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Based on the Vector Autoregressive Model (VAR), this paper constructs a
contagion complex network of global stock market returns, and uses the
Quantile-on-Quantile Regression (QQR) to explore the impact of global
geopolitical risks on the connectedness of global stock markets. By applying
the risk contagion analysis framework, we depict risk contagion and correlation
between financial markets in different countries. We also identify the risk
contagion characteristics of international financial markets. This paper
innovatively introduces the quantile-on-quantile regression method to the
study of geopolitical risk. Through the quantile-on-quantile approach, we find
that there is an asymmetric relationship between geopolitical risk and the global
stock market correlation network. Our conclusions provide some suggestions for
policy makers and relevant investors on how to deal with the current high global
geopolitical risks. They also provide ideas on how to effectively hedge such risks
during asset allocation and policy formulation.
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1 Introduction

Since the collapse of the Soviet Union in the early 1990s, the Cold War crisis has been
lifted. The world pattern of two superpowers has been replaced by a single superpower.
Nevertheless, all of this does not appear to be reducing global geopolitical risk. Peace is
something of a mirage in the short-term, while disputes and conflicts remain the defining
features of the world. Because of the one superpower and many powers pattern, the
relationship between the major powers has become tense, and conflicts between small
countries have also risen. The outbreak of the Russia-Ukraine conflict in early 2022 has
further disrupted a world that is already affected by COVID-19. As the world’s dramatic
changes continue to accelerate, geopolitical risks will continue to grow.

Numerous scholars have provided different definitions of geopolitical risk, but until
today, there is no unified understanding or definition. The earliest geopolitics originated in
the late 19 th century, and was proposed by Swedish political geographer Johan Rudolf
Kjellén in his book Der Staat als Lebensform (1917). Since the 20th century, due to the
development of global politics, economy and military, various geopolitical theories have
emerged. American historian Mahan put forward the sea power theory, who can control the
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sea, who can become a world power; the key to controlling the ocean
is to control the world‘s critical sea lanes and straits. Mackinder put
forward the land rights theory, that with the development of land
transportation, the heartland of Eurasia has become the most critical
strategic area. The land power theory has had a profound impact on
world politics. In the 1940s, American international relations
scholar Spykman emphasized the importance of rimland and
carried forward continental margin theory, which was called
another theory of continental power theory. In the 1950 s,
American strategist Seversky put forward the theory that the
Arctic region is very important for the United States to compete
for air supremacy, namely air power theory. In 1973, American
geographer Cohen proposed the geopolitical strategic zone model,
which divided the world into two geopolitical strategic zones:
maritime trade zone and Eurasian continental zone. Between the
two regions there are three regions: South Asia, the Middle East and
Southeast Asia. South Asia is a potential geostrategic region, and the
Middle East and Southeast Asia are called fracture zones. In 1982,
Cohen proposed a revision of the geopolitical strategic zone model,
noting that Western European countries, Japan, and China had
developed into world powers; the role and status of India, Brazil, and
Nigeria had risen; and sub-Saharan South Africa had transformed
into a third fracture zone.

The World Economic Forum in Davos releases the Global Risk
Report every year. In the 2015 edition of the Global Risk Report,
geopolitical risk is defined as a systematic, cross-regional and cross-
industry global risk, covering violent conflicts between countries,
civil strife in important countries, large-scale terrorist attacks,
proliferation of weapons of mass destruction and failure of global
governance. The 2019 edition of the Global Risks Report lists some
specific manifestations of geopolitical risks, such as national collapse
or crisis, national governance failure, regional or global governance
failure, inter-state conflicts, and terrorist attacks.

David K. Bohl [1] defines geopolitical risks as trends in political
and economic changes that are potentially destructive to human well
being, arguing that geopolitical risks stem from three interrelated
risks: first, political risks arising from competition for power among
geopolitical actors, the most intense manifestation of which is
violent conflict, but may also include other forms of destructive
competition; second, economic risks caused by global or regional
economic and financial turmoil; third, natural risks caused by non-
human environmental changes, such as water shortage caused by
climate change. Geopolitical risks arise not only within a single risk,
but also from the contagion between risks. For example, water
shortage (a natural risk) may lead to military tension (a political
risk), resulting in trade disruption (an economic risk).

If we only focus on the geopolitical context of the text, maybe we
will not be able to better incorporate it into the economic sphere.
Fortunately, Caldara and Iacoviello [2] used big data and text-
mining techniques to create a quantitative standard for
geopolitical events and associated risks based directly on textual
analysis of news papers. They define global geopolitical risk as the
threat, realization and escalation risk caused by adverse events
related to war, terrorism, and tensions between countries. These
events affect the peace process in international relations.
Furthermore, they classify global geopolitical risks into global
geopolitical threat risk and global geopolitical act risks. Global
geopolitical threats include war threats, peace threats, military

build-ups, nuclear threats and terrorist threats. Global
geopolitical acts include the beginning of war, the escalation of
war and terrorist acts. Based on this, three indexes, global
geopolitical threat risk, global geopolitical act risk and global
geopolitical risk are constructed. In order to quantify the
magnitude of global geopolitical risks, Caldara and Iacoviello [2]
retrieved 25million articles published in major international English
newspapers since 1900. And they calculated the frequency of
occurrence of words related to geopolitical events and related
threats every month, and then standardized them, and finally
obtained the monthly global geopolitical risk (GPR) index. In
summary, the definition of geopolitical risk has not been unified.
However, this article draws on the global geopolitical risk index
measured by Caldara and Iacoviello [2], so we use their definition of
geopolitical risk.

Since the establishment of the geopolitical risk index, a large
number of scholars have conducted various empirical studies
[3–11]. World financial market volatility and even
macroeconomic cycles are strongly influenced by geopolitical
risk. Geopolitical risk shocks are always accompanied by periods
of high risk on financial markets. There are two direct and indirect
channels for this transmission. In the direct channel, after
geopolitical risk increases, it will affect the financial market and
reduce credit demand through cross-border capital flows, exchange
rate fluctuations, large fluctuations in commodity prices (crude oil),
and asset price adjustments (stocks and real estate). In terms of
indirect channels, most people are averse to the uncertainty created
by rising geopolitical risk, which will undoubtedly dampen
consumer and investor enthusiasm. High geopolitical uncertainty
may lead to lower employment and output. Consumers may delay
consumption, and businesses may delay investment because of
precautionary savings motives. As a result of the geopolitical risk
shock, the decline in economic activity will inevitably be reflected in
the financial markets. Especially when extreme events occur, there is
a huge impact on the global capital market and economic
environment. For example, during the three oil crises in 1973,
1979 and 1990, three major geopolitical conflicts broke out at the
same time, namely, the fourth Middle East war between Arab
countries and Israel, the Iran-Iraq war between Iran and Iraq,
and Iraq’s invasion of Kuwait war. The three major conflicts
have greatly damaged global economic growth, with global GDP
growth rates falling from 6.4%, 4.2%, and 4.6%–0.6%, 0.4%, and
1.5%, respectively.

Current research on global geopolitical risks mainly focuses on
energy prices and stock market returns. However, the impact on the
entire international stock market as a whole has not been involved.
The global economy plays different roles across various industrial
chains in the context of globalization. At the same time, because of
the need for investment diversification, a large amount of money is
invested in different stock markets to hedge risks. As a result, it is
difficult for any stock market to be immune to world geopolitical
shocks. Global stock markets are closely related. Stock market
correlations have always played an influential role in the study of
systemic financial risk. The 2008 subprime mortgage crisis
accelerated the contagion of U. S. stock price volatility to the
world capital markets, resulting in global stock market
turbulence. In recent years, with the continuous development of
modern econometric methods, examining the risk contagion effect
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from the perspective of complex networks has become an emerging
research topic in this field. Diebold and Yilmaz [12,13] developed a
risk spillover network analysis method, which can more deeply
reflect the price volatility spillover effect of financial markets. With
the help of this risk contagion analysis framework, we can not only
depict the intensity and correlation of risk contagion between
different financial sectors, but also identify the core path of risk
contagion.

Geopolitical risk is undoubtedly a systemic shock that has an
impact on worldwide equity markets. The impact of this natural
external impact on international stock market complex networks is
an issue that researchers in the academic community should focus
on. For example, after the Russia-Ukraine conflict, global stock
markets experienced significant volatility. However, unfortunately,
no scholars have conducted in-depth research and analysis on this
issue. Therefore, this paper focuses on the relationship between
global geopolitical risk and the connectedness (correlation) of the
entire international stock market return network. According to the
best of our knowledge, this is the first paper to focus on the impact of
global geopolitical risk on the connectedness (correlation) of the
entire international stock market. By using the quantile-on-quantile
approach, this paper aims to illustrate the asymmetric relationship
between different geopolitical risk shocks and different global stock
market correlations.

The main contributions of this paper are as follows. First, in
contrast to Li [8], although they also use complex networks to
explore the relationship between stock market, crude oil market
and geopolitical risks, they focused more on the Chinese stock
market and use the nonlinear Granger causality test to analyze the
potential nonlinear relationship between the three variables. They
also identified the main risk sources and risk transfer paths and
the lead-lag relationship between geopolitical risks, crude oil and
the Chinese stock market. We focus more on how global
geopolitical risks affect the total spillover effect (correlation) of
the overall international stock market and quantitatively analyze
the relationship between them. Second, we innovatively introduce
the quantile-on-quantile regression approch into the study of
geopolitical risk. The construction of the geopolitical risk index
provides a better quantitative indicator of geopolitical risk. This
enables us to investigate how different levels of geopolitical risk
will affect the connectedness of the overall international stock
market. Through the quantile-on-quantile method, it can further
characterize the asymmetric potential links between geopolitical
risks at different levels and global stock market networks with
different degrees of tightness, so as to deeply explore the causal
relationship in various states. Third, we not only study the impact
of the global geopolitical risk index on the correlation of global
stock prices, but also study their differential impact on the
correlation of global stock markets by deconstructing
GPR into the global geopolitical action risk index and the
global geopolitical threat risk index. We find that global
geopolitical threat risk and global geopolitical action risk have
significantly varying effects on the correlation of global stock
markets.

The rest of this article is organized as follows. Section 2 gives a
brief literature review. Section 3 introduces the data source and
description, and Section 4 summarizes the model and method.
Sections 5, 6 provide empirical results and conclusions.

2 Literature review

In recent years, more and more scholars begin to pay attention
to the impact of geopolitical risk on financial markets. On the one
hand, it is because Caldara and Iacoviello [2] constructed a
quantitative geopolitical risk index, which provides a solution for
more specific quantitative exploration of the impact of geopolitical
risks on financial markets. On the other hand, this is also because
global geopolitical risks are at an elevated level, and their impact on
financial markets is becoming more extensive and profound. As the
core energy resource of human society, oil is financialized at the
same time, making it an influential underlying asset in the financial
market. Moreover, oil itself is also associated with geopolitics, since a
substantial number of geopolitical conflicts often involve
competition for crude oil. Therefore, a variety of academic papers
attempt to clarify the relationship between oil prices and geopolitical
risks [5,6,14,15]. The results indicate that the relationship may be
positive or negative. Abdel-Latif and El-Gamal [16] argue that
falling oil prices also raise geopolitical risks. For net oil
importers, the rise in oil prices will increase their own
geopolitical risks, because they cannot bear the cost of soaring oil
prices [11]. The impact of oil on geopolitical risks is not always one-
way. Many people have explored how geopolitical risks affect oil
prices or their volatility. A large number of scholars have adopted
mathematical models to predict oil returns and volatility using
geopolitical risks [18–20].

Other scholars have given ways in which geopolitical risks can
affect stock markets [8,21–25], that is, using nonlinear Granger
causality tests and complex network models, they demonstrated that
geopolitical risks can affect stock prices by affecting oil prices. The
approach at least provides a way of thinking about the causal
relationship between geopolitical risks and global stock markets,
regardless of whether it accurately describes reality.

Meanwhile, academic communities have been exploring the
impact of terrorist activities on stock markets since the 9/
11 incident [26–30]. According to most studies, terrorist activity
negatively impacts stock returns, and these effects are primarily
evident in traditional financial markets and developing countries.
There is, however, a limitation to these studies in that they only focus
on terrorism. Other geopolitical risks, such as policy risks and war
risks, also contribute significantly to the volatility of financial
markets. Moreover, these studies only focus on developed
countries and ignore emerging market economies. In fact,
emerging markets are more vulnerable to geographical shocks.

For example, Balcilar et al. [3] studied the impact of geopolitical
risks on stock returns and volatility in the BRICS countries (Brazil,
Russia, India, China and South Africa) through the nonparametric
causality quantile method. They found that geopolitical risk has a
nonlinear and asymmetric effect on market returns in different
emerging economies, but a consistent effect on volatility. Hoque and
Zaidi [31] employed the Markov Switching Model to find that the
global geopolitical risk index and the country-specific geopolitical
risk index have completely different effects on the stock markets of
emerging economies. The global geopolitical risk index has both
positive and negative effects on the stock markets of these emerging
economies, but the country-specific geopolitical risk index has a
negative impact without exception. Some scholars have also tried to
use the geopolitical risk index to predict some indicators of financial
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TABLE 1 Statistical description.

variable N mean sd min p25 p50 p75 max

IBOVESPA 377 3.858 13.41 −50.34 −3.310 1.920 8.219 67.93

DJI 377 0.642 4.180 −16.41 −1.483 0.993 3.275 11.19

IXIC 377 0.871 6.264 −26.01 −2.002 1.593 4.401 19.87

SPX 377 0.636 4.252 −18.56 −1.755 1.146 3.348 11.94

FTSE 377 0.317 3.991 −14.86 −1.851 0.786 2.814 11.65

FCHI 377 0.350 5.299 −19.23 −2.780 0.936 3.807 18.33

GDAXI 377 0.583 5.927 −29.33 −2.400 0.937 4.159 19.37

N225 377 0.0331 5.779 −27.22 −3.484 0.419 3.940 14.97

KS11 377 0.345 7.445 −31.81 −3.347 0.440 4.049 41.06

HIS 377 0.506 6.879 −34.82 −3.129 1.039 4.244 26.45

SENSEX 377 1.058 7.551 −27.30 −2.960 1.039 5.741 35.06

SSEC 377 0.866 11.79 −37.33 −4.736 0.632 4.921 102.0

GPR 328 98.44 50.67 39.05 75.65 88.02 106.5 512.5

GPRT 328 97.99 43.62 36.69 73.53 88.55 108.0 415.2
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markets. Apergis [32] first used a k-order nonparametric causality
test to analyze whether geopolitical risks can predict stock returns
and volatility of global defense companies. The results show that
there is no evidence that the predictability of stock returns of these
defense companies comes from geopolitical risks, but it can affect the
risk profile of the company for some time to come. By adjusting the
frequency of using the geopolitical risk index, especially the mixed
frequency, the robustness and reliability of this prediction can be
effectively improved [33]. Salisu [34] used the GRACH-MIDAS
method to predict stock return volatility in 23 emerging economies
with geopolitical risks. The results show that the stock markets of
these emerging economies have experienced sharp fluctuations
under the influence of high geopolitical risks. Zhang and Hamori
[35] directly explored the spillover effects of the geopolitical risk
index of the BRICS countries on some macroeconomic variables in
the United States by using the extended network analysis method.
The results show that the geopolitical risks of China and Russia are
the main sources affecting the US stock market and volatility. Sohag
[10] focused his research on green energy stocks and green bonds.
The results show that geopolitical risk has a positive spillover effect
on green energy stocks and green bonds. He believes that this is
because investors tend to invest in these environmentally friendly
assets during the period of geopolitical risk, so as to achieve risk
hedging. We can see that the use of geopolitical indexes to directly
study the stock market is very limited, and the focus is primarily on
stock return and volatility. However, before this, Baker et al. [36]
constructed economic policy uncertainty similar to the geopolitical
risk index based on news texts, and many scholars have also used
economic policy uncertainty to carry out corresponding research,
proving that economic policy uncertainty has a strong negative
impact on stock returns (Arouri et al., 2016; Brogaard and Detzel,
2015; Kang et al., 2017). Some economic policies themselves,
however, have some endogenous interference with the stock
market. We hope to examine the impact of external shocks on it
more. Das [37]’s research using the quantile regression method
shows that whether it is geopolitical risk or economic policy
uncertainty, the impact of the two shocks on the stock market at
different quantiles is indeed heterogeneous, and this effect is more
manifested in the mean of the return rather than the variance. Based
on the above research content, this paper will focus on how global
geopolitical risk index impact on the return connectedness between
international stock markets under different quantiles of them.

3 Data and description

The stock market index is based on 12major global stock market
indices, including: IBOVESPA (Brazil), DJI (United States), IXIC
(United States), SPX (United States), FTSE (United Kingdom),
FCHI (France), GDAXI (Germany), N225 (Japan), KS11 (Korea),
HIS (Hong Kong, China), SENSE (India), SSEC (China). The data
sample interval is from January 1991 to June 2022, which is derived
from the Wind database.

This paper uses the global geopolitical risk index created by
Caldara and Iacoviello [2] to measure the degree of geopolitical risk.
Based on Saiz and Simonsohn [38] and Baker et al. [36], the index
uses the share of articles on geopolitical events affecting the peaceful
development of international relations such as terrorist attacks and

wars reported by 10 newspapers published in the United States,
Britain and Canada to construct the daily and monthly geopolitical
risks of the world and some countries since 1900. Caldara and
Iacoviello [2] also constructed two sub-components of global
geopolitical threat risk (GPPT) and global geopolitical action risk
(GPRA) to distinguish different global geopolitical risks. Articles in
the GPRT index search include phrases related to threats and
military buildups, while the GPRA index search involves phrases
that implement or upgrade adverse events. The index is now widely
used in academia [39–41]. The data interval is from March 1995 to
June 2022.

Table 1 provides descriptive statistics for the data.

4 Methodology

4.1 Complex dynamic contagion network of
global stock market returns

Using the Vector Autoregressive Model (VAR) method, Diebold
and Yilmaz [12,13] constructed an information spillover network
between financial institutions, and then implemented the rolling
window method to build a continuous-time correlation network.
We use this method to construct the risk contagion and correlation
network of global stock market returns. The specific construction
process is as follows.

Firstly, we consider an N-dimensional VAR p) process with
stationary covariance:

Yt � ∑p
i�1
AiYt−i + εt (1)

Where Yt � [y1, ..., yp] represents the logarithmic return vector
of the stock market, and yi represents the logarithmic return of a
certain stock market; and εt ~ (0,Σ) represents the independent
identically distributed disturbance vector. Convert Eq. 1 to its Vector
Moving Average (VMA) representation:

Yt � ∑∞
i�0
Ψiut−i (2)

Here, the N × N coefficient matrix Ψi obeys the following
recursive formula:

Ψi � A1Ψi−1 + A2Ψi−2 + ... + ApΨi−p (3)

TABLE 2 Global stock market return contagion matrix.

y1 y2 / yp FROM

y1 ~d
gH
11

~d
gH
12

/ ~d
gH
1k Σk

j�1~d
gH
1j , j ≠ 1

y2 ~d
gH
21

~d
gH
22

/ ~d
gH
2k Σk

j�1~d
gH
2j , j ≠ 2

..

. ..
. ..

. 1 ..
. ..

.

yp ~d
gH
k1

~d
gH
k2

/ ~d
gH
kk Σk

j�1~d
gH
kj , j ≠ k

TO Σk
i�1~d

gH
i1,t , i ≠ 1 Σk

i�1~d
gH
i2,t , i ≠ 2 / Σk

i�1~d
gH
ik,t , i ≠ k TSP
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Ψ0 is an N × N identity matrix with Ψi = 0 for i < 0.
Diebold and Yilmaz [12,13] defined the information spillover

effect as the contribution of forecast error variance, that is, in the
case of i ≠ j, after the impact of yj on yi, the proportion of the H-step
forecast error variance of yi can be explained by the impact of yj.
This contribution ratio reflects the degree to which the change of
variable yi is affected by other variables in the system.

The generalized forecast error variance decompositions matrix
θgij(H) � [dgHij ] can be expressed by the following formula:

dgHij � σ−1jj ∑H−1
h�0 e′iΨhΣej( )2

∑H−1
h�0 e′iΨhΣΨ′

hei( ) (4)

Where ej is the selection vector whose jth element is one and
other elements are 0; Ψh is the coefficient matrix in vector moving
average model; Σ is the variance matrix of εt; σjj is the diagonal
element of matrix Σ. This generalized forecast error variance
decomposition method makes the variable ordering in the VAR
model no longer affect the results of variance decomposition, so that
we no longer have to stick to the variable ordering in the model,
making it easier for us to analyze the relevant results [13] (Koop
et al., 1996; Pesaran and Shin, 1998).

However, due to ∑k

j�1d
H
ij,t ≠ 1, in order to match the traditional

variance decomposition results, we add and standardize each
element in the generalized forcast error variance decomposition
matrix by rows.

~d
gH

ij � dgHij
ΣN
j�1d

gH
ij

(5)

By constructing ΣN
j�1~d

gH
ij � 1 and ΣN

i,j�1~d
gH
ij � N, we can calculate

the connectedness matrix ~θgij(H) � [~dgHij ] of global stock market

returns in H step, as follows:

~θgij H( ) �

~d
gH

11
~d
gH

12 / ~d
gH

1k

~d
gH

21
~d
gH

22 1 ~d
gH

2k

..

. ..
.

1 ..
.

~d
gH

k1
~d
gH

k2 / ~d
gH

kk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

The market contagion effect CH
i ← j from stock market j to stock

market i can be defined by:

CH
i ← j � ~d

gH

ij (7)

Specifically, in the connectedness matrix ~θgij(H), the non-
diagonal element row i, column j represents the market
contagion effect of the return in the stock market j on the stock
market i; the jth row and ith column of ~θgij(H) reflect the market
contagion effect of stock market i on stock market j.

At the same time, the net contagion (NC) effect from stock
market j to stock market i can be expressed by the following formula:

NCH
i←j � CH

i ← j − CH
j ← i (8)

In addition, the elements in the column of “FROM” in the
matrix indicate that the variable i is subject to the risk contagion
effect CH

i ←• from all other variables, that is:

CH
i ←• � Σk

j�1~d
gH

ij , j ≠ i (9)

At the same time, the elements in the row of “TO” in the matrix
represent the risk contagion effect of variable j on all other
variables CH

•← i:

CH
•← i � Σk

i�1~d
gH

ij,t , i ≠ j (10)

On this basis, we can also calculate the net contagion effect of
stock market i on all other stock markets CNet

i :

CNet
i � CH

•← i − CH
i ←• (11)

The total international stock market return contagion effect TSP
between stock markets can be expressed as:

TSP � 1
N

∑
i,j�1
i≠j

~d
gH

ij (12)

TSP is equivalent to summing and averaging the elements in the
row of “FROM” or the column of “TO”. Based on the basic idea of
the above network topology method and related formula definitions,
the global stock market return contagion (connectedness/
correlation) matrix in Table 2 is constructed.

In order to further obtain the time series of the above matrix, we
use the rolling window estimation method according to Diebold and
Yilmaz [12,13]. First, in order to avoid over-parameterization of the
model, we set the VAR to order 1, that is, p = 1. Since we use monthly
data, in order to balance the time window and the number of
estimated results, we set the rolling window to 50 days. Then, we
perform rolling window estimation according to the above method,
and let H = 10 estimate the dynamic risk contagion network between
global stock markets. Before the estimation of VAR model, this
paper has carried out a stationary test on the logarithmic return of
each stock market index. The results show that each sequence is a
stationary sequence and can be estimated by a VAR model.

4.2 Quantile on quantile regression

4.2.1 Quantile regression model
The traditional linear regression model describes the mean influence

of the independent variable on the value of the dependent variable.
However, it is difficult to satisfy the assumption that the random
disturbance term is identically distributed in real life. Therefore, in the
late 1970s, Koenker and Bassett [42] first proposed the standard quantile
regression model. They used the conditional quantile of the dependent
variable to regress on the independent variable. Therefore, comparedwith
the rough description of the linear model, quantile regression can more
accurately describe the influence of the independent variable on different
positions of the dependent variable. The model is as follows:

Q̂y τ( ) � argmin α {∑i:yi ≥ α
τ yi − α
∣∣∣∣ ∣∣∣∣ +∑

i:yi < α
1 − τ( ) yi − α

∣∣∣∣ ∣∣∣∣} (13)

4.2.2 Quantile on quantile regression approach
However, the standard quantile regression model does not account

for the effect of different distributions of the independent variables on
the dependent variables. Therefore, Sim and Zhou [43] proposed the
Quantile-on-Quantile Regression Approach (QQR) in their study
regarding the relation between oil and stock returns.
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This paper will focus on how global geopolitical risk index
impact on the return connectedness between international stock
markets under different quantiles of them. To this end, we first
propose the linear regression model as follows:

ΔTSPt � β1GPRt + β2ΔTSPt−1 + εt (14)
Convert this OLS model into QQ model:

ΔTSPt � βθ GPRt( ) + αθΔTSPt−1 + εθt (15)
ΔTSPt represents the first difference of total international stock

market return contagion effect at time t. This paper takes the first-
order difference, as TSP is not stationary. GPRt is the global
geopolitical risk index at time t. θ is the θ quantile of
distribution. εθt is the error term, and βθ is the unknown
parameter, which explains the influence of global geopolitical risk
on the total connectedness between international stock markets for
different θ quantile. The above standard quantile regression model
can study the spillover effect of global geopolitical risk on different
quantiles of ΔTSPt, but it cannot explain the spillover effect of
different states of GPRt on ΔTSPt. High-risk status and low-risk
status may have different effects on the degree of international stock
market correlation, and the degree of stock market correlation may
also have different reactions to it. Therefore, it is necessary to
examine the relationship between the τ quantile of geopolitical
risk (GPRτ) and the θ quantile of global stock market
connectedness. Since βθ is unknown, it can be approximated by
the first-order Taylor expansion of GPRτ as follows:

βθ GPRt( ) ≈ βθ GPRτ( ) + βθ′ GPRτ( ) GPRt − GPRτ( ) (16)
To rewrite βθ(GPRτ) and βθ′(GPRτ) as β0(θ, τ) and β1(θ, τ), Eq.

16 is transformed into Eq. 17:

βθ GPRt( ) ≈ β0 θ, τ( ) + β1 θ, τ( ) GPRt − GPRτ( ) (17)
Substitute (17) into (15) and get the following formula:

ΔTSPt � β0 θ, τ( ) + β1 θ, τ( ) GPRt − GPRτ( ) + α θ( )ΔTSPt−1 + εθt
(18)

Eq. 18 represents the θ conditional quantile of ΔTSPt, where
α(θ) �� αθ, β0(θ, τ) is the intercept term, and β1(θ, τ) is an
estimated parameter reflecting the impact of τ quantile GPRt on
θ quantile ΔTSPt. β0(θ, τ) and β1(θ, τ) are different from the
standard quantile regression, because β0 and β1 are associated
with θ and τ. Eq. 18 can reflect the comprehensive relationship
between the τ quantile global geopolitical risk and the θ conditional
quantile of the first-order difference of TSP.

By minimizing Eq. 19, the local linear estimates of b0 (β0(θ, τ))
and b1 (β1(θ, τ)) can be obtained:

min
b0 ,b1

∑n
i�1
ρθ ΔTSPt − b0 − b1 GPRt − GPRτ( ) − α θ( )ΔTSPt−1[ ]K Fn GPRt( ) − τ

h
( )

(19)

We define ρθ � u(θ − I(u< 0)), where ρθ is the loss function of
the θ conditional quantile; I is the indicator function; K(·) is the
kernel function, which is used to weight the adjacent values of GPRτ;
and h is the bandwidth parameter of the kernel function. Because the
Gaussian kernel function has the characteristics of extreme
simplicity and high efficiency, this paper uses the Gaussian
kernel to weight the observed values. The weight is inversely
proportional to the distance between the empirical distribution of
GPRt and GPRτ. The farther the distance from the observed value,
the lower the weight, and vice versa, as shown in Eq. 20:

Fn GPRt( ) � 1
n
∑n

k�1I GPRk <GPRt( ) (20)

TABLE 3 Global stock market return correlation network.

IBOVESPA DJI IXIC SPX FTSE FCHI GDAXI N225 KS11 HIS SENSEX SSEC FROM

IBOVESPA 7.53 6.27 7.57 7.57 6.66 6.55 5.51 6.42 9.52 5.54 3.60 72.75

DJI 5.99 10.16 15.30 9.08 8.42 9.09 5.99 5.17 7.52 3.72 2.39 82.82

IXIC 5.73 10.78 14.05 7.98 7.66 8.62 6.49 5.86 7.48 4.54 2.17 81.36

SPX 6.02 14.39 12.24 9.00 8.54 9.04 5.97 5.22 7.35 3.96 2.18 83.91

FTSE 6.10 9.84 8.01 10.44 11.28 10.27 5.24 6.12 8.03 3.88 2.19 81.39

FCHI 5.46 8.96 7.80 9.74 11.39 14.09 6.84 5.31 5.99 3.56 1.90 81.05

GDAXI 5.44 9.59 8.55 10.13 9.94 13.46 6.72 5.69 6.84 3.91 1.93 82.21

N225 6.18 7.86 7.95 8.20 6.27 8.58 8.47 6.72 5.81 4.61 3.01 73.66

KS11 6.33 6.72 7.55 7.42 7.93 6.47 7.08 6.68 8.79 5.50 3.34 73.81

HIS 7.62 8.78 8.03 9.05 8.87 6.80 7.48 5.06 7.67 5.27 5.08 79.71

SENSEX 7.23 6.66 7.95 7.42 5.95 5.59 6.22 5.72 7.48 7.70 3.10 71.00

SSEC 5.52 4.78 4.38 4.59 4.15 3.97 3.95 4.06 5.37 8.33 3.94 53.06

TO 67.61 95.87 88.90 103.91 88.14 87.43 90.87 64.27 67.03 83.37 48.44 30.90 TSP = 76.40

NET −5.14 13.05 7.54 20.00 6.74 6.38 8.66 −9.39 −6.79 3.66 −22.56 −22.16
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Bandwidth selection is very significant for the kernel function. If
the bandwidth is too narrow, the estimation error becomes smaller
but the variance increases. If the bandwidth is too large, the
estimation variance becomes smaller but the error increases. This
paper uses Sim and Zhou [43] bandwidth selection, and selects h =
0.05 in the following empirical process.

5 Empirical results

5.1 Global stock market dynamic contagion
network

In this section, we give the relevant estimation results of the
global stock market return contagion network.

5.1.1 Global stock price linkage network
Table 3 shows the stock market return connectedness matrix for

the full sample. Since we use a rolling window to estimate the data,
each window period can generate a market return connectedness
matrix. Table 3 shows the mean value of the connectedness matrix
~θgij(H) of all window periods. The element ij represents the spillover
effect of the j stock market index on the i stock market index.

Table 3 shows that the average TSP of all stock markets is
76.40 percent. This shows that on average, the world’s major stock
market indexes exhibit a very high correlation degree. This is a major

reason for the transmission of financial market risks to various
markets.

Additionally, Table 3 indicates that the Standard & Poor’s
500 Index (SPX), the Dow Jones Industrial Index (DJI), and the
German Frankfurt DAX Index (GDAXI) are the three stock market
indexes that have the greatest impact on the world. Their impact on
global stock market returns is 20%, 13.05% and 8.66%, respectively.
The results indicate that North American and European equity
markets are leading the way for global equity markets, with other
markets following more closely behind. The above results are not
surprising. Because the United States is still the world’s largest
economy at this stage, its economic strength radiates around the
world; and because of the special status of the dollar, the size of the
United States stock market and trading volume is still the largest in
the world, so the United States stock market has a huge impact on
the world economy. As a powerful industry in Europe, Germany’s
financial strength, economic strength and political strength are
second to none in Europe. The trend of the German stock
market can be used as an effective indicator of European
economic and financial health.

Finally, from Table 3, we can also find that India‘s Mumbai
Sensitive 30 Index (SENSEX), Shanghai Composite Index (SSEC)
and Nikkei 225 Index (N225) are the main recipients of global stock
market spillover effects, with values of −22.56%, −22.16% and-
9.39%, respectively. India and China are the world’s two largest
emerging markets, making their stock markets attractive to

FIGURE 1
Total spillover (TSP).
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international investors. There is still a gap between its stock market
development and scale and that of developed countries. So, it is more
likely to follow the trend of the United States and European stock
markets. Japan is the most sought-after haven for global investors
except the United States, and the yen is also one of the most valuable
reserve currencies. Investors often use the yen and the Japanese
stock market for related arbitrage transactions, so Japanese stocks
are very vulnerable to other markets.

5.1.2 Dynamic network in the global stock market
In Figure 1, we draw the total international stock market return

contagion effect in the rolling sample window. Overall, we can
observe three distinct stages. The first phase began in 1995 and
ended in early 2009; the second stage lasted from early 2009 to early
2018; the third stage is from 2018 until 2022.

The first stage coincides with the process of economic
globalization around the world. In the process of globalization,
most countries in the world have opened up their financial
markets, which has greatly increased the linkage between stock
prices on various stock markets. The second phase occurred nearly
10 years after the financial crisis. In the 10 years after the financial
crisis, governments and investors around the world have absorbed
relevant experience. They have carried out strict supervision of
capital market openings and derivatives trading. These regulatory
measures have reduced the linkage between stock markets in various

countries to the level before the crisis. In the third stage, major
geopolitical conflicts such as the Sino-US trade war and the Russo-
UkrainianWar began to occur frequently. Major risk events not only
impact a stock market, but also have a significant impact on the
global economy and financial markets. Thus, the price linkage
between the various stock markets has been rising in the past 5 years.

Figures 2, 3 show the time series of directional connectedness
(“TO” and “FROM”) of each stock market.

From Figure 2, we can see that in the 2008 financial crisis, the
“TO” spillover effect of the four stock indexes of DJI, SPX,
N225 and FTSE all had an obvious peak, while the “TO”

spillover effect of other stock market indexes had no obvious
peak. This shows that during the financial crisis, the source of risk
was mainly generated by the DJI, SPX, N225, FTSE four indexes.
This result is relatively easy to understand, mainly because the
US, Japan, and the UK have more active derivatives trading,
similar pre-crisis financial regulatory policies, and very high
financial dependence. Therefore, when the U. S. subprime
mortgage crisis hit, the four indexes had the fastest response.
As the crisis deepened, the impact of these four indices slowly
spread to other developed and emerging markets.

Another obvious characteristic of Figure 3 is that the change of
“FROM” effect is smoother than the change of “TO” effect. This
result is consistent with many other studies. This difference is not
difficult to explain. When a single stock market index produces an

FIGURE 2
To spillover.
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impact, this impact is expected to be transmitted to other stock
market indexes. However, when individual stock market indexes
receive total impacts from other markets, some fractions of this total
impact are very small and can be ignored. Some may be quite large.
At this time, the “TO” effect will obviously show more peaks. When
a stock market index is hit, one can expect the impact to have a
scattered spillover effect on other stock markets. Since each stock
market index will be affected by the spillover effects of all other
markets, these spillover effects are often smoother after being
summed up.

Figure 4 shows the time series diagram of the “NET” index.
From Figure 4, we can get a similar conclusion to Table 2. For the
most part of the time, the “NET” indicator time series charts of
the India Mumbai Sensitivity 30 Index (SENSEX) and the
Shanghai Composite Index (SSEC) are below the 0 level. This
shows that stock price changes in these two markets are mainly
affected by changes in other stock markets. These two indicators
have a limited influence on other market indexes. Additionally,
the S&P 500 Index (SPX), the Dow Jones Industrial Average
(DJI), and the German DAX Index (GDAXI) three “NET”
indicator time series diagram is above 0 levels at most of the
time, indicating that the world’s stock market index price changes
are mostly driven by these three index fluctuations. These results
are consistent with the conclusions of Table 2.

5.2 Global geopolitical risk (GPR) and global
stock market total connectedness

Standard quantile regression can estimate the impact of global
geopolitical risks on the connectedness of global stock market
returns in different states. However, it cannot capture the
asymmetric spillover effect of global geopolitical risks on the
connectedness of global stock market returns. This ignores the
possibility of different states of global geopolitical risks. For
example, the impact of global geopolitical risks under high and
low risk conditions on the connectedness of global stock market
returns may have asymmetric heterogeneity. Therefore, standard
quantile regression cannot capture the subtle economic relationship
between the two.

The quantile-on-quantile regression model [43] can
effectively solve this problem, which characterizes its impact
on θ quantile of global stock market connectedness through the τ
quantile of global geopolitical risk. Since the estimation
coefficients β0(θ, τ) and β1(θ, τ) are functions of quantiles θ
and τ, we can explore the spillover impact of different states
of global geopolitical risk on the connectedness of global
stock market returns by changing quantiles θ and τ, which
can provide more useful information for regulators and
market investors.

FIGURE 3
From spillover.
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In this section, we use quantile-on-quantile regression [43] to
analyze the impact of global geopolitical risks on the connectedness
of the global stock market at different quantiles.

5.2.1 QQR estimation results of intercept for GPR
First, we characterize the intercept influence of global

geopolitical risk (GPR) on the connectedness between global
stock markets through the intercept term in the formula, namely
the estimate of β0(θ, τ). Because the intercept term β0(θ, τ) is
determined by θ and τ, it will change at different GPR quantiles
and different ΔTSP quantiles, that is, β0(θ, τ)will change at different
geopolitical risk quantiles and different global stock market
connectedness quantiles. The Z-axis in Figure 5 reflects an
estimated value of the intercept term β0(θ, τ). The ΔTSP-axis is
the θ quantile of ΔTSP, and the GPR-axis is the τ quantile of the
global geopolitical risk. A low quantile of GPR indicates a low risk
state, while a high quantile indicates a high risk state. The low
quantile of ΔTSP implies that the global stock market is in a state of
loose correlation, while the high quantile suggests that the global
stock market is in a state of close correlation.

Figure 5 illustrates the estimated value of β0(θ, τ), which is
influenced by geopolitical events and the tightness of global market
correlation itself. Our results can be summarized as follows:

First, in general, this intercept term β0(θ, τ) increases with the
rise of the connectedness degree of the global stock market. This

means that this intercept will be greater at a higher level of global
market correlation. Interestingly, this change is very dramatic when
the global market connectedness changes from loose to tight, that is,
from the low to high of the θ quantile. When the ΔTSP is low
(θ ∈ [0, 0.1]), the increase in the global stock market correlation will
cause the intercept term to rise rapidly (from negative to zero). Then,
the intercept changes gently from 0.07 to 0.9 at the θ quantile and
rises rapidly after 0.9.

Secondly, when ΔTSP is in the same θ quantile, the quantile
change of GPR will also lead to the change of the intercept term
β0(θ, τ). In particular, the intercept term β0(θ, τ) is not much
different in most cases at the lower ΔTSP quantile, that is, ΔTSP
is about 0.05–0.07 quantile, but at the 0.3–0.4 quantile of the GPR, it
shows a sudden depression trough, where β0(θ, τ) is estimated to be
an extreme negative value of-2.28. On the contrary, in the higher
ΔTSP quantile (0.9–0.95), the intercept term β0(θ, τ) also has two
obvious peaks, one is in the case of lower geopolitical risk, that is,
GPR is near 0.05–0.07, and the other is near 0.33–0.39. This suggests
that when global stock markets are closely linked and the GPR is
near these two quantile values, it will further strengthen the
connectedness of global stock markets. And geopolitical risk, at
the 0.3–0.4 quantile, further disintegrates this correlation when
global equity markets are more loosely connected.

Finally, on the whole, when ΔTSP is lower the median, nomatter
what the geopolitical risk is, the intercept term β0(θ, τ) is basically

FIGURE 4
Net spillover.
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negative, and when ΔTSP is higher the median, no matter what the
geopolitical risk is, the intercept term β0(θ, τ) is basically positive.
This is further evidence that the same degree of geopolitical risk has
heterogeneous effects on global stock markets at different levels of
correlation.

5.2.2 QQR estimation results of slope for GPR
In the previous section, we discuss the estimation results of the

intercept term of β0(θ, τ), and the marginal effect of the influence of
geopolitical risk on the connectedness of global stock markets is
represented by β1(θ, τ). Figure 6 visualizes the estimation results of
β1(θ, τ). The Z-axis represents the estimated value of the slope
coefficient β1(θ, τ) under different θ quantiles and τ quantiles. The
ΔTSP-axis and GRP-axis have the same meaning as Figure 5.

We can see that Figure 6 is very similar to Figure 5 at the peak.
When the global stock market connectedness is at a high quantile,
that is, the stock markets are in a state of close interaction, about
0.9–0.95, and the global geopolitical risk is at about 0.35 quantile,
β1(θ, τ) shows a significant peak, and the estimated positive value of
β1(θ, τ) is 0.4748. This shows that under the condition that global
stock markets are closely related, when the global geopolitical risk
around the 0.35 quantile, GPR has a positive marginal effect on the
connectedness of global stock markets. On the contrary, β1(θ, τ)
displays a sunken trough when the global stock market
connectedness is in the low quantile, about 0.05–0.07, and the

GPR is in the 0.31–0.35 quantile. And the negative value of
β1(θ, τ) is estimated to be −0.2301, which indicates that the
global geopolitical risk around the 0.35 quantile will have a huge
negative impact on the connectedness of global stock markets under
the condition of loose interaction between international stock
markets. Similarly, when the global stock market correlation is at
the high quantile, about 0.91–0.95, and the GPR is at the
0.49 quantile, the estimated positive value of β1(θ, τ) is 0.1521.
This shows that under the condition that the global stock market is
closely related, the 0.49 quantile GPR has a positive marginal effect
on the global stock market correlation. On the contrary, when the
correlation degree of the global stock market is in the low quantile,
about 0.09, and the GPR is in the 0.51 quantile, a negative value of
β1(θ, τ) is estimated to be −0.119, indicating that under the
condition of loose correlation of the global stock market, the
geopolitical risk around the 0.51 quantile has a negative marginal
effect on the correlation degree of the global stock market. This
“magnifying glass” effect is very significant in the extreme case of
global stock market correlation, that is, global stock market
connectedness is extremely close (or loose), and the positive
(negative) effect of geopolitical risk on global stock market
connectedness will be very obvious. The marginal effect induced
by the same geopolitical risk quantile is completely different given a
different closeness of global stock market correlation, which is
compatible with the heterogeneous effects discussed above.

FIGURE 5
QQR estimate of β0(θ, τ) for GPR.
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The marginal effect that is completely opposite to this
“magnifying glass” effect is called the “reins” effect, which
appears in the 0.37–0.40 quantile and 0.49 quantile of GPR.
Specifically, when the global stock market correlation is at the
low quantile, about 0.05–0.07, the GPR is at the
0.37–0.40 quantile, and the estimated positive value of β1(θ, τ)
is 0.1764. This shows that under the condition of loose correlation
of global stock markets, the 0.37–0.40 quantile GPR has a positive
marginal effect on the correlation of global stock markets, and
reduces the negative impact of GPR on the correlation of global
stock markets (in Figure 5, the θ quantile of 0.05 and the τ
quantile of 0.39, the estimated value of β0(θ, τ) is −1.891). On the
contrary, when the correlation degree of the global stock markets
is in the high quantile, about 0.91–0.95, and when the GPR is in
the 0.37–0.40 quantile, a significant peak of β1(θ, τ) is estimated,
which is negative −0.4571, indicating that under the condition of
close correlation of the global stock market, the GPR around the
0.37–0.40 quantile has a significant negative marginal effect on
the correlation degree of the global stock markets. The positive
effect of geopolitical risk on the correlation of global stock
markets is reduced (in Figure 5, at the θ quantile of 0.95 and
the τ quantile of 0.39, the β0(θ, τ) estimate is 4.605). In simple

terms, the “reins” effect suppresses the impact of geopolitical risk
on the connectedness of global stock markets.

However, this difference appears “U-shaped” when the
geopolitical risk is around 0.59–0.61, that is, in the case of
high and low global market connectedness, the estimated value
of β1(θ, τ) is positive, and the global geopolitical risk of this
quantile has a positive marginal effect on the connectedness of
global stock markets. Finally, when global geopolitical risk is at a
high level, that is, 0.89–0.95 of the τ quantile, this marginal
effect seems to disappear, and β1(θ, τ) exhibits an estimate
close to 0, regardless of any quantile of global stock markets
connectedness.

5.3 Global geopolitical action risk (GPRA)
and global stock market total
connectedness

In this section, we replace the variable of global geopolitical risk
(GPR) with the global geopolitical action risk (GPRA). This section
focuses on how geopolitical action risk (GPRA) affects the total
connectedness of global stock markets.

FIGURE 6
QQR estimate of β1(θ, τ) for GPR.

Frontiers in Physics frontiersin.org13

Lai et al. 10.3389/fphy.2023.1124092

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1124092


5.3.1 QQR estimation results of intercept for GPRA
Figure 7 shows the intercept effect of global geopolitical action

risks on the connectedness of global stock markets, the estimate of
the intercept term β0(θ, τ). The Z-axis represents the estimated
value of the intercept term β0(θ, τ), the ΔTSP-axis is still the θ
quantile of the first-order difference of the global stock market
correlation, and the GPRA-axis is the τ quantile of GPRA.

Figure 7 shows the intercept impact of GPRA on the
connectedness of global stock markets, and the results are highly
similar to Figure 5. This still represents a change in the intercept
influence of GPRA on global stock market correlation from
promotion to inhibition when global stock market correlation is
close to loose. Based on Figure 7, it can be seen that when the global
stock market connectedness is high, i.e., when the θ quantile is
0.87–0.95, regardless of GPRA, the estimated value of β0(θ, τ) is
positive, meaning that any GPRA will make the global stock market
more closely tied. When the global stock market interaction is at a
low quantile, that is, the \theta quantile is 0.05–0.11, regardless of
GPRA risk, the estimated value of β0(θ, τ) is negative, indicating that
any geopolitical action risk will make the global market more loosely
correlated. Specifically, when the GPRA is at the 0.43 quantile, the
estimated value of β0(θ, τ) reaches the maximum positive number of
2.79. Interestingly, β0(θ, τ) is estimated to have the largest negative
value of−0.5367 in the case of low correlation of global stock markets

when the GPRA is in the 0.45 quantile. Similarly, when the GPRA is
in the 0.69 quantile, the estimated value of β0(θ, τ) achieves a
minimum negative value of −2.385. When the quantile in the
opposite direction is similar, that is, when the correlation degree
of the global stock market is in the high quantile and the GPRA is in
the 0.73 quantile, the estimated value of β0(θ, τ) achieves a
minimum positive value of 0.8975.

In general, Figure 7 still shows a monotonous change feature,
i.e., when the GPRA is at the same quantile, the impact of GPRA on
the global stock market connectedness shows a trend from negative
to positive.

Reflected in the estimated value of β0(θ, τ), it changes from
negative to positive. Similar to Figure 5, when the connectedness
degree of the global stock market is below the median, the intercept
term β0(θ, τ) is basically negative regardless of GPRA. When the
connectedness degree of the global stock market is above the
median, the intercept term β0(θ, τ) is basically positive regardless
of GPRA.

5.3.2 QQR estimation results of slope for GPRA
In Figure 8, we visualize the marginal effect of the influence of

GPRA on the connectedness of global stock markets determined by
different θ quantiles and different τ quantiles, that is, β1(θ, τ) in
regression. The Z-axis represents the marginal effect β1(θ, τ)

FIGURE 7
QQR estimate of β0(θ, τ) for GPRA.
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estimate. The ΔTSP-axis is still the θ quantile of the first-order
difference of the global stock market correlation, and the GPRA-axis
is the τ quantile of the GPRA.

When compared to the visual Figure 6 of the marginal effect,
Figure 8 shows some similarities, but a closer look will reveal a lot of
differences. In Figure 6, when the global stock market correlation is
at a high level, about 0.91–0.95 quantile, and the GPR is at
0.39 quantile, the marginal effect of the GPR on the global stock
market connectedness is estimated to be the minimum valley value.
However, in Figure 8, after replacing the GPR with the GPRA, the
highest peak value of 0.1869 is estimated under the same quantile
conditions. That is to say, under the same quantile conditions, GPR
has a negative impact on the global stock market connectedness, and
this marginal effect is negative. But, the GPRA has a positive impact
on the global stock market connectedness, and the marginal effect is
positive. Therefore, it can be seen that after refining the types of
geopolitical risks, the impact of geopolitical risks on the
connectedness of global stock markets has reached very different
conclusions.

Meanwhile, for Figure 8, we can observe several “U-shaped” or
“inverted U-shaped” phenomena. When the GPRA is in the
0.37–0.41 quantile, if the global stock market correlation is very
close or very loose, the estimated value of β1(θ, τ) shows a positive
peak, and when the global stock market correlation is not in the higher

quantile or lower quantile, the estimated value of β1(θ, τ) tends to 0 or
even negative. At this time, under the condition of extreme global stock
market connectedness, the GPRA has a positive marginal effect on the
connectedness of global stock markets, and there is a “one-way” effect,
that is, whether in the case of loose connectedness of global stockmarket
or in the case of close correlation of global stock market, the increase of
GPRA shows a positive marginal effect. Under the extremely loose
conditions of the global stock market, the marginal effect between the
GPRA and the connectedness of global stock market is estimated to
be −0.102. So, the negative marginal effect means that under this
quantile, the increase of the GPRA will aggravate the negative
impact of the GPRA on the connectedness of the global stock
market. When the connectedness degree of the global stock market
is at a high quantile, the GPRA has a positive constant effect on the
connectedness degree of the global stock market. At this time, the
estimated marginal effect of the GPRA on the connectedness degree of
the global stock market is −0.1722. Therefore, the negative marginal
effectmeans that under this quantile, the increase in theGPRAwill have
a negative impact on the connectedness degree of the global stock
market. At this time, the “one-way “effect of the slope β1(θ, τ) becomes
negative, and this “U-shaped” and “inverted U-shaped” opposite effects
are very interesting.

Similar to Figure 6, the risk of local political action is at a high
level, that is, 0.89–0.95 of the τ quantile. This marginal effect

FIGURE 8
QQR estimate of β1(θ, τ) for GPRA.
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disappears, and β1(θ, τ) shows an estimate close to 0 regardless of
any quantile of the global stock market correlation.

5.4 Global geopolitical threat risk (GPRT) and
global stock market total connectedness

In this section, we use global geopolitical threat risk (GPRT) to
study how geopolitical threat risk affects the connectedness of global
stock markets.

5.4.1 QQR estimation results of intercept
First, Figure 9 is a visual image of the estimated value of the

intercept term β0(θ, τ) of the quantile-on-quantile regression for
GPRT. Where the Z-axis characterizes the estimate of the intercept
term β0(θ, τ), the ΔTSP-axis is still the θ quantile of the first-order
difference of the global stock market correlation, and the GPRT-axis
is the τ quantile of GPRT.

The most striking thing in Figure 9 is that when the global stock
market connectedness is highly correlated (the quantile is at
0.91–0.95), while the GPRT is at a low level (the quantile is
0.05–0.09), the estimated value of marginal effect β0(θ, τ) reaches
a very high peak of 6.012, indicating that the minimal GPRT at this

time will also cause a dramatic increase in the connectedness of
global stock markets. In addition, when the global stock markets are
highly correlated, the estimates of marginal effect β0(θ, τ) have two
other lower peaks of 2.572 and 2.518 at the 0.45 and 0.59 quantiles of
GPRT respectively. In contrast, the estimates of β0(θ, τ) are negative
in the quantiles with low connectedness in global stock markets.

On the whole, the estimation results of Figure 9 are similar to
those of Figures 5, 7. They all show the monotonic change of the
estimated value of β0(θ, τ) when the connectedness degree of the
global stock market is in different situations under the same quantile
of GPRT.When the connectedness degree of the global stock market
is low, the negative β0(θ, τ) gradually rises to 0 as the connectedness
degree of the global stock market becomes closer, and then increases
to positive, which means that the impact of GPRT on the
connectedness of the global stock market gradually changes from
negative to positive. When the global stock market connectedness is
in the middle quantile part, the estimated value of β0(θ, τ) is almost
zero, indicating that there seems to be no relationship between
GPRT and global stock market connectedness.

5.4.2 QQR estimation results of slope
Figure 10 describes the marginal effect of GPRT on the

connectedness of global stock markets. In Figure 10, the Z-axis

FIGURE 9
QQR estimate of β0(θ, τ) for GPRT.
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still represents the estimated value of the slope term β1(θ, τ) in the
quantile-on-quantile regression. The ΔTSP-axis is still the θ quantile
of the first-order difference of the global stock market
connectedness, and the GPRT-axis depicts the τ quantile of
the GPRT.

In Figure 10, when the connectedness level of the global stock
market is highly related (θ is 0.95 quantile), and the GPRT is low (τ is
0.07 quantile), the estimated value of β1(θ, τ) is −0.3278, which is the
minimum estimated value of β1(θ, τ) in the quantile-on-quantile
regression. This shows that when the connectedness levelof the
global stock market is high, the weak fluctuation in GRPT will have a
significant negative impact on the connectedness level of the global
stock market.

At the same time, the “magnifying glass” effect, the “reins” effect
and the “unidirectional” effect in Figures 6, 8 appear in the QQR
regression results of Figure 10. The “magnifying glass” effect can be
clearly observed in the results of Figure 10. When the GPRT is in the
0.23 quantile, the global stock market is in a highly correlated
condition, and the estimated value of β1(θ, τ) is 0.1164. The
weak rise of GPRT at this τ quantile will also increase the
connectedness of global stock markets when the global stock
markets are closely correlated. When the GPRT is in the
0.23 quantile and the global stock market is in a very loose

condition, the estimated value of β1(θ, τ) is −0.111. In other
words, when the global stock market correlation is low, the
change in GPRT will cause the global stock market correlation to
decline.

The unidirectional effect in Figure 10 is also very obvious. When
the GPRT is at the 0.39 quantile and the global stock market is in a
highly related condition, the estimated value of β1(θ, τ) is 0.1663.
When the global stockmarket is closely related, the rise of GPRT will
further strengthen its positive effect on global stock market
interconnectedness. The estimated value of β1(θ, τ) is
0.08045 when the GPRT is also at the 0.39 quantile and the
global stock market is in a very loose condition. Although the
estimated value is smaller, it indicates that the escalation of
GPRT will still have a positive impact on the global stock market
connection when the global stock market connectedness is low.

Similarly, we can also observe the “reins” effect in Figure 10.
When the GPRT is at the 0.47 quantile, the estimated value of
β1(θ, τ) is −0.1065 under the condition that the global stock market
is highly closely linked. And when the global stock market is very
loose, the estimated value of β1(θ, τ) is 0.1112. The above results
show that when the GPRT is at the τ quantile of 0.47 and the global
stock market connection is close, the rise of GPRT will weaken the
global stock market connectedness. Under the condition that the

FIGURE 10
QQR estimate of β1(θ, τ) for GPRT.
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global stock market correlation is very loose, the increase of GPRT
will increase the global stock market connectedness.

Finally, as with other slope estimates, when the GPRT is high,
this marginal effect is almost 0 regardless of the global stock market
correlation.

6 Conclusion

We use the vector autoregressive regression method (VAR) to
construct a global stock market return contagion network, and use
the quantile-to-quantile regression (QQR) to investigate the impact
of global geopolitical risks on global stock market connectedness.

The main results are summarized as follows:
First, the Indian stock market and the Chinese stock market act as

financial shock recipients in the global stock market. For most of the
time, the net spillover effects of India’s Mumbai Sensitivity 30 Index
(SENSEX) and Shanghai Composite Index (SSEC) are less than 0.
Generally, stock prices in these two markets follow those in other
markets, and these two markets have not much influence on other
market indices. The United States stock market and the German stock
market are shock transmitters in the global stock market. The S&P
500 Index (SPX), the Dow Jones Industrial Average (DJI), and the
Deutscher Aktien Index (GDAXI) in Germany have net spillover effects
over 0. Changes in stock prices in these markets lead to fluctuation in
stock prices in other markets. It is not difficult to understand that India
and China, as emerging economies, are still in a relatively backward
stage of capital market development. In contrast, the United States and
Germany have been the world’s leading economies since the economy,
occupying an influential position in the global industrial chain and trade
chain. At the same time, their capital markets are highly developed, so
the asset prices of these two markets have played a role in the vane.

Second, in the quantile-on-quantile regression results between
global geopolitical risk (GPR) and the connectedness of global stock
market returns, we find that the same level of GPR has a heterogeneous
impact on global stock market connectedness under different levels of
connectedness. Under the high connectedness of global stock market
returns, any quantile ofGPRwill further consolidate this connectedness;
under the low connectedness of global stock market returns, any
quantile of GPR will further reduce this correlation.

Third, as GPR quantiles differ, there are two opposite marginal
effects: “magnifying glass” and “reins”. The “magnifying glass” effect
shows that an increase in GPR will intensify the connectedness of
global stock market returns at high quantiles and disintegrate the
connectedness of global stock market returns at low quantiles. The
“rein” effect indicates that an increase in GPR will reduce the high-
quantile global stock market connectedness and increase the low-
quantile global stock market connectedness.

Fourth, when we further decompose the global geopolitical risk into
GPRA and GPRT, we find that when the global stock market
connectedness is not in extreme circumstances, different levels of
GPRT will not greatly affect the global stock market’s total
connectedness. But when global stock markets are highly correlated
andGPRT is at a very low level, any small increase inGPRTwould greatly
reduce that total connectedness. This phenomenon is also easy to explain.
Small stones on the calm water surface will also cause very obvious
ripples. In timeswhen theGPRT level is low and global stockmarket total
connectedness is high, any risk problem can break this quiet.

Fifth, when GPRT or GPRA is at high quantiles, their
movements will not affect the total connectedness of global stock
markets. This phenomenon is contrary to the previous conclusion.
When GPRT or GPRA are already at a very high risk level, any
further rise will no longer affect global stock market connectedness.

Sixth, we observed several ‘U-shaped’ or ‘inverted U-shaped’
phenomena when we estimated the slope between GPRA and the
total connectedness of global stock markets. We call it the " one-
way” effect (unidirectional effect), that is, when global stock market
total connectedness is in an extreme situation (highly close or highly
loose), different levels of GPRA have different marginal effects.
Sometimes it increases global stock market total connectedness, and
sometimes reduces global stock market total connectedness.

The findings of this study are significant for future research.
This helps policymakers and relevant investors to cope with the
impact of current high geopolitical risks on the global stock
market contagion network. This helps them effectively manage
risk in asset allocation and policy formulation. However, there are
still some areas where our research can go further. For example,
why do these special quantiles have different asymmetric effects?
The economic logic and practical significance behind them need
to be studied. In addition, research on the volatility contagion
network of global stock markets and global geopolitical risks can
also be discussed.
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