

−rt x, t( ) � iα rxx x, t( ) − 2κr x, t( )2q x, t( )[ ]
+β rxxx x, t( ) − 6κr x, t( )q x, t( )rx x, t( )[ ], (23b)

where r(x, t) � q(−x,−t), κ, α, β are complex numbers. Equation 23
can reduce to Eq. 1 on setting r(x, t) � q*(x, t), κ � −1, α � 1/2, β � ε.

3.1 Robustness of soliton solution

Soliton solution of Eq. 23 has already been given earlier in the
literature [52]:

q x, t( ) � 2i λ2 − λ1( )
exp θ1( ) + exp θ2( ), θj � 2iλj x + 2λj α + 2βλj( )t[ ]. (24)

To test the robustness of these localized modes, we still employ the
split-step Fourier scheme as described above. The numerical
simulations confirm the existence of sturdy propagation of pulses
(Figure 3).

3.2 Cascading instability

An issue of current interest in non-linear science is the instability
and recurrence of localized modes. More precisely, breathers under
periodic conditions can recur in the propagation variable of the NLS
equation. Experimentally, this phenomenon has been observed in
hydrodynamic wave channels and optical fibers. Theoretically, the
initial phase of recurrence has been confirmed by the cascading

mechanism. All these studies can be taken as manifestations of the
classical physical problem of Fermi-Pasta-Ulam-Tsingou recurrence
(FPUT). It will be illuminating to consider if all these principles can be
applied to non-local evolution equations. We shall adopt the present
non-local Hirota equation as a pilot test case.

A brief remark on the cascading mechanism is in order. Small
disturbances on a continuous background will be amplified due to
modulation instability. Higher-order modes exponentially small
initially will grow at a faster rate. Eventually all modes attain
roughly the same order of magnitude. A breather is then formed
which then decays subsequently. Growth resumes at small amplitude
and FPUT will arise. We shall start quantifying FPUT for non-local
equations by looking at the modulation instability process, which
describes the growth of the first order sideband. We begin with a
continuous wave background, i.e.,

q x, t( ) � ρ exp i γ1x + γ2t( )[ ], (25a)
r x, t( ) � ρ exp −i γ1x + γ2t( )[ ], (25b)

where γ2 � −αγ12 + βγ1
3 − 2ακρ2 + 6βγ1κρ

2, and ρ, γ1 denote the
amplitude and wave number of the continuous wave respectively.
The perturbed states are expressed as

q x, t( ) � ρ + u1 x, t( )[ ] exp i γ1x + γ2t( )[ ], (26a)
r x, t( ) � ρ + u2 x, t( )[ ] exp −i γ1x + γ2t( )[ ]. (26b)

Here u1(x, t) and u2(x, t) � u1(−x,−t) denote the perturbations. The
Fourier modes of the perturbations have the following forms:

u1 x, t( ) � u11 exp i ηx + Ωt( )[ ] + u12 exp −i ηx + Ωt( )[ ], (27a)
u2 x, t( ) � u11 exp −i ηx + Ωt( )[ ] + u12 exp i ηx +Ωt( )[ ]. (27b)

TABLE 1 Comparison of the locations of maximum displacements in Figure 2B and the locations of poles of Eq. 17 with N = 2.

Locations of the maximum (maxima) in the physical space with
real x

Location of pole with complex x

x = ±6.5849, t = 3.8 t = 3.8 Poles located at x = 6.5849 ± 0.0143i, or x = −6.5849 ± 0.0143i

x = ±6.5802, t = −3.8 t = −3.8 Poles located at x = 6.5799 ± 0.0568i, or x = −6.5849 ± 0.0568i

FIGURE 3
(A) Analytical and (B) Numerical soliton. Parameters chosen are κ = −1, α = 1, β = 0.001, λ1 = 1 − 0.5i, λ2 = 1 + 0.5i.

Frontiers in Physics frontiersin.org05

Pan et al. 10.3389/fphy.2023.1091526

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1091526


Modulation instability will arise whenΩ has a non-zero imaginary
part, i.e.,

Γ � Im Ω( )| | � α − 3βγ1( )η∣∣∣∣ ∣∣∣∣ ���������−η2 − 4κρ2
√

, (28)

which requires κ < 0. Next, we conduct a simulation with the
continuous wave perturbed by a single Fourier mode, represented
as a cosine function, i.e.,

q x, t( ) � ρ exp i γ1x + γ2t( )[ ] + μ cos ηx( ), (29a)
r x, t( ) � ρ exp −i γ1x + γ2t( )[ ] + μ cos ηx( ), (29b)

where μ and η represent the amplitude and wave number of
perturbation. Typical FPUT patterns are observed (Figure 4) with
the perturbation wave number within the unstable regime of
modulation instability, where the threshold of the wave number is
2 (Figure 5A). A breather first appears at about 3.5 time units. At
10.5 time units, the second breather occurs, which can be interpreted
as a manifestation of FPUT. However, the wave profile of the second
breather has a non-zero angle with respect to t axis, which is caused by
the third order dispersion. This also leads to the asymmetry pattern
with regard to the axis x = 0.

As a step in theoretical modelling, we shall perform the cascading
mechanism analysis to predict the growth of the high-order sidebands
observed in FPUT. For this purpose, the complex envelopes q (x, t) and
r (x, t) in Eq. 23 are expanded as

q x, t( ) � ρ B0 t( ) +∑∞
j�1
B±j t( ) exp ± ijηx( )⎡⎢⎢⎣ ⎤⎥⎥⎦ exp iγ1x( ), (30a)

r x, t( ) � ρ B0 −t( ) +∑∞
j�1
B±j −t( ) exp ∓ ijηx( )⎡⎢⎢⎣ ⎤⎥⎥⎦ exp −iγ1x( ). (30b)

To investigate the growth of the second-order sideband (or
harmonic), we truncate Eq. 30 at the second order, i.e.,

q x, t( ) � ρ B0 t( ) + B±1 t( ) exp ± iηx( )[
+B±2 t( ) exp ± 2iηx( )] exp iγ1x( ), (31a)

r x, t( ) � ρ B0 −t( ) + B±1 −t( ) exp ∓ iηx( )[
+B±2 −t( ) exp ∓ 2iηx( )] exp −iγ1x( ). (31b)

On setting

B0 t( ) � exp iγ2t( ), B1 � a1 exp iγ2t + Γt( ), B−1 � a1 exp iγ2t − Γt( ),
(32)

FIGURE 4
FPUT with parameters α = 1, β = 1 × 10−6, κ = −1, ρ = 1, γ1 = 0, μ = 0.01, η = 1.4. (A) Modulus of waveguide, |q|; (B) |r|.

FIGURE 5
(A) Growth rate of modulation instability with parameters α = 1, β = 1 × 10−6, κ = −1, ρ = 1, γ1 = 0; (B) Comparison between the numerical spectra and the
cascading mechanism prediction.
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substituting Eq. 31 together with Eq. 32 into Eq. 23, linearization yields

6ia1
2ακρ3 − 18ia1

2βγ1κρ
3 − 12ia1

2βηκρ3( ) exp 2Γt + iγ2t( ) + ρB2′ t( )
� 0,

(33a)
6ia1

2ακρ3 − 18ia1
2βγ1κρ

3 + 12ia1
2βηκρ3( ) exp −2Γt + iγ2t( )

+ ρB−2′ t( ) � 0. (33b)

Integration to Eq. 33 will lead to

B2 t( ) � −6ia1
2 α − 3βγ1 − 2βη( )κρ2 exp 2Γ + iγ2( )t[ ]

2Γ + iγ2
, (34a)

B−2 t( ) � −6ia1
2 α − 3βγ1 + 2βη( )κρ2 exp −2Γ + iγ2( )t[ ]

−2Γ + iγ2
. (34b)

Similarly, we can repeat the steps above to obtain the growth of
higher-order sidebands. Proceeding by mathematical induction, the
growth rate of the nth-order sideband is proportion to nη, i.e.,

Bn t( ) � an exp nΓ + iγ2( )t[ ], n � 1, 2, 3 . . . (35)
The corresponding analytical spectra of nth-order sideband are

fn � ln Bn t( )[ ] � nΓ t − tn( ), tn � −ln an| |( )
nΓ , (36)

where tn is the time taken for the perturbations to grow to an
amplitude of unity. The spectra of the sidebands are expressed as

F0 � 1
L
∫L/2
−L/2

q x, t( )dx, (37a)

Fn � 1
L
∫L/2
−L/2

q x, t( ) exp −in 2π
L
x( )dx, n � ± 1,± 2, . . . (37b)

where the entities Fn are supposed to be computed numerically but fn

should be associated with the analytical formula (Eq. 36). The
comparisons between the cascading mechanism prediction (Eq. 36,
circle lines in Figure 5B) and the numerical spectral modes
calculations (curves in Figure 5B) display excellent agreement. In
particular, the first breather has a symmetric spectrum, while the
second-order mode exhibits an asymmetry spectrum owing to the
third-order dispersion effect.

4 Conclusion

Two pairs of non-local Hirota equations are studied:

• One as a parity transformed conjugate pair.
• One as a conjugate PT-symmetric pair.

Using the Darboux transformation, the first- and second-order
rational soliton solutions for a parity transformed conjugate pair non-
local Hirota equation have been derived. These solutions can describe

both the elastic and inelastic interactions between two solitons, as well
as the rogue waves arise from the interactions between two
solitons. One particular case of elastic collision between dark
and “anti-dark” solitons is demonstrated analytically. Furthermore,
the elastic interaction between the two solitons still can appear
even though the two solitons propagate with perturbations,
i.e., the robustness of the elastic interaction is tested numerically.
Finally, a “cascading mechanism” illustrating the growth of higher-
order sidebands is elucidated explicitly for a conjugate PT-
symmetric pair of non-local Hirota equations. We conjecture
that similar analytical and computational properties can also
be found for higher-order non-local Schrödinger equations.
Further research efforts in these rich areas will definitely be
worthwhile.
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