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In this study, we review some current studies on gravitational lensing for black
holes, mainly in the context of general relativity. We mainly focus on the analytical
studies related to lensing with references to observational results. We start with
reviewing lensing in spherically symmetric Schwarzschild spacetime, showing
how to calculate deflection angles before moving to the rotating counterpart, the
Kerr metric. Furthermore, we extend our studies for a particular class of newly
proposed solutions called black-bounce spacetimes and discuss throughout the
review how to explore lensing in these spacetimes and how the various
parameters can be constrained using available astrophysical and
cosmological data.
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1 Introduction

The importance of gravitational lensing began with Eddington’s observation of the light
deflection of the Sun [1]. The experiment proved to be one of the major milestones in favor of
Einstein’s theory of general relativity [2]. The theory has proved itself to be the most
successful theory of classical gravity. However, GR has some hiccups in the form of
singularities, not being able to understand the quantum theory of it, along with the
ubiquitous nature of dark matter and dark energy, forcing us to conclude that maybe
there is more to the story. Following this line of thought, efforts have been made to introduce
modifications to the Einstein–Hilbert Lagrangian [3–14]. However, taking in a cue from
Eddington, gravitational lensing still remains one of the most indispensable tools to check
and put constraints on our theory parameters.

The theory behind gravitational lensing started when O. Lodge asked a simple question
in [15] on the behavior of light in a gravitational field. Interestingly, he concluded that, unlike
a convex lens, the gravitational field does not focus light rays into a focal point. However, a
logarithmically shaped concave lens can indeed mimic the effect of a spherically symmetric
gravitational field onto the light. Inspired by such insights, O. Chwolson came up with the
possibility of observing ring-like images in cases of axial symmetry. Nowadays, these ring-
like images are called Einstein rings [16, 17]. Remarkably, such images were indeed observed
by J. Hewitt et al. using the Very Large Array, a collection of radio telescopes in the
United States. The radio source was MG1131 + 0456, and it was found when a background
(radio) Galaxy is distorted into an almost closed ring [18–20]. Later, such rings were also
found in the infrared and even in the optical spectrum [21] and more recently by the James
Webb Telescope [22]. Typically, the diameter ranges between a few arcseconds or less.

The discovery of quasars and such rings lead to a rapid change in the field of gravitational
lensing. We are now well aware of lensing techniques such as weak lensing, where the small
deformations of many background galaxies are statistically evaluated for determining the
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(dark) matter in a foreground Galaxy cluster, and microlensing,
where the light curve of a star is registered that moves transversely to
the line of sight behind a (dark and compact) mass. For a thorough
exposition of gravitational lensing, including an overview of all pre-
1992 observations, the reader may consult the monograph [23].
More up-to-date information can be found in [24].

In all the lensing observations mentioned previously, the bending
angles are so small that a weak-field approximation for the gravitational
field is applicable. A much simpler quasi-Newtonian formalism has
been used. This approximation centers around a so-called lens map or
lens equation, which is very intuitive. This lens map of the weak-field
formalism has proven extremely useful for evaluating the
aforementioned lensing phenomena. It is discussed in detail, for
example, in [23]. Additional material can be found, for example, in
the Living Review by Wambsganss [25], which is completely based on
this approximation formalism. However, there are astrophysical
scenarios where the bending angles are not small. In such cases, the
weak lensing theory is not valid anymore. The objective of this review is
to give an overview of the various analytical techniques used to study
strong lensing and to give some insights into the relation of lensing
parameters to the gravity theory itself.

This expectation is nurtured mainly by the increasing
evidence of a black hole at the center of our Galaxy. Black
holes arise as solutions of GR and play an important role in
testing various aspects of it. Recent observations coming from the
“Event Horizon Telescope” (EHT) [26–38] collaboration and
LIGO, Virgo, and KAGRA collaboration [39–44] have
provided us with enough observational evidence that ensures
the existence of supermassive black holes. Furthermore, these
observations provide a unique opportunity to test various aspects
of strong gravity [45–55]. This necessitates us to go beyond weak-
field approximation and consider lensing by the strong gravitational
field, thereby motivating us to consider the strong-field limit of the
bending angle. It provides important information about the intrinsic
parameters such as spin, mass, and charge of the black holes and the
parameters of the underlying gravity theory. Hence, its observational
implications have been investigated in recent times1. An analytical
description of the deflection angle for the spherically symmetric black
hole in the strong gravitational field has been proposed in [76]. This was
further based on [77, 78]. Later, it was extended for rotating black holes
in [79]. A lens equation has been derived in [77], which has been further
generalized in [80] where the underlying black hole serves as a lens.
Numerous investigation of Einstein rings [81] and strong gravitational
lensing based on the work has been made for various black hole
spacetimes and compact objects2.

It should be noted that in this review, we will be focusing on the
analytical computation of the deflection angle of light rays using null
geodesic equations. However, there are other methods of calculating
the deflection angle analytically, for instance, the material medium
approach. In this approach, one maps the problem effectively to a
problem of light propagation through a medium with a particular
refractive index determined by the strength of the gravitational field

of the original spacetime for which one wants to calculate the
deflection angle. For more details, interested readers are referred
to [121–133] and citations of these references.

Furthermore, in recent times, several static metrics known as the
black-bouncemetric have been proposed in [134–137].Whatmakes this
spacetime interesting is that they have an extra parameter which
regularizes the central singularity, unlike the usual black hole
spacetime. The black-bounce spacetime interpolates between a black
hole and (traversable) wormhole metric depending on the choice of
underlying regularization parameters. When the solution does not
admit any horizon, it corresponds to a wormhole solution. Recently,
the gravitational lensing in the strong deflection limit for these black-
bounce spacetimes has been studied [120, 138–141]. From the lensing
perspective, this kind of spacetime provides us with extra tunable
parameters; hence, it is interesting to investigate the effect of this
extra parameter from the theoretical and observational points of
view. In this review, besides discussing some analytical results about
the computation of the strong deflection angle in the background of
Schwarzschild and Kerr–Newman black holes, we also discuss the effect
of this black-bounce regularization parameter on the computation of
the deflection angle and, finally, on the radius of the Einstein ring.

This article is organized as follows. In Section 2, we first
review the deflection angle, the angular radius of Einstein rings,
and Shapiro time delay for a Schwarzschild spacetime. In Section
3, we review a general formalism of computation of the
equatorial deflection angle for Kerr–Newman spacetime.
Then, in Section 4, we discuss the computation of the
deflection angle for the black-bounce metric. We also review
the computation of the Einstein ring radius of this case and
comment on its dependence on charge and regularization
parameters and its observational implications. Finally, we give
concluding remarks in Section 5. Some necessary details are
given in Appendix A. Also, we have set the value of the speed of
light c and Newton’s gravitational constant G to unity.

2 Lensing for the spherically symmetric
Schwarzschild black hole

In this section, we start by reviewing gravitational lensing in the
simplest setup, that is, for the Schwarzschild solution. The metric
reads

ds2 � − 1 − 2M
r

( )dt2 + dr2

1 − 2M
r

+ r2 dθ2 + sin2 θdϕ2( ). (2.1)

The Lagrangian for the particle �L � 1
2gμ](x) _xμ _x] reads

�L � 1
2
gμ] x( ) _xμ _x] � 1

2
− 1 − 2M

r
( ) _t2 + _r2

1 − 2M
r

+ r2 _ϕ
2[ ]. (2.2)

We are only considering geodesics on the equatorial plane,
where θ � π

2. Hence, sin θ = 1 along these geodesics and since θ is
fixed, every _θ component is 0. Owing to the symmetry of the
solution, we have two constants of motion which we can read off
from the Euler–Lagrange equations. The t-component of the
equation of motion gives

1 − 2M
r

( ) _t � E � constant, (2.3)

1 This list is by no means exhaustive. Interested readers are referred to this
review [24] and citations there for more details.

2 Again, this list is by nomeans exhaustive. Interested readers are referred to
the references and citations of these papers.

Frontiers in Physics frontiersin.org02

Chowdhuri et al. 10.3389/fphy.2023.1113909

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1113909


while the ϕ component gives

r2 _ϕ � L � constant. (2.4)
In this article, we will mainly focus on the lensing of light rays3.

Hence, we will be considering the light-like trajectories with the null
ray condition defined as follows:

gμ] _x
μ _x] � 0. (2.5)

Hence,

− 1 − 2M
r

( ) _t2 + _r2

1 − 2M
r

+ r2 _ϕ
2 � 0. (2.6)

Then, we write the r component of the equation of motion in
terms of the ϕ component. To obtain that, we divide (2.3) by (2.4)
and also define the impact parameter as

λ � L

E
. (2.7)

Then, we obtain

dt

dϕ
� _t

_ϕ
� r2

λ 1 − 2M
r( ). (2.8)

Then, using (2.6), we obtain

dr

dϕ
( )2

� r4

λ2
− r2 1 − 2M

r
( ). (2.9)

Eqs 2.8, 2.9 provide all the necessary information regarding the
behavior of light-like geodesics. Considering Eq. 2.9 and taking the ϕ
derivative of this equation, we obtain

2
dr

dϕ

d2r

dϕ2 �
4 r3

λ2
− 2 r + 2M( ) dr

dϕ
. (2.10)

For circular light-like geodesics, we must have dr
dϕ � 0 and d2r

dϕ2
� 0

which gives

r4

λ2
− r2 1 − 2M

r
( ) � 0,

4 r3

λ2
− 2r + 2M � 0.

(2.11)

By eliminating b from the aforementioned equations, we obtain
r = 3M. We have, thus, shown that there is a circular light-like
geodesic (or photon ring) r = 3M. As we can choose any plane
through the origin as our equatorial plane, there is actually a photon
ring at this radius in the sense that every great circle on this sphere is
a light-like geodesic. However, the photon rings at r = 3M are
unstable in the following sense: a light-like geodesic with an initial
condition that deviates slightly from that of a photon ring at r = 3M
will spiral away from r = 3M and either go to infinity or to the
horizon.

Now that we have understood how the null geodesics behave in
this geometry, it is time to focus on deriving actual observable
quantities that one can measure. For this, we go on to study them in

the upcoming sections one by one starting with calculating
deflection angles.

2.1 Formula for the deflection angle

First, we set up the problem that we want to address. We consider a
light ray that comes in from infinity and then goes through aminimum
radius value at r = rmin and then escapes back to infinity. Due to the
geometry of spacetime around the central black hole, which for us is a
Schwarzchild one, there will be a deflection. This deflection is simply
because the rectilinear propagation of light will not be observed in this
non-trivial geometry. The deflection angle measures the degree of this
deviation from rectilinear propagation. In the following discussion, we
will express this in terms of rmin and the mass of the central object.

We start out with (2.7) and determine the ratio 1
λ2
at r = rmin. This

gives

1

λ2
� 1
r2min

− 2M
r3min

. (2.12)

Hence, replacing this in (2.7), we obtain

dϕ � ± dr���������������������
1

r2min
− 2M

r3min
( )r4 − r2 + 2Mr

√ , (2.13)

which, on integrating over the coordinates of the light ray, leads to

π + α̂ � 2∫∞

rmin

rmindr���������������������������
1 − 2M

rmin
( )r4 − r2minr

2 + 2Mr2minr

√
� 2∫∞

rmin

rmindr������������������������
r2 r2 − r2min( ) − 2M

rmin
r3 − r3min( )√

� 2∫∞

rmin

rmindr�����������������
1 − 2M

rmin

r3 − r3min( )
r r2 − r2min( )√

r
�������
r2 − r2min

√
� 2∫∞

rmin

1 + 1
2
2M
rmin

r3 − r3min( )
r r2 − r2min( ) +O 2M

rmin
( )2{ } rmindr

r
�������
r2 − r2min

√
� 2∫∞

rmin

rmindr

r
�������
r2 − r2min

√ + 2M
rmin

∫∞

rmin

r3 − r3min( )rmindr

r2 r2 − r2min( )3/2 +O 2M
rmin

( )2

� π + 4M
rmin

+O 2M
rmin

( )2

.

(2.14)
By neglecting higher-order terms, we obtain

α̂ � 4M
rmin

. (2.15)

Now, we will look at a point or two about this derivation:

• From the derivation, it is clear that the integrand has a singularity
at the lower bound r = rmin. A more detailed analysis shows that
the integral isfinite for all values of r= rmin that are bigger than 3

2rs,
where rs = 2M. If we consider a sequence of light rays with r = rmin
approaching 3

2rs from earlier, the deflection angle δ becomes
bigger and bigger, whichmeans that the light rays makemore and
more turns around the center. In the limit rmin → 3

2 rs, the
integral goes to infinity, and the limiting light ray spirals

3 For deflection of the massive particle, one needs to consider time-like
trajectories given by gμ] _x

μ _x] � −1.
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asymptotically toward a circle at r � 3
2 rs. If an unstable photon

ring is approached, the deflection angle goes to infinity, and the
singularity is logarithmic.

• The second point comes during the discussion on taking the
Taylor series expansion in rs

rmin
in the fourth step. The

asymptotic behavior of light rays for rmin approaching 3
2rs

is relevant only for black holes and for ultracompact stars. For
an ordinary star, like our Sun, rmin takes a value much bigger
than rs. It is under this consideration that we take a Taylor
series expansion in rs

rmin
.

2.2 Shapiro time

Combining Eqs. 2.8 and 2.9 allows us to calculate the time taken
by the light ray in this particular geometry. Here, we consider a light
ray that starts at a radius rL, passes through a minimum of radius
rmin, and terminates at a radius ro. From Eqs. 2.8 and 2.9, we obtain

dr

dt
( )2

� dr

dϕ
( )2

dϕ

dt
( )2

� r4

λ2
− r2 1 − 2M

r
( ){ } 1 − 2M

r
( )2

λ2r4

� r3

λ2
− r 1 − 2M

r
( ){ } r − 2M( )2

λ2r5
.

(2.16)
At r = rmin, (2.16) reads

r4min

λ2
− r2min 1 − 2M

rmin
( ) � 0 0

1

λ2
� rmin − 2M

r3min

. (2.17)

Finally, (2.16) becomes

dr

dt
( )2

� rmin − 2M( )r3
r3min

− r 1 − 2M
r

( ){ } r − 2M( )r3min

rmin − 2M( )r5, (2.18)

which gives

dt � ±
��������
rmin − 2M

√
r5/2dr

r − 2M( )r3/2min

�����������������
rmin−2M( )r3

r3min
− r 1 − 2M

r( )√ . (2.19)

By integrating, we obtain the travel time for the light ray,

Δt � −∫rmin

rL

+ ∫rO

rmin

( ) ��������
rmin − 2M

√
r5/2dr

r − 2M( )r3/2min

�����������������
rmin−2M( )r3

r3min
− r 1 − 2M

r( )√ ,

(2.20)
where the signs on the right-hand side had to be chosen in such a way
that the time coordinate is always increasing along the light ray. One
can perform this integral exactly in terms of an elliptic integral.
However, when rmin ≫ rs, we can make a Taylor approximation, in
exactly the sameway as we did it for the deflection formula, and obtain

Δt � ∫rL

rmin

+ ∫rO

rmin

( ) rdr�������
r2 − r2min

√ + 2M ∫rL

rmin

+ ∫rO

rmin

( ) dr�������
r2 − r2min

√
+ 2Mrmin

2
∫rL

rmin

+ ∫rO

rmin

( ) dr������
r − rmin

√
r + rmin( )3/2 +/

(2.21)
The zeroth-order term is, of course, the Euclidean travel time for

a light ray with speed c along a straight line. The deviation of the

general-relativistic calculation from this zeroth-order term is known
as the Shapiro time delay [142].

I. Shapiro suggested using this effect as the fourth test of general
relativity (after perihelion precession, light deflection, and gravitational
redshift). In the first experiment, a strong radio signal was sent to Venus
when it was in opposition to Earth, and the time wasmeasured until the
signal arrived back on Earth after being reflected in Venus’s
atmosphere. Later experiments were performed with transponders
on spacecraft, which sent the signal back with increased intensity.
The best measurement to date was performed with the Cassini
spacecraft in 2002. The general-relativistic time delay was verified to
be within an accuracy of 0.001% [142].

2.3 Angular radius of Einstein rings

An Einstein ring can be observed when the light source and
observer are perfectly aligned (directly opposite to each other). We
want to determine the angular radius θE of the Einstein ring in
dependence on the radius coordinate rL of the light source, the
radius coordinate rO of the observer, and the Schwarzschild radius
(= 2M). We use the formula

dϕ � ± dr�����������������
rmin−2M

c2
( )r4

r3min
− r2 + 2Mr

√ . (2.22)

Integrating over the light ray gives

π � ∫rL

rmin

+ ∫rO

rmin

( ) dr�����������������
rmin−2M

c2
( )r4

r3min
− r2 + 2Mr

√ . (2.23)

The integration gives

rmin � f rL, rO, 2M( ). (2.24)
With rmin determined, the angular radius of the Einstein ring can

be obtained by

tan θE � rdϕ

1 − 2M
r( )−1/2dr|r�rO. (2.25)

3 Lensing for the Kerr–Newman black
hole

In Section 2, we discussed the gravitational lensing in
Schwarzschild spacetime. We expand the integrand around
the turning point to obtain a simplified result, but in
principle, we can calculate the exact deflection angle. In this
section, first and foremost, we will generalize the result of lensing
for rotating spacetime. We will calculate the deflection angle for
the light rays in Kerr–Newman spacetime which is an
axisymmetric spacetime. One can reproduce the result for the
Kerr and Schwarzschild case as special limits. We will also
discuss the strong deflection angle’s analytical form. We will
closely follow the notation in [120].

In Boyer–Lindquist, the line element is given by
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ds2 � −ΔΣ dt − a sin2 θ dϕ( )2 + Σ dr2

Δ + dθ2( )
+ sin2 θ

Σ a dt − r2 + a2( ) dϕ( )2, (3.1)

where

Σ � r2 + a2 cos2 θ,Δ r( ) � Δ r( ) � r2 + a2( ) − 2mr + Q2. (3.2)
In (3.3) and (3.2),m ≥ 0,Q, and a are, respectively, the ADMmass,

charge, and angular momentum of the black hole. As we know, the
particle Lagrangian, specifically for the photons, is given by (2.2), with
_xμ � dxμ

d~λ
for some convenient parameter ~λ. The metric coefficients are

independent of t and ϕ, implying that we will have two conserved
quantities along the photon trajectory: energy E and angular
momentum L. Using the constants of motion and the null ray
condition in (2.5), the null geodesic equations can be written as follows:

ρ4 _r2 � r2 + a2( )E − aL( )2 − Δ r( ) L − aE( )2 + �K( ) ≔ R2 r( ),
Σ _ϕ � − aE − L

sin2 θ
( ) + a E r2 + a2( ) − a L[ ]

Δ ,

Σ _t � −a a E sin2 θ − L( ) + r2 + a2( ) E r2 + a2( ) − a L[ ]
Δ ,

ρ4 _θ
2 � �K + cos2 θ a2 E2 − L2

sin2 θ
( ) ≔ Θ θ( )2

(3.3)
where the Carter constant, which results from the separability of the
Hamilton–Jacobi equation, is �K. For our purpose, we will look upon
into the equatorial case only, that is, θ � π

2,
_θ � 0 which

automatically implies �K � 0, and then will investigate the non-
equatorial case also. We can use the geodesic equations to
calculate the equatorial deflection angle. Rather in the next
section, we will provide the deflection angle calculations and
reproduce the result for Kerr by taking the limit Q = 0.

3.1 Deflection angle for Kerr–Newman
spacetime

From (3.3), we can write the radial geodesic equations as
follows:

_r2

L2
+ V r( ) � 1

λ2
, (3.4)

with the effective potential

V r( ) � 1
r2

1 − a2

λ2
+ 1 − a

λ
( )2

−2m
r

+ Q2

r2
( )[ ], (3.5)

and λ is the impact parameter defined in (2.7).
Now, we think of light rays that originate at infinity, pass

through the black hole, and then, return to infinity to reach the
observer. The closest approach to the black hole, r0, will be the radial
turning point for these light rays, determined by

_r2

L2
( )∣∣∣∣∣∣∣∣

r�r0
� 1

λ2
− V r0( ) � 0. (3.6)

From (3.6), we obtain

r0
4 − λ2 1 − a2

λ2
( )r02 + 2mλ2 1 − a

λ
( )2

r0 � Q2λ2 1 − a

λ
( )2

. (3.7)

Solving (3.7), we obtain

r0 λ( ) � λ�
6

√ ������
1 − ω2

√ ����
1 + γ̂

√
+

����������������������
2 − γ̂ − 3

�
6

√
m 1 − ω( )2

λ 1 − ω2( )3/2 ����
1 + γ̂

√√√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
(3.8)

where ω, χ, ρ, γ̂ are given by

ω � a

λ
, ρ � 12Q2

λ2 1 + ω( )2, γ̂ �
����
1 − ρ

√
cos

2χ
3

( ),
χ � arccos

3
�
3

√
m 1 − ω( )2

λ 1 − ω2( )3/2 1 − ρ( )3/4
�������������������������������
1 − λ2 1 + ω( )3

54m2 1 − ω( ) 1 + 3ρ − 1 − ρ( )3/2[ ]√⎛⎝ ⎞⎠.

(3.9)

One can convince that the non-zero charge of the black holes
gives a repulsive effect on the light rays, but the effect of spin attracts
the light rays toward the black hole.

3.2 Photon sphere radius and critical impact
parameter

In this subsection, we will define the photon sphere and the
critical impact parameter which will be useful in the subsequent
sections. The radius of the photon sphere is the value of r where the
effective potential attains its maximum value.

zV r( )
zr

∣∣∣∣∣∣∣r�rc � 0. (3.10)

From (3.10), we can find out

rc λc( ) � 3m ζ̂

2
1 + ����

1 − ζ
√[ ], (3.11)

where

ζ̂ � 1 − a
λc

1 + a
λc

⎛⎝ ⎞⎠, ζ � 8Q2

9m2
ζ̂ .

It should be noted that the turning point of the photon is r0
defined in (3.8) and attains its minimum value at rc with the
corresponding impact parameter λc. If for some λ, r0 becomes less
than rc, then the photon will fall into the black hole. λc is called
the critical impact parameter. Finally, substituting Eq. 3.8 into
(3.11), we can write λc = λc(a, Q, l) and rc = rc(a, Q, l).

3.3 An exact analytical computation of the
deflection angle

In this subsection, we will compute the exact photon deflection angle
near a Kerr–Newman black hole. To perform this, we can choose any
polar plane, but to keep things simple, we choose the equatorial plane
θ � π

2 and
_θ � 0. Furthermore, to investigate the observational signature,

we need to employ the strong deflection limit. To perform this, we have
to evaluate the deflection angle in the mentioned plane and take the
strong limit. We can rather perform the reverse procedure also; that is,
from the beginning, we take the strong limit and then calculate the
deflection angle at this limit. The second one is simpler to perform. We
adopt this track while discussing the observational signature.
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The analysis has been performed in [143, 144]. We review the
analysis here. Before proceeding with the computation, we define the
following coordinates:

u ≔
1
r
. (3.12)

By combining the first two equations in (3.3), we obtain

du

dϕ
( )2

� du

dr

dr

dϕ
( )2

� r2

r6
_r2

_ϕ
2 � u4( ) _r2

_ϕ
2. (3.13)

Now, our goal is to rewrite _r and _ϕ as a function of u. We have

_r2 � L2 1

λ2
− V r( )( )

� L2 1

λ2
− 1

r2
1 − a2

λ2
+ 1 − a

λ
( )2( − 2m

r
+ Q2

r2
( )[ ][ ]

� L2 1

λ2
− u2 1 − a2

λ2
( ) − Q2 1 − a

λ
( )2

u4 + 2m 1 − a

λ
( )2

u3[ ] ≔ L2B u( ).
(3.14)

Combining Eqs 3.14 and 3.3 and using Eq. 3.13, we obtain

du

dϕ
( )2

� 1 − 2mu + a2 + Q2( )u2

1 − 2mu − Q2u2( ) 1 − a
λ( )⎡⎢⎣ ⎤⎥⎦2B u( ). (3.15)

The photon deflection angle α̂ can be calculated by integrating
Eq. 3.15 over u from 0 to 1�

r
√ , where r0 is the turning point, and then

evaluating the resulting expression at the critical value rc [79],

α̂ � −π + 2∫ 1
r0

0
du

1 − 2mu − Q2u2( ) 1 − a
λ( )

1 − 2mu + a2 + Q2( )u2
⎡⎣ ⎤⎦ 1����

B u( )√ , (3.16)

with ω � a
λ. This integral can be computed exactly. We give the final

result here. The details of the computation of this integral are given in
Appendix A.

α̂ � −π + 4

1 − ω( ) �����������������
Q2 u4 − u2( ) u3 − u1( )√

×
G+ + KQ+u1

u+ − u1
Π n+, k( ) − Π n+,ϕ, k( )[ ][

+ G− +KQ−u1

u− − u1
Π n+, k( ) − Π n+, ϕ, k( )[ ]

− G+ +KQ+u4

u+ − u4
Π n+, k( ) − Π n+,ϕ, k[ ] − F

π

2
, k( ) + F ϕ, k( )[ ]

− G− +KQ−u4

u− − u4
Π n−, k( ) − Π n−, ϕ, k[ ] − F

π

2
, k( ) + F ϕ, k( )[ ]],

(3.17)
where

u1 � X1 − 2m −X2

4mr0
, u2 � 1

r0
, u3 � X1 − 2m +X2

4mr0
, u4 � 2m

Q2 −
X1

2mr0
,

n± � u2 − u1

u± − u1
1 + 2mQ2 1 − r0u±( )

4m2r0 − Q2 X1 + 2m( )[ ],
k2 � X2 + 6m −X1( ) 8m2r0 − Q2 X2 − 2m + 3X1( )[ ]

4X2 4m2r0 − Q2 X2 + 2m( )[ ] ,

ψ0 � arcsin

���������������������������������
X2 + 2m −X1( ) 4m2r0 − Q2 X2 + 2m( )[ ]

X2 + 6m −X1( ) 4m2r0 − Q2X1( )√
,

G+ �
2m 1 − ω( ) m +

�������������
m2 − a2 + Q2( )√( ) − a2 + Q2( )

2 a2 + Q2( ) �������������
m2 − a2 + Q2( )√ ,

G− �
a2 + Q2( ) − 2m 1 − ω( ) m −

�������������
m2 − a2 + Q2( )√( )

2 a2 + Q2( ) �������������
m2 − a2 + Q2( )√ ,

GQ+ �
−Q2 1 − ω( ) m +

�������������
m2 − a2 + Q2( )√( )

2 a2 + Q2( ) �������������
m2 − a2 + Q2( )√ ,

GQ− �
Q2 1 − ω( ) m −

�������������
m2 − a2 + Q2( )√( )

2 a2 + Q2( ) �������������
m2 − a2 + Q2( )√ .

(3.18)

It should be noted that Π(n+, ψ0, k) and Π(n+, k) are the
incomplete and complete elliptic integral of the third kind,
respectively. Also, F(ψ0, k) and F(π2, k) are the incomplete and
complete elliptic integral of the first kind, respectively. Also,

X1 � 2m Q2 + 4mr0( )
3Q2 + 8m2r0

3Q2

�������������������������
1 + Q2

2m2

m

r0
− 3 1 + ω( )
2 1 − ω( ) −

Q2

r20
( )√

cos
δ

3
+ 2π

3
( ),

(3.19)
where

δ � arccos

−8m3r30 − 3mQ2r20 2m − 3r0 1 + ω( )
1 − ω( )( ) − 3Q4r0 5m − 3r0 1 + ω( )

1 − ω( )( ) + 10Q6

4m2r20 + Q2r0 2m − 3r0 1 + ω( )
1 − ω( )( ) − 2Q4[ ]3/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

(3.20)
and X2 can be obtained from the following equations after inserting
X1 from (3.20).

X2
2 − X2

1 − 2m( )2[ ] 1
8mr30

− Q2X1

32m3r40
( ) � 1

λ2 1 − ω( )2. (3.21)

So, the exact deflection angle can be derived as discussed. One
can reproduce the results for the Schwarzschild black hole in the
limit a → 0 and Q → 0 and the Kerr black hole in the limit a → 0.

3.4 Strong deflection analysis for
axisymmetric spacetime

In this section, we inspect the strong limit of the equatorial deflection
angle (θ � π

2) of the light rays discussed in the previous section in order to
gain further understanding of the deflection angle for our context and
make touchwith the feasible observational signature. The strong deflection
limit of (4.14) is challenging to take directly. It will be simpler to perform
the integration after taking the strong-field limit of the integrand of (4.4).
We shall only take into account the photons having the turning point very
close to the photon sphere’s radius, as was previously specified.

The metric on the equatorial plane has the following structure:

ds2 � − �A r( )dt2 + �B r( )dr2 + �C r( )dϕ2 − �D r( )dt dϕ, (3.22)
with

�A r( ) � Δ r( ) − a2( )
Σ ,

�B r( ) � Σ
Δ,

�C r( ) � 1
Σ r2 + a2 + l2( )2 − Δ r( )a2[ ],

�D r( ) � 2
Σ r2 + a2 + l2( )a − Δ r( )a[ ].

(3.23)

It should be noted that all metric components are evaluated in
the equatorial plane.We have already seen that the spacetime admits
two conserved quantities E and L due to the existing symmetries. To
keep things simple, we set E = 1. As a result, the impact parameter is
λ = L. Using the fact that at the distance of closest approach, r = r0
and _r � 0, we obtain the following results from (3.4):

L � − �D0 +
����������
4 �A0

�C0 + �D
2
0

√
2 �A0

�
r0 r20

�����������������
a2 − 2mr0 + Q2 + r20

√
+ a Q2 − 2mr0( )( )

Q2r0 + l2 r0 − 2m( ) + r20 r0 − 2m( ) .

(3.24)
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The subscript “0” denotes that functions are evaluated at r = r0. From
the equation of motion of ϕ [the second equation of (3.3)], we obtain

ϕ r0( ) � 2∫∞

r0

����
�B �A0

√
�D + 2L �A( )���������

4 �AC + �D
2

√ ������������������������
�CA0 − �AC0 + L �AD0 − �DA0( )√ dr.

(3.25)
In the strong limit, we only consider the photons having closest

approach rc near to the radius of the photon sphere. To implement
the limit, one can expand the deflection angle α̂ around rc or λc and
perform the radial integral function. When the turning point r0 is
greater than the radius of the photon sphere rc, then we obtain a
finite deflection angle; otherwise, the photon will be caught by the
black hole and the deflection angle diverges. Following the method
developed here [76, 79], it is easy to find out the nature of the
divergence in the deflection angle when the photons are very close to
the radius of the photon sphere r = rc. One can define two variables y,
z as

z1 � �A r( ), z2 � z1 − z1,0
1 − z1,0

. (3.26)

Now, the azimuthal angle defined in (3.25) can be expressed in
terms of these two new variables,

ϕ r0( ) � ∫1

0

�R z2, r0( )�F z2, r0( )dz2, (3.27)

where

�R z2, r0( ) � 2 1 − z1,0( )
A′

����
�B �A0

√
�D + 2L �A( )�����������

4 �AC2 + �CD2
√ , (3.28)

�F z2, r0( ) � 1���������������������������
1
�C

�CA0 − �AC0 + L �AD0 − �DA0( )( )√ � 1��
�H

√ , (3.29)

�H � 1
�C

�CA0 − �AC0 + L �AD0 − �DA0( )( ). (3.30)

The function �R(z, r0) is regular for any z and r0 values,
whereas the function �F(z, r0) is divergent for z = 0, that is, at r =
r0. As a result, after extracting the divergent part, one can
rewrite (3.25).

ϕ r0( ) � ϕ �R r0( ) + ϕ �F r0( ), (3.31)
where the divergent part can be written as follows:

ϕ�F r0( ) � ∫1

0

�R z2 � 0, rc( )�F0 z2, r0( )dz. (3.32)

We know that the deflection angle should diverge at r0 = rc,
indicating that the photon has been captured by the black hole. Next,
we want to determine the nature of the divergence. Examining the
denominator will allow us to determine the nature of the divergence
(4.18). In order to achieve this, we Taylor expand the denominator
of �F0(r0, z2) (3.33) around z2 = 0.

�F0 z2, r0( ) ≈ 1����������������������
σ1 r0( )z + σ2 r0( )z22 +O z3( )√ . (3.33)

It is worth noting that if σ1(r0) = 0 (this occurs when r0 coincides
with the radius of the photon sphere [145]), then it is clear from
(3.33) that the leading term is 1

z in the small z limit. As a result, after
integration, we obtain a logarithmic divergence, as shown in (3.42).

To find σ1 and σ2, we first Taylor expand �H, which is defined
in (4.21).

�H z, r0( ) � �H 0, r0( ) + z �H

zz2

∣∣∣∣∣∣∣∣z2�0z2 + 1
2!
z2 �H

zz22

∣∣∣∣∣∣∣∣
z2�0

z22

+O z32( ),with �H 0, r0( ) � 0.

(3.34)

Therefore, using (4.20), we can identify σ1 and σ2 as

σ1 ≔ z �H
zz2

∣∣∣∣∣z2�0
� 1 − �A0

�A0′ �C0

�A0
�C0′ − �A0′ �C0 − L �A0

�D0′ − �A0′ �D0( )( ), (3.35)

and

σ2 ≔
1
2!
z2 �H

zz22

∣∣∣∣∣∣∣∣
z2�0

� 1 − �A0( )2
2�C

2
0
�A′30

× 2�C0
�C0′ �A′20 + �C0

�C0″ − 2�C′20( ) �A0
�A0′ − �C0

�C0′ �A0
�A0″[

+L �A0
�C0

�A″0 �D0′ − �A0′ �D″0( ) + 2 �A0′ �C0′ �A0
�D0′ − �A0′ �D0( )( )].

(3.36)
We can write the regular part as follows:

ϕ �R r0( ) � ∫1

0

�G z2, r0( )dz2, (3.37)

where �G(z2, r0) � �R(z2, r0)�F(z2, r0) − �R(z2 � 0, rc)�F0(z2, r0). The
coefficient σ1 = 0, in the strong deflection limit. This implies

�A0
�C0′ − �A0′ �C0 − L �A0

�D0′ − �A0′ �D0( )∣∣∣∣r0�rc � 0. (3.38)

From (3.38), we obtain

−2a Q2 −mrc( ) ����������������
a2 − 2mrc + Q2 + r2c

√
+ 2a2 Q2 −mrc( ) + r2c 6m2(

−5mrc + r2c) + Q2rc(3rc − 7m) + 2Q4 � 0 (3.39)
It is simple to verify that the expression for the critical

impact parameter λc found in (3.24) yields the identical
expression for the radius of the photon sphere found in
(3.11). The photon sphere is defined yet again by (4.25),
according to this. Readers who are interested in learning
more about the geometry of photon spheres and several
complementary definitions of photon spheres are directed
to [145].

For fixed values of Q, a, we can compute the radius of the
photon sphere in Kerr–Newman spacetime. In the next section,
we will discuss the more general case which is the
Kerr–Newman black-bounce spacetime, and the solutions of
the photon sphere equation will be discussed there in a more
general setting.

We may now assess the divergent integral (4.23) with the help of
the following equation:

ϕ �F r0 ≈ rc( ) � �R z2 � 0, rc( )∫1

0

1����������
σ1z2 + σ2z

2
2

√ dz2

� �R z2 � 0, r0 ≈ rc( ) 2��
σ2

√ log
��
σ2

√ + ������
σ2 + σ1

√��
σ1

√( ).
(3.40)

We are aware that the function ϕ�F(r0) diverges when r0 = rc, or
when the coefficient σ1 = 0. In order to obtain the nature of
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ϕ�F(r0 ≈ rc), the idea is to expand the σ1(r0) around r0 = rc up to the
first order and substitute it into (3.40).

σ1 r0( ) � zσ1
zr0

∣∣∣∣∣r0�rc r0 − rc( ) +O r0 − rc( )2,
σ2 r0( ) � σ2 rc( ) + zσ2

zr0

∣∣∣∣∣r0�rc r0 − rc( ) +O r0 − rc( )2. (3.41)

Substituting (3.41) into (3.40) and using condition (3.38), we
obtain

ϕ�F r0 ≈ rc( ) � −~alog r0
rc
− 1( ) + ~b +O r0 − rc( ). (3.42)

Alternatively, Eq. 3.42 can be written in terms of the impact
parameter as [79]

α̂ λ( ) � −�alog λ

λc
− 1( ) + �b +O λ − λc( ), (3.43)

where the coefficients are

�a �
����������������������������

2 �Ac
�Bc

�Ac
�Cc″ − �Ac″�Cc + λc �Ac″ �Dc − �Ac

�Dc″( )√
, (3.44)

�b � −π + bR + �alog
4 σ2c �Cc

λc �Ac
�Dc + 2λc �Ac( )( ), (3.45)

λc � Lc. (3.46)
In the next section, we will show how the deflection angle (3.43)
varies with respect to the impact parameter. The black hole can
be viewed as a lens, with its gravitational field curving the path of
photons. Let θ � λ

DOL
be the angular separation between the image

and lens, and D0l be the distance between the lens and the
observer. The deflection angle (3.43) can then be expressed as
follows:

α̂ θ( ) � −�alog θDol

λc
− 1( ) + �b +O λ − λc( ) , (3.47)

where bR � ϕ �R(rc) � ∫1

0
�G(z, rc)dz.

In order to perform the integral function, we can expand
�R(z, rc) around z = 0 and then put it in (4.23). Formally, we
obtain the following expression:

bR � 1��
σ2

√ ∫1

0

�R z( )
z

− �R 0( )
z

( )dz∣∣∣∣∣∣∣∣
rc

� 1��
σ2

√ ∑∞
n�1

1
n

zn �R

zzn

∣∣∣∣∣∣∣∣z�0 → finite.

(3.48)
Now, we will have multiple images of the source if the deflection

angle is greater than 2π. The angular radius of the Einstein ring,
which is created due to the symmetric lensing of light rays coming
from some distant source, can be calculated using the strong-field
deflection angle formula given in (3.47) and the lens equation [146,
(147). The observational signatures of the deflection angle will be
discussed in the following section.

3.5 Non-equatorial lensing

So far, we have discussed equatorial lensing. In this section, we
will briefly discuss about the non-equatorial lensing in
Kerr–Newmann spacetime for small inclination. We assume
that the inclination is θ � π

2 − ψ, with ψ being very small. To

conduct the analysis, we will closely follow the analysis
presented in [79].

For the non-equatorial plane, the carter constant is �K ≠ 0.
Instead, for the small inward inclination angle, we can write
down the constants in terms of the inclination angle ψ as follows:

L ≈ λ, (3.49)
�K ≈ h2 + λ2 − a2( )ϕ2,with ϕ ≈

h

λ
. (3.50)

In principle, one can parameterize the light ray coming from
infinity by three parameters (ϕ, h, λ). If there is no gravitational field,
the projection of the photon line on the equatorial plane has a
minimum distance from the origin which is λ. Now, for given λ, the
vertical distance of the light ray from the plane is h, and finally, ϕ is
the inclination angle formed by the light ray with the equatorial
plane.

Now, using the θ and ϕ geodesic equation in (3.3) and requiring
ψ to be small, we will have

dψ

dϕ
� ω r ϕ( )( ) �������

ψ̂2 − ψ2
√

,with ψ̂ �
����������
h2

λ2 − a2
+ ϕ2

√
. (3.51)

Now, we are interested in computing the deflection angle. For
that, we first write down the following equation:

�ϕf � ∫ϕf

0
dϕ ω ϕ( ), (3.52)

where ϕf is the total azimuthal shift. Then, the deflection angle can be
written as follows:

α̂ � −π + 2∫∞

r0

drω r( ) dϕ
dr

� ∫1

0
dz ω r z( )( )�R z, r0( )�F z, r0( ),

(3.53)
where

ω r( ) � �λ
a2 + r r − 2( )

r 2 a + λ r − 2( )( ) + Q2 λ − a( ), (3.54)

with �λ �
������
λ2 − a2

√
. We can follow the same method as mentioned in

Section 3.4 to extract the divergent part as well as the finite part of
the deflection angle as the function ω(r). They are given by

α̂ � −âlog λ

λc
− 1( ) + b̂, (3.55)

where

â � ω z � 0, rc( )�R z � 0, rc( )
2

���
σ2c

√ , (3.56)

b̂ � −π + b̂R + âlog
4 σ2c �Cc

λc �Ac
�Dc + 2λc �Ac( )( ), (3.57)

and

b̂R � ∫1

0
dz ω z, rc( )�R z, rc( )�F z, rc( ) − ω z � 0, rc( )�R z � 0, rc( )�F z, rc( )[ ].

(3.58)

Our interest is to find the position of the caustics, where the
magnification diverges, and is given in [79], �γk � −�b + �a(b̂ − k π).
Here, k is a positive integer. We have one caustic for the direct
photon and one for the retrograde photon for each value of k. We
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will find the caustic point in the weak-field limit for k = 1 and the
strong-field limit for k ≥ 1, which is the regime of interest to us. In
the next section, we give the results for caustic points in a more
generic setup, that is, for the black-bounce metric. By taking the
limit, l = 0, one can reproduce the results for the Kerr–Newman case.
Furthermore from Eq. 3.54, one can see ω(r) = 1 implying that for
Schwarzschild metric, there is no such difference between the
equatorial and non-equatorial case.

4 Lensing for Kerr–Newman black-
bounce spacetime

Before proceeding further, we will discuss how to calculate the
exact deflection angle for Kerr–Newman black-bounce spacetime
[137] and then go to the observational signatures gradually. It is
interesting to study because it has one more parameter (apart from
mass, rotation, and charge) that regularizes the central singularity.
One can reproduce the results for Schwarzschild, Kerr, and
Kerr–Newman spacetimes by taking appropriate limits. We start
by applying the general formalism of lensing in this special kind of
axisymmetric non-singular spacetime. We will closely follow the
notation of [120] throughout this section.

4.1 Brief review of Kerr–Newman black-
bounce spacetime

We will begin with a brief discussion of the null geodesics in
Kerr–Newman black-bounce spacetime. To perform that, we first
write the corresponding metric in the Boyer–Lindquist
coordinate [137].

ds2 � gμ]dx
μdx]

� −ΔΣ a sin2 θ dϕ − dt( )2 + sin2 θ

Σ r2 + a2 + l2( )dϕ − a dt( )2 + Σ dr2

Δ + dθ2( ),
(4.1)

where

Σ � r2 + l2 + a2 cos2 θ,Δ r( ) � r2 + a2 + l2( ) − 2m
�����
r2 + l2

√ + Q2.

(4.2)
Here, m ≥ 0 is the ADM mass, Q is the black hole charge

parameter, and a � J
m corresponds to the angular momentum

per mass. The non-vanishing regularizing parameter l > 0
accounts for the absence of the central singularity. Keeping
in mind that the radial coordinate’s range in this instance is
−∞ < r <∞, in the Q = 0, l = 0 limit, we recover the Kerr metric.
The location of the event horizon can be determined by equating
Δ(r) = 0.

RH �
��������������������������
m + ������������

m2 − a2 + Q2( )√( )2 − l2[ ]√
. (4.3)

We also need to impose the reality condition. That gives

m2 − a2 + Q2( )> 0 and m + ������������
m2 − a2 + Q2( )√

> l.

Following the procedure mentioned in Section 3, one can obtain
the turning point and radius of the photon sphere.

4.2 Perturbative computation of the
deflection angle: Analytical results

Following the analysis mentioned in Section 3.3, one can write
down the integral form of the deflection angle which is given by

α̂ � −π + 2∫ 1���
r2
0
+l2

√
0

1�������
1 − l2u2

√ 1 − 2mu − Q2u2( ) 1 − a
λ( )

1 − 2mu + a2 + Q2( )u2
⎡⎣ ⎤⎦ 1����

B u( )√ .

(4.4)
The polynomial B(u)(1 − l2u2) in (4.4) has degree six. As a result,

we cannot write this integral as an elliptic integral in its entirety.
However, in order to make some analytical headway, we will make
the following assumption:

l2u2 ≪ 1. (4.5)
Then, we can Taylor expand

1�������
1 − l2u2

√ � 1 + l2u2

2
+O l4u4( ).

Finally, keeping terms upto O(l4) in (4.4), we obtain

α̂ � −π + 2∫ 1���
r2
0
+l2

√
0

du 1 + l2u2

2
( ) 1 − 2mu − Q2u2( ) 1 − ω( )

1 − 2mu + a2 + Q2( )u2[ ] 1����
B u( )√ +O l4( )

� α̂KN| ���
r20+l2

√ + l2 ξ m, a, λ, Q( ) +O l4( ),
(4.6)

where

α̂KN| ���
r20+l2

√ � −π + 2∫ 1���
r2
0
+l2

√
0

du
1 − 2mu − Q2u2( ) 1 − ω( )
1 − 2mu + a2 + Q2( )u2

[ ] 1����
B u( )√ .

In the l = 0 limit, α̂KN reduces to the deflection angle for the
Kerr–Newman black hole as mentioned in (3.16) and

ξ m, a, λ, Q( ) � ∫ 1���
r2
0
+l2

√
0

u2 1 − 2mu − Q2u2( ) 1 − ω( )
1 − 2mu + a2 + Q2( )u2

[ ] 1����
B u( )√ du,

(4.7)
with ω � a

λ. We now rewrite B(u) as

B u( ) � −Q2 1 − w( )2 u − u1( ) u − u2( ) u − u3( ) u − u4( ), (4.8)
where the roots are defined as

u1 � X1 − 2m −X2

4m
�����
r20 + l2

√ , (4.9)

u2 � 1�����
r20 + l2

√ , (4.10)

u3 � X1 − 2m +X2

4m
�����
r20 + l2

√ , (4.11)

u4 � 2m
Q2

− X1

2m
�����
r20 + l2

√ . (4.12)

Again, we apply the same strategy as sketched in Appendix A for
the Kerr–Newman case. We choose the constants X1 and X2 in such
a way so that we can write down the roots in the following order u1 <
u2 < u3 < u4. Similar to the Kerr–Newman case, u2, u3, u4 turn out to
be the positive roots, while u1 turns to be a negative root. To find out
the roots, we need to substitute Eqs 4.9.12.–.4.4.12 into (4.8) and
compare it with the coefficients of u0, u2, u3, u4 in (3.14), and then, we
will obtain [144]
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Q2 X2
2 − X1 − 2m( ) X1 + 6m( ) + 4X2

1[ ]
� 16m2

�����
r20 + l2

√
X1 −

�����
r20 + l2

√ 1 + ω

1 − ω
( ),

X2
2 − X2

1 − 2m( )2 � 8m X1 − 2m( ) Q2X1 − 4m2
�����
r20 + l2

√( )
Q2 X1 − 2m( ) − 4m2

�����
r20 + l2

√ ,

X2
2 − X2

1 − 2m( )2[ ] 1

8m r20 + l2( )32 − Q2X1

32m3 r20 + l2( )2⎛⎝ ⎞⎠
� 1

λ2 1 − ω( )2.
(4.13)

By exactly following the same procedure as in Section 3.3, one
can write down the expression of deflection angle upto O(l2), and
the correction term is given by

ξ m, a, λ, Q( ) � ∫u2

0
du u2 G+

u+ − u
+ G−
u− − u

+ GQ+u
u+ − u

+ GQ−u
u− − u

[ ]
×

1�������������������������������������
−Q2 1 − ω( )2 u − u1( ) u − u2( ) u − u3( ) u − u4( )

√
� G+ g u+ ΔF + u1 − u4( )ΔΠ α2( ) + u4ΔF[ ](
− u2

+
1

u+ − u1( )
u1 − u4

u+ − u4
ΔΠ α2+3( ) + u+ − u1

u+ − u4
ΔF[ ])

+ G− g u− ΔF + u1 − u4( )ΔΠ α2( )) + u4ΔF[ ](
− u2

−
1

u− − u1( )
u1 − u4

u− − u4
ΔΠ α2−3( ) + u− − u1

u− − u4
ΔF[ ])

+ GQ+ g u2
4 − 2u+u4 + u2

+ −
u3
+

u+ − u4
( )ΔF[

+ u+ u1 − u4( ) − u3
+ u1 − u4( )

u+ − u1( ) u+ − u4( )( )ΔΠ α2+3( )
− 2u4 u1 − u4( )χ1 α2( ) − u1 − u4( )2χ2 α2( )]
+ GQ− g u2

4 − 2u−u4 + u2
− −

u3
−

u− − u4
( )ΔF[

+ u− u1 − u4( ) − u3
− u1 − u4( )

u− − u1( ) u− − u4( )( )ΔΠ α2−3( )
− 2u4 u1 − u4( )χ1 α2( ) − u1 − u4( )2χ2 α2( )],

(4.14)

where

ΔF � F ψ0, k( ) − F
π

2
, k( ),ΔΠ α2( ) � Π ψ0, α

2, k( ) − Π π

2
, α2, k( ),

ΔΠ α2
±±3( ) � Π ψ0, α

2
±±3, k( ) − Π π

2
, α2±±3, k( )

(4.15)
and χ1 and χ2 are given by

χ1 α2( ) � Π π

2
, α2, k( ) − Π ψ0, α

2, k( ),
χ2 α2( ) � 1

2 α2 − 1( ) k2 − α2( ) α2 E
π

2
, k( ) − E ψ0, k( )( )[

+ k2 − α2( ) F
π

2
, k( ) − F ψ0, k( )( ),

2α2 k2 + 2α2 − α4 − 3k2( ) Π π

2
, α2, k( )( ) − Π ψ0, α

2, k( )
− α4 sin ψ0

���������
1 − sin2ψ0

√ �����������
1 − k2 sin2ψ0

√
1 − α2 sin2ψ0

],
(4.16)

and

g � 2������������������������
Q2 1 − ω( )2 u4 − u2( ) u3 − u1( )

√ , α2 � u1 − u2

u4 − u2
< 0,

α2
±3 � α2

u± − u4

u± − u1
, k2 � u4 − u3( ) u2 − u1( )

u4 − u2( ) u3 − u1( ),

ψ0 � arcsin

��������������������������������������
X2 + 2m −X1( ) 4m2

�����
r20 + l2

√
− Q2 X1 + 2m( )[ ]

X2 + 6m −X1( ) 4m2
�����
r20 + l2

√
− Q2X1( )

√√√
.

(4.17)
Π(ψ0, α

2, k) and Π(π2, α2, k) are the incomplete and complete
elliptic integrals of the third kind, respectively. On the other hand,
F(ψ0, k) and F(π2, k) are the incomplete and complete first-kind
elliptic integrals, respectively. In addition, we have E(ψ0, k) and
E(π2, k) in V1,2, which are incomplete and complete elliptic
integrals of the second kind, respectively. The computation
details are given in [120]. So, similar to the Kerr–Newman
case, we provide an analytical expression of the equatorial
deflection angle for the Kerr–Newman black-bounce metric
upto O(l2) in this section.

FIGURE 1
Variation of radii of the photon sphere for charged, rotating Kerr–Newman black-bouncemetrics for various values of (a,Q, l). In the leftmost figure,
we vary l keeping a and Q fixed. In the middle figure, we vary a keeping l and Q, and in the rightmost figure, we vary Q keeping a and l [120].
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4.3 Strong deflection analysis

Following the same analysis given in Section 3.4, we can find out
the deflection angle of equatorial light rays in the strong deflection
limit. We will summarize the steps and results as follows:

• First, we write down the deflection angle as follows:

ϕ r0( ) � ∫1

0

�R z2, r0( )�F z2, r0( )dz2, (4.18)

with

�R z2, r0( ) � 2 1 − y0( )
A′

����
�B �A0

√
�D + 2L �A( )�����������

4 �AC2 + �CD2
√ , (4.19)

FIGURE 2
Variation of the deflection angle α̂ with respect to the impact parameter λ for fixed values of Q, l, a [120].

FIGURE 3
Polar plots showing the angular radius θ1 for different Q, l, a values [120].

TABLE 1 Percentage change in the angular radius of the first Einstein ring for different values of chargeQ for fixed a and l. Some of the numerical values presented
here are reproduced from [120].

Angular separation Percentage change Values of charge Fixed parameter

θ(1)1 (Q2) θ(2)1 (Q1) Δθ � (θ(2)1 −θ(1)1 )
θ(1)1

× 100 (Q1, Q2) l a

0.1686 0.1970 16.9013 (0, 0.6) 0.7 0.8

0.18548 0.21590 16.399 (0.6,0.8) 0.4 0.5

0.22691 0.24236 6.8088 (0.45,0.65) 0.4 0.5
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�F z2, r0( ) � 1���������������������������
1
�C

�CA0 − �AC0 + L �AD0 − �DA0( )( )√ � 1��
�H

√ , (4.20)

�H � 1
�C

�CA0 − �AC0 + L �AD0 − �DA0( )( ). (4.21)

The integral is potentially divergent at r0 = rc.

• Second, we separate the convergent and the divergent
integral as

ϕ r0( ) � ϕ �R r0( ) + ϕ �F r0( ), (4.22)
where

ϕ�F r0( ) � ∫1

0

�R z2 � 0, rc( )�F0 z2, r0( )dz2. → the divergent part

ϕ �R r0( ) � ∫1

0

�R z2, r0( )�F z2, r0( )dz2

− ∫1

0

�R z2 � 0, rc( )�F0 z2, r0( )dz2. → the finite part .

(4.23)

• Next, we find out the critical turning point rc by solving the
following equation:

�A0
�C0′ − �A0′ �C0 − L �A0

�D0′ − �A0′ �D0( )∣∣∣∣r0�rc � 0, (4.24)

which gives

2a2 Q2 −m
�����
l2 + r2c

√( ) − 2a Q2 −m
�����
l2 + r2c

√( ) �������������������������
a2 − 2m

�����
l2 + r2c

√
+ l2 + Q2 + r2c

√
+ l4+

l2 −5m
�����
l2 + r2c

√
+ 6m2 + 3Q2 + 2r2c( ) − 7mQ2

�����
l2 + r2c

√
− 5mr2c

�����
l2 + r2c

√
+ 6m2r2c

+2Q4 + 3Q2r2c + r4c � 0 (4.25)

We reproduce the results of [120] for the dependence of the critical
turning point on different spacetime parameters (a,Q, l) in Figure 1.

• At the end, we calculate the integrals in (4.23) at the limit r0→
rc, and we will find the logarithmic nature of the deflection

TABLE 2 Percentage change in the angular radius of the first Einstein ring for different values of the regularization parameter l for a = 0.8 and Q = 0.6. Some of the
numerical values presented here are reproduced from [120].

Angular separation Percentage change Values of the regularization parameter

θ(1)1 (l1) θ(2)1 (l2) Δθ � (θ(2)1 −θ(1)1 )
θ(1)1

× 100 (l1, l2)

0.16856 0.1703 1.07059 (0.2,0.4)

0.16756 0.16760 0.023872 (0.25,0.75)

0.166678 0.166680 0.001199 (0.15,0.25)

FIGURE 4
Polar plots showing the angular radius θ1 for different Q, l, a values [120].

TABLE 3 Angular position of the second caustic point for different values of Q.
The first three entities are for direct photons, and the last three are for
retrograde photons. Some of the numerical values presented here are
reproduced from [120].

(l, a) Q �σ2

(0.4, 0.5) 0.55 −6.28

(0.4, 0.5) 0.65 −4.98

(0.4, 0.5) 0.75 −0.137

(0.4, −0.5) 0.5 −5.69

(0.4, −0.5) 0.6 −5.84

(0.4, −0.5) 0.7 −5.90
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angle as shown in Figure 2. Again, we reproduce the result of
[120] here.

4.4 Observational signature in the strong
deflection limit

Now, we will discuss some observational consequences. The first
step for this is to relate the deflection angle and the angular radius of
the Einstein ring. This is performed by using a lens equation. In this
paper, we will use the following lens equation [148]:

β � θ − DLS

DOS
Δαn, (4.26)

where

DOS � DOL + DLS.

Also, β is the angular separation between the source and the lens.
DLS, DOS, DOL are the distances between the lens to the source, the
observer to the source, and the observer to the lens, respectively.
Finally,

Δαn � α̂ θ( ) − 2nπ.

The angular separation between the lens and the nth image can
be written as follows:

θn � θ0n + Δθn,

where θ0n is the angular separation between the n image and the lens
when the extra deflection angle (Δθn) over 2nπ is negligible.

For the perfect alignment, that is, when β = 0 and assuming
Δθn ≪ θ0n, the angular separation (angular radius) can be written as [79]

θEinsteinn � λc
DOL

1 + exp
�b

�a
− 2nπ

�a
( )[ ]. (4.27)

n = 1 corresponds to the outermost Einstein ring. Following [120],
we plot some of these rings for different values of Q, a and l in Figure 3.

From the leftmost plot in Figure 3, we can conclude that as the charge
of the black hole Q increases (for fixed l and a), the radii of the ring
decrease. On the other hand, the effect of changing l (for fixed a andQ) on

the ring radius is negligible. This is evident from the rightmost plot in
Figure 3.

To make this observation more concrete, we carry out a detailed
study, as shown in Tables 1, 2. Some of the values provided in (1) and (2)
are reproduced from [120]. We have listed some values regarding the
representative percentage change in the angular radius of the outermost
Einstein ringswith respect toQ (forfixed a and l) and l (forfixed a andQ)
in Tables 1, 2, respectively. These values corroborate perfectly the
conclusion drawn previously.

Before closing this section, a few comments regardingpossible avenues
to constraints on the spacetime parameters should be in order, utilizing
observational data. One of the ways is to look into the ratio of mass to
distance, themass being themass of the central object (e.g., SagittariusA*),
which is around 4.4 × 106M⊙ and its distance being 8.5 kpc, the ratio turns
out to be around 2.4734 × 10−11. One can use these data to provide the
angular position of the relativistic images and the angular separation
between the two Einstein rings. On the other hand, we can compute the
angular separation of two successive Einstein rings from (4.27) for different
values of n. Then, one can utilize it to build a parameter space for the
spacetime parameters. Interested readers are referred to, for example, [107]
for amore comprehensive discussion. In future detections, if one can better
resolve the angular separation of various Einstein rings, we will get better
constraints on the charge of the underlying black-bounce metric.

4.5 Results for non-equatorial lensing:
Caustic points

In Section 3.5, we discussed about the non-equatorial lensing for
the Kerr–Newman black hole. For this case also, the analysis would
be the same. The only difference is that the scaling factor ω(r) will be
the function of the regularization parameter l apart from Q and a.

ω r( ) � �λ
a2 + �����

r2 + l2
√ �����

r2 + l2
√ − 2( )�����

r2 + l2
√

2 a + λ
�����
r2 + l2

√ − 2( )( ) + Q2 λ − a( ), (4.28)

with �λ �
������
λ2 − a2

√
.

Next, we show how the angular radius of the first Einstein ring
depends onQ and l in Figure 4 following [120]. It is evident fromFigure 4
that the dependence of the angular radius on the charge parameter (Q) of
the black-bounce metric is significantly more than that on the
regularization parameter (l) similar to the case of equatorial lensing.

In Table 3, we investigate the variation of the second caustic
point with respect to Q for fixed l and a.

Before closing this section, we further investigate the variation of the
second caustic point with respect to l for fixedQ and a. It is demonstrated
in Table 4. Comparing the values in Tables 3, 4, we can conclude that the
change in caustic points for different Q and different l is not that
robust [120].

5 Conclusion

As mentioned earlier, gravitational lensing studies provide an
excellent tool to provide insight into the structure of spacetime itself.
In light of these advantages, this review provides a brief tour of the
analytic methods used to calculate observables which can be

TABLE 4 Angular position of the second caustic point for different values of l.
The first three entities are for direct photons, and the last three are for
retrograde photons. Some of the numerical values presented here are
reproduced from [120].

(Q, a) l �σ2

(0.5, 0.5) 0.45 −6.646

(0.5, 0.5) 0.55 −6.702

(0.5, 0.5) 0.65 −6.79

(0.5, −0.5) 0.7 −5.92

(0.5, −0.5) 0.8 −5.98

(0.5, −0.5) 1.0 −6.20
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measured. First, we review some facts about lensing in
Schwarzschild geometry and observe the following points:

• The geodesics in this geometry are studied. As expected, owing to
the symmetry of the spacetime itself, we have two constants of
motion. Looking closely into the geodesic structures, we can find
the location of the photon rings around them. Not only that, one
can see that these photon rings located at 3M are unstable, and one
can seek out some non-trivial physics once you deviate
infinitesimally from this range.

• Afterwe have understoodhowgeodesics behave in such a geometry,
we can calculate quantities using the equations at hand. A
comprehensive and self-explanatory calculation is provided
which gives an estimate of the deflection angle in terms of the
central massive object responsible for this deflection. The
contribution of this central massive object in the formula is
through the mass of the object. There is also a contribution
from an rmin term in the denominator which indirectly also
depends on the metric structure around the central massive
object. We have also listed down some salient features related to
the calculation in the bullet points in the following (Eq. 2.15).

After giving a brief overview of the time delay suffered by these
geodesics and also going on to calculate the diameter of the Einstein ring in
this setup, we move on to a more general spacetime having extra rotation
parameters. As expected, all the aforementioned observables will have a
non-trivial rotation parameter-dependent term. The calculations are all in
the strong deflection limit and analytical. We also consider a more general
class of proposed solutions called black-bounce spacetimes, where there is
an extra parameter involved as a deviation of the already known solutions
in GR. We list the salient features of our findings as follows:

• We presented a method of calculating the deflection angle
analytically by performing a perturbation in l. The results are
given in terms of elliptic integrals of various kinds. Also, we
have restricted ourselves to the equatorial plane while
performing this analysis. We observe that for non-zero l, the
value of the deflection angle for a fixed impact parameter
decreases. Our calculation provides a general methodology to
compute deflection angles analytically in a perturbative series. In
future, it will be interesting to go beyond this small l expansion. This
will require a thorough numerical analysis.

• Next, we study the strong deflection limit of the equatorial
deflection angle. This has direct observational implications
because it provides information about the Einstein rings. We
can conclude that the effect of the charge (Q) on the size of the
Einstein ring is much more pronounced than that of the
regularization parameter (l) for a fixed value of spin parameter
a. We discovered that decreasing the charge (Q) considerably
increases the ring’s size. This observation remained the same even
when we computed the ring’s radius for a small polar inclination.

• Furthermore, we extend our analysis for non-equatorial lensing.
This enables us to compute the location of the caustic points. We
again observed that the effect of the charge (Q) on the position of
caustic points is more pronounced than the regularization
parameter (l). Again, one can apply this method to different
black hole spacetimes to obtain an exact analytical expression. The
study of non-equatorial lensing presented in this review assumes a

small inclination angle. Again, it will be interesting to go beyond
this regime.

Another interesting direction we could not include in this review is
the analysis of the structure of the shadow. Interested readers are referred
to this review [149] for more details about this topic. Analysis of the
shadow structure complements the analysis of the Einstein ring, which is
presented here. It provides further constraints on the different black hole
parameters and various theories of gravity. Interested readers are again
referred to [149] for relevant references for this.

The analysis of the deflection angle presented in this review can
straightforwardly be repeated to other black-bounce spacetimes, for
example, [150]. Finally, there are several other avenues which have
been pursued recently in the context of strong deflection of light
rays. One such thing is the study of multilevel images. This helps one
to predict how much resolution is required to distinguish between
different Einstein rings. One important aspect is also to study the
two-point correlation function of intensity fluctuations on the
photon ring, which result from the photon traveling through
several orbits around the central object. This plays a significant
role from the perspective of image analysis. This black-bounce
metric might be subject to these studies along the lines of [151].
These investigations will support our efforts to communicate with
plausible astrophysical settings.
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Appendix A: Details of the computation
of the deflection angle for
Kerr–Newman spacetime

Here, we give details of computing the integral mentioned in
(3.16). First, we rewrite B(u) in the factorized form.

B u( ) � −Q2 1 − w( )2 u − u1( ) u − u2( ) u − u3( ) u − u4( ), (A1)
where

u1 � X1 − 2m −X2

4mr0
, (A2)

u2 � 1
r0
, (A3)

u3 � X1 − 2m +X2

4mr0
, (A4)

u4 � 2m
Q2

− X1

2mr0
. (A5)

Then, by choosing the constants X1 and X2, we can write down
the roots in the following order: u1 < u2 < u3 < u4. Here, the positive
roots are u2, u3, u4, while the negative root is u1. Then, we substitute
Eqs A2–A5 into (A1) and compare it with the coefficients of u0, u2,
u3, u4 in (3.14). This way, we can eventually extract the roots. That
gives [144]

Q2 X2
2 − X1 − 2m( ) X1 + 6m( ) + 4X2

1[ ] � 16m2r0 X1 − r0
1 + ω

1 − ω
( ),

X2
2 − X2

1 − 2m( )2 � 8m X1 − 2m( ) Q2X1 − 4m2r0( )
Q2 X1 − 2m( ) − 4m2r0

,

X2
2 − X2

1 − 2m( )2[ ] 1

8mr30
− Q2X1

32m3r40
( ) � 1

λ2 1 − ω( )2.
(A6)

Combining the first and second equation of (A6), we obtain the
equation for X1, which is given by

Q2

2m
X3

1 − Q2 + 4mr0( )X2
1 + 4m2r0 + 2mQ2 + 8m3r20

Q2 + 2mr20 1 + ω( )
1 − ω( )( )X1

� 4m2 Q2 + 4m2r20 1 + ω( )
1 − ω( ) + 8m2r30 1 + ω( )

Q2 1 − ω( ) .

(A7)

Eq. A7 can be exactly solved. The positive real root X1(m, ω, Q,
r0) turns out to be the one mentioned in (3.19) of Section 3.3.

From (3.20), one can easily check that when Q becomes zero, δ
becomes π. In that limit, (3.19) can be written as follows:

X1 m,ω, Q � 0, r0( ) � r0
1 + ω

1 − ω
. (A8)

It then exactly reproduces the result for the Kerr black hole
[143]. Furthermore, we can reproduce the result for the
Reissner–Nordstrom black hole in the limit, a = 0, and the root
of the equation (A7) then reduces to

X1 m,Q,ω � 1, rc( ) � 2m
2mr0
Q2

− 1( )∣∣∣∣∣∣∣∣
rc

, (A9)

where rc is defined in (3.11), and the result (A9) matches with the
result of [144].

Now, we try to factorize the remaining part of the integrand of
(3.16). We obtain

1 − 2mu 1 − ω( ) + Q2u2 1 − ω( )
1 − 2mu + a2 + Q2( )u2

� G+
u+ − u

+ G−
u− − u

+ GQ+ u
u+ − u

+ GQ− u
u− − u

, (A10)

where

u± � m ±
������������
m2 − a2 + Q2( )√
a2 + Q2

. (A11)

G−, G+, GQ+, GQ− are defined in (3.18) of Section 3.3. Also, we
can easily see from (A11) u± are positive.
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