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In the event of a disaster such as an earthquake, insurance companies basically
conduct on-site witnessing. Depending on the scale of the disaster, hundreds of
adjusters are dispatched from each office to the affected buildings per day. In such
cases, which adjusters will witness which buildings and in what order must be
determined, and the route must be optimized to conduct efficient witnessing. In
this study, we define this witnessing route decision as an optimization problem
and propose the adjuster routing problem (ARP). The ARP can be viewed as an
extension of the vehicle routing problem (VRP). We introduce constraints not to be
considered in the usual VRP, such as adjuster-buildingmatching and satisfying the
desired time. The VRP is an NP-hard optimization problem and is considered
difficult to solve on a classical computer. Therefore, we formulated various
constraints in QUBO so that quantum annealing can be applied to the ARP. In
addition, we conducted numerical experiments with D-Wave. The ARP is a real
problem, and our research provides a new example of applications of quantum
annealing to real-world problems.
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1 Introduction

Discrete optimization problems appear in various fields. However, they are usually hard
to solve. Many of these problems are in NP1 [1], which is the class that classical computers
may not solve them in polynomial time. In recent years, quantum annealing has been
expected to solve these problems efficiently. Quantum annealing is a metaheuristic algorithm
for solving discrete optimization problems, and its research has been initiated by Kadowaki
and Nishimori [2]. In 2011, D-Wave Systems announced D-Wave [3], a machine that
implements quantum annealing. Since then, many studies using quantum annealing have
been published. When solving optimization problems by D-Wave, we first formulate
problems in quadratic unconstrained binary optimization (QUBO) or Ising form. Then,
quantum annealing is performed to search for the minimal value of QUBO. As the QUBO
problems are NP-hard, almost all optimization problems can be formulated in QUBO.
Therefore, quantum annealing applies to a very wide range of optimization problems, for
example, scheduling [4,5], economics [6], machine learning [7–9], computer vision [10,11],
and quantum chemistry [12,13]. Moreover, it can be applied to real-world problems, such as
control of automated guided vehicles in the factory without collision [14], traffic flow
optimization to reduce traffic jam in Beijing [15], and item listing optimization in
e-commerce websites [16].In this study, we propose an optimization problem called the
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adjuster routing problem (ARP) and propose a method to solve it
using quantum annealing. The purpose of the ARP is to optimize the
on-site witnessing route for insurers’ adjusters in the event of a
disaster. Therefore, our research provides a new example of the
application of quantum annealing to real-world problems.

1.1 The adjuster routing problem

Here, we explain the details of the ARP. In the event of a disaster,
such as an earthquake, an on-site witnessing will be conducted by
adjusters dispatched by the insurance company to damaged
buildings to confirm the damage. Particularly, in the case of
large-scale disasters, a single insurance company has to assess
tens of thousands of cases, requiring the dispatch of hundreds of
personnel from the office each day. Therefore, an optimization of the
route (i.e., minimizing the time required for witnessing, including
travel time) is an extremely important problem from both a time and
cost perspective. This problem can be regarded as the vehicle routing
problem (VRP) [17] because multiple persons visit multiple
locations and optimize their routes. In the setting where multiple
vehicles visit multiple customers, VRP is the problem of finding a
route that minimizes the sum of costs among the routes that satisfy
the following constraints:

• Each customer is visited exactly once by exactly one vehicle.
• Every vehicle starts from the depot and back there.

Here, the interpretation of the cost as the time required for
witnessing, the customer as the building to be witnessed, the vehicle
as the adjuster, and depot as the dispatcher’s office, respectively,
VRP is basically consistent with the problem considered. However,
there are some additional constraints in the ARP. First, the adjuster
who can witness the building is determined according to the type of
the building. The level of difficulty of witnessing a building depends
on the type of building materials. Basically, three types of building
materials (wood, steel, and reinforced concrete) are considered.
Therefore, there are three types of buildings with three levels of
difficulty: “hard,” “normal,” and “easy.” Adjusters cannot witness all
of these types of buildings, and the buildings that can be witnessed
are determined according to their capabilities. We refer to this
capability as the adjuster’s spec. Three types of specs are defined,
“high,” “middle,” and “low,” from the highest to lowest. Buildings
with a hard difficulty level can be witnessed by an adjuster with a
high spec, and buildings with a normal difficulty level can be
witnessed by an adjuster with a high or middle spec. In
optimizing the route, we should consider the matching of the
adjuster’s spec and the difficulty level of witnessing the building.
In addition, it is necessary to be able to start witnessing at the desired
time submitted in advance by each building. This desired time is
specified by time zone, for example, AM, PM1, and PM2, and each
adjuster must be able to witness to satisfy the desired time. We also
consider the time required for witnessing, which is determined
according to the total area of the building (i.e., it increases in
proportion to the area), and the total operating time includes the
total travel time and the time required for witnessing at each
building. Furthermore, even when all the aforementioned
constraints are satisfied, if the number of buildings witnessed by

one adjuster is large, the witnessing cannot be completed in time.
Therefore, it is necessary to limit the number of buildings one
adjuster can witness.

In summary, the ARP is the problem of finding a route that
minimizes the total operating time among routes that satisfy the
following constraints:

1. Every adjuster leaves from certain office and must return to the
same office at the end of the last witnessing.

2. Each building must be witnessed once by only one adjuster.
3. The desired times for witnessing are satisfied.
4. Matchings of adjuster’s specs and types of buildings are satisfied.
5. The total number of buildings witnessed by any adjuster does not

exceed the limit.

As mentioned previously, the usual VRP does not satisfy
constraints 3, 4, and 5. Therefore, the ARP is an extension of the
VRP. Other VRP extensions include the vehicle routing problem
with time windows (VRPTW) satisfying constraint 3 [18,19] and the
capacitated vehicle routing problem (CVRP) satisfying
constraint 5 [20].

As the VRP is in the class NP, we consider solving the ARP using
a quantum computer (quantum annealing).

1.2 Our contributions

In this study, we propose a method for solving the ARP using
quantum annealing. The following decision variables are needed for
route optimization:

xk
n,i � 1 when adjuster kwitness building n for the i − th time( )

0 otherwise( ){ .

(1)
Let K be the number of adjusters, N the number of buildings,

and I the number of buildings witnessed by one adjuster. The size
of the optimization problem is K × N × I. Quantum annealing can
only solve problems of small size when three parameters (k, n, i)
are introduced because the size of the problem is limited by
hardware constraints, such as the number of qubits and
connectivity [21]. Further information about these constraints
is presented in the following paragraph. We divided the ARP into
two subproblems to reduce the number of decision variables:
clustering and routing phases. The clustering phase determines
which building each adjuster will witness, and the routing phase
determines the order each adjuster will witness. A method for
dividing the VRP into clustering and routing phases has already
been proposed [22,23], and we adopt a similar approach for the
ARP. To apply quantum annealing, we formulate each phase
in QUBO.

Constraints 4 and 5 are considered in the clustering phase
because the building to be witnessed by the adjuster is
determined in this phase. Specifically, for constraint 4, we
interpret the adjuster and building matching as bipartite graph
matching and introduce constraints into the clustering phase. For
constraint 5, we introduce an element count constraint into the
clustering. Constraint 3 is considered in the routing phase because it
affects the order of witnessing by the adjuster. Although the routing

Frontiers in Physics frontiersin.org02

Mori and Furukawa 10.3389/fphy.2023.1129594

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1129594


phase optimizes the route of a single adjuster to witness multiple
buildings, and thus can be regarded the same as the traveling
salesman problem (TSP) as an optimization problem, we
introduce the concept of time into the TSP and introduce
constraints to realize routing that satisfies the desired time.
When the problem is divided into two phases, the probability
that no feasible solution exists in the routing phase increases if
the desired time zones of the buildings are concentrated in the same
cluster in the clustering phase or if only buildings with large areas are
clustered together. Therefore, we introduce constraints in the
clustering phase such that they are properly distributed to ensure
the diversity of cluster elements. Furthermore, we conducted
numerical experiments using D-Wave to confirm the correctness
of our formulation.

Our contributions can be summarized as follows:

• Applications of quantum annealing to the real-world
problem: Our ARP is based on the VRP and extended to a
realistic setting. We formulated the problem in a form
amenable to quantum annealing and confirmed correctness
through numerical experiments.

• Proposal of various constraints: In the clustering and routing
phases, we introduced constraints for matching, satisfying the
desired time, and variance. We believe that these constraints
are applicable not only to our problem but also to other
optimization problems related to the VRP.

1.3 Quantum annealing and D-Wave

We review the theoretical backgrounds of quantum annealing
and D-Wave machines that implement quantum annealing. Several
solvers can perform QUBO, such as Digital Annealer [25] and
CMOS annealer [26]. In particular, quantum annealing machines
have been increasingly applied in recent years, and there are high
expectations that both the speed of solution seeking and the quality
of the solution will exceed those of classical computers.

Quantum annealing is a meta-heuristic algorithm for optimization
problems introducing quantum effects, proposed by Kadowaki and
Nishimori [2]. It can solve optimization problems in QUBO or Ising
form. Because QUBO belongs to the NP-hard, quantum annealing can
be applied to an extremely wide range of optimization problems.

In quantum annealing, the objective function of the
optimization problem under consideration is represented by a
quantum system Hamiltonian Ĥobj. Then, a quantum fluctuation
Ĥq is introduced, and the ground state of Ĥobj is searched. Thus,
quantum annealing deals with the following Hamiltonian Ĥqa:

Ĥqa t( ) � A t( )Ĥobj + B t( )Ĥq, (2)
where A(t)P0, B(t)P0 and the control shall be performed as in
A(0) = 0, B(τ) = 0 with the annealing start time of t = 0 and end time
of t = τ. Let Z be the reduced Planck constant, |ψ(t)〉 the spin
wavefunction (|k(t)〉 means the kth excited state), Δk(t) the energy
gap between the state k and ground state, and s = t/τ. By time-
evolving Ĥqa with the Schrödinger equation,

iZ
d

dt
ψ t( )∣∣∣∣ 〉 � Ĥqa t( ) ψ t( )∣∣∣∣ 〉, (3)

and with the asymptotic expansion of adiabatic condition2,

τ≫
〈k s( )| _̂Hqa s( )|0 s( )〉
∣∣∣∣∣∣ ∣∣∣∣∣∣

Δk s( )2 , (4)

Ĥqa follows the ground state at each moment, and finally, the
ground state of Ĥobj is obtained. As the ground state of Ĥobj is
the solution to the original optimization problem, it can be
solved using quantum annealing. This is an outline of the
algorithm.

Physical devices that enable quantum annealing have been
developed by D-Wave Systems [3], which recently launched a
quantum cloud computing service called D-Wave Leap. In the
D-Wave machine, the target quantum system is a spin system,
and the Ising model and transverse magnetic field are used as
Ĥobj and Ĥq, respectively. Quantum annealing machines are
more stable than quantum gate-based machines in controlling
quantum devices such as noise, and the machine at the first time
of the implementation announcement had only 128 qubits
(D-Wave One), increasing to 2,048 qubits in 2017 (D-Wave
2000Q) and 5,436 qubits in September 2020 (Advantage).

As the computational principle of quantum annealing is the
transverse-field Ising model, if the combinatorial optimization
problem we wish to solve can be formulated in the Ising model,
the solution can be obtained by providing information on its
coefficients as input. Conversely, when we design a combinatorial
optimization problem for a real-world problem, decision variables
such as xi ∈ 0, 1{ } are often used, and the input forms of the objective
function that D-Wave can optimize correspond to both of these,
called the Ising and QUBO forms, respectively, and they are
equivalent by variable transformation.

The spin–spin interaction in the transverse-field Ising model
assumes a fully connected state. Therefore, realizing the fully
connected state between spins as a physical device must
construct a complete graph with all spins as nodes on the
hardware. Because it is currently difficult to construct such a
graph, D-Wave introduces a special graph for the connection of
spins, called a chimera graph in D-Wave 2000Q and a Pegasus graph
in Advantage [21]. Whatever optimization problem we design,
embedding operations are essentially required when performing
optimization computations with D-Wave, and the number of
installed qubits and the size of the problem to be solved do not
generally match.

Optimal annealing time τ should be long enough to give a
sufficiently high probability of finding the ground state (Eq. 4). At
the same time, it should be as short as possible for practical
purposes. Therefore, τ is a trade-off value. Since the optimal τ
depends on the structure of the problem we wish to solve [27], a
parameter study should essentially be performed. However, as
discussed in Section 3, we used D-Wave’s hybrid solver system
(HSS) for the solver, where τ cannot be treated as a variable
parameter, so we experimented numerically using τ as a fixed
value of 20 µs.

2 Equation 4 contains only the leading-order term.More rigorous discussion
is given by Kimura and Nishimori [34].
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2 Materials and methods

In this section, we present the formulation of the ARP. First, we
recheck the ARP setup. The objective is to optimize the total travel
time (not distance) and total time required for the adjuster’s
witnessing when the adjuster from the insurance company visits
each damaged building one by one after a disaster to assess the
amount of damage insurance. In addition, as noted in Section 1, we
assume the following for the buildings and adjusters:

• For buildings,
- Each desired time for witnessing is set,
- Each time required for witnessing is set (proportional to the
total area of the building),

- Each difficulty level for assessment is set.
• For adjusters,
- Each spec for assessment is set,
- A limit is set on the number of buildings that an adjuster can
witness in a day.

Furthermore, constraints 1–5 in Section 1 are introduced into
the optimization. Among the routes that satisfy these constraints,
ARP searches for the one that minimizes the total operating time,
the sum of total travel time, and the total time required for
witnessing.

In this study, we formulate this problem in a QUBO form to
solve it using quantum annealing. Because of the limited number of
qubits that can be handled, we use 2-Phase-Heuristics [28] to split
the problem into a clustering phase, which determines which
buildings the adjuster will witness, and a routing phase, which
determines in which order the adjuster will witness the buildings.
We formulate the clustering and routing in a QUBO form,
respectively, and use the Q2Q approach proposed by Feld et al.
[23], which allows for seeking solutions using quantum annealing in
both phases.

For constraints 1–5, we consider 1–3 for routing and 4 and 5 for
clustering. Even if constraints 4 and 5 are satisfied in clustering, if the
desired time for witnessing and the time required for witnessing are
concentrated in the same group of buildings to be witnessed by an
adjuster, it is highly likely that the routing will not yield a solution
that satisfies the constraints. Therefore, we introduce an additional
constraint to distribute the desired time of witnessing and the time
required for witnessing. First, we perform a QUBO formulation of
clustering in Section 2.1, introducing these additional constraints. In
Section 2.2, we also present QUBO formulation of route
optimization for each cluster, which satisfies the constraint of the
desired time for witnessing.

2.1 Clustering phase

If the clustering target is a building and each cluster is applied to
each adjuster, clustering is synonymous with determining the group
of buildings to be witnessed by each adjuster. Thus, defining
xk
n ∈ {0, 1} is a decision variable, 1 if a building n belongs to a

certain cluster k and 0 if it does not. The simplest Hamiltonian that
classifies buildings close to each other into the same cluster can be
described as follows:

Hvanilla x( ) � ∑K−1
k�0

∑
uv( )∈E

Duvx
k
ux

k
v + ∑N−1

n�0
∑K−1
k�0

xk
n − 1⎛⎝ ⎞⎠2

, (5)

where N is the total number of buildings, K is the total number of
clusters, and Duv is the weight (distance) between u and v connected
by an edge E. The first term is the distance cost term, and the second
term is the constraint term for any building to always belong to one
of the clusters.

In ARP clustering, it is necessary to add a cost term that accounts
for variance (Hdiv), a difficulty-matching constraint term between
adjuster and building (Hmatching), and a constraint term on the
number of elements in the cluster (Hnum). Thus, the Hamiltonian of
our clustering takes the following form:

Hclustering � Hvanilla +Hdiv +Hmatching +Hnum. (6)
In the following sections, we show how these three conditions can be
formulated.

2.1.1 Hdiv: Consideration of the dispersion of
elements in clusters

As mentioned previously, buildings in the ARP are given a
“desired time for witnessing” and a “time required for witnessing”
that is proportional to the total area of the building. Therefore, if
they have extremely skewed distribution within a given cluster (e.g.,
all buildings wish to be witnessed in the morning and all buildings
have a large total area), then a routing solution that satisfies the
desired time for witnessing will not be available. In other words,
constraints are needed to ensure that the desired and required times
for witnessing are reasonably spread out among the clusters
(i.e., there is diversity in the elements). Such a constraint is Hdiv,
and specific terms are designed according to the objective. Now, the
time required for witnessing building n is en, and the set of possible
time periods is TG � T1, . . . , TL{ } as the desired time for witnessing.
In this study, we introduce a cost term that simultaneously considers
the dispersion of desired and required time for witnessing. The cost
term is defined as follows:

Hdiv x( ) � ∑K−1
k�0

∑L
ℓ�1

∑
n ∈ Tℓ

enx
k
n

⎛⎝ ⎞⎠2

. (7)

Thus, if the total time required for witnessing for each desired time
zone is given as a cost, the bias in the total time required for
witnessing can be reduced, as well as the bias in the time desired for
witnessing within each cluster.

2.1.2 Hmatching: Consideration of adjuster and
building matching

In ARP, we set the specs of adjusters who can witness each building
according to its assessment difficulty, and the buildings and adjusters
(clusters) must be matched during clustering. This is introduced as a
constraint term in the Hamiltonian. We will make it more general to
describe relationships other than difficulty and spec. First, we define k
and n to be “consistent” if adjuster k can conduct the witnessing of
building n. When the spec of adjuster k is “high” and the difficulty level
of building n is “normal,” k and n are consistent. When the spec of k is
“low” and the difficulty of n is “middle,” k and n are not consistent. In
addition to specs, a specialized adjuster may be assigned to buildings
constructed using special constructionmethods (such as the two-by-four
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method). Therefore, a special construction method building and a
specialized adjuster are consistent, and other adjusters are not
consistent. We can describe mathematically in terms of graph theory
that the adjuster and the building are consistent. Let K be the set of
adjusters and N the set of buildings. Then, for a bipartite graph G �
(K,N , E) with independent K,N as vertices and E as an edge set, we
define

k ∈ K, n ∈ N , kn( ) ∈ E5adjuster k and building n are consistent. (8)

To match the adjuster and the building, we need to make sure that
n ∈ N is witnessed by one k ∈ K who satisfies (kn) ∈ E, so the
constraints are as follows:

Hmatching x( ) � ∑
n∈N

∑
kn( ) ∈ E

xk
n − 1⎛⎝ ⎞⎠2

. (9)

We formulate a matching between adjuster specs and building
difficulties. Let the set of adjusters with spec “high” (“middle”
and “low,” respectively) be High (Middle and Low, respectively)
and the set of buildings with difficulty “hard” (“normal” and “easy,”
respectively) be Hard (Normal and Easy, respectively). The
matching is as follows, respectively:

• When n ∈ Hard, (kn) ∈ E5k ∈ High.
• When n ∈ Normal, (kn) ∈ E5k ∈ High ∪ Middle.
• When n ∈ Easy, ∀k ∈ K0(kn) ∈ E.

Substituting this relationship for Eq. 9, the constraint terms for
matching with respect to specs and difficulties are as follows:

Hmatching x( ) � ∑
n∈Hard

∑
k ∈ High

xk
n − 1⎛⎝ ⎞⎠2

+ ∑
n∈Normal

∑
k ∈ High ∪ Middle

xk
n − 1⎛⎝ ⎞⎠2

. (10)

When n ∈ Easy, there is no constraint on specs, so it is equivalent to
the constraint that “each building must be witnessed once by only
one adjuster.”

2.1.3 Hnum: Constraint term on the number of
cluster elements

Even if the dispersion of desired and required time for witnessing
and matching adjusters and buildings could be considered, if there are
toomany buildings to be witnessed by one adjuster, the routingmay not
fit within the set time frame. Therefore, we consider here a formulation
to impose a constraint on the number of elements in a cluster, the total
number of buildings witnessed by one adjuster. If the maximum
number of elements per cluster is M and the number of elements in
each cluster is limited to M or less, clustering is optimized under the
following inequality constraints:

min
x

Hclustering x( ) s.t. ∑N−1

n�0
xk
n#M ∀k ∈ K[ ]( ). (11)

The aforementioned inequality constraints cannot be formulated
as QUBO in their original form and must be rewritten as equality
constraints. There are several ways to convert inequality
constraints into equality constraints. The first is to introduce a

slack variable and attribute it to the multiple knapsack problem
(MKSP). Lucas [28] introduced auxiliary decision variables (slack
variables) and used one-hot encoding to express the total number
of elements in the cluster and rewrite inequality constraints as
equality constraints (Feld et al. [23] had a similar formulation in
the Q2Q approach). The disadvantage is that the number of
qubits available to solve a problem is more limited owing to slack
variables. The second is to optimize using the augmented
Lagrangian method and alternating direction method of
multipliers (ADMM) without introducing slack variables.
Yonaga et al. [29] defined an extended Lagrangian by
introducing an auxiliary variable in the objective function and
proposed a method to obtain a feasible solution while updating
the auxiliary variable by applying quantum annealing to QUBO
within the ADMM algorithm. This is effective when using
quantum annealing because it does not use slack variables, but
the computation time increases owing to iterative calculations.
The third is to consider only equality constraints in inequality
constraints. The number of elements in each cluster can be
limited to M by imposing the following equality constraints:

Hnum x( ) � ∑K−1
n�0

∑N−1

n�0
xk
n −M⎛⎝ ⎞⎠2

. (12)

It is not a constraint like MKSP or ADMM that limits the number
of elements to M or less, but it can be written in a very simple
form. In this paper, we took an equality constraint term for
simplicity.

From the aforementioned paragraphs, our clustering
Hamiltonian, specifically describing Eq. 6, is as follows:

Hclustering x( ) � A ∑K−1

k�0
∑

uv( ) ∈ E

Duvx
k
ux

k
v + B ∑N−1

n�0
1 − ∑K−1

k�0
xk
n

⎛⎝ ⎞⎠2

︸�������������������︷︷�������������������︸
Hvanilla

+ C ∑K−1
k�0

∑L
ℓ�1

∑
n ∈ Tℓ

enx
k
n

⎛⎝ ⎞⎠2

︸����������︷︷����������︸
Hdiv

+D∑K−1
k�0

M − ∑N−1

n�0
xk
n

⎛⎝ ⎞⎠2

︸���������︷︷���������︸
Hnum

+ E ∑
n ∈ N

∑
kn( ) ∈ E

xk
n − 1⎛⎝ ⎞⎠2

︸����������︷︷����������︸
Hmatching

,

(13)
where A, B, C, D, and E are positive coefficients representing the
weight of each cost or constraint term. The problem size for this
optimization is K × N.

2.2 Routing phase

After the clustering phase is completed, the goal is to find the
optimal route in each cluster. Following Feld et al. [23], we solve
the TSP for every generated cluster. However, we need to find the
shortest time route that satisfies the desired time for each
building. Therefore, we should introduce time into TSP.
Several studies have introduced time to the TSP [30,31]. We
adopt the time-scheduled traveling salesman problem (TS-TSP)
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proposed by Irie et al. [32] as a route optimization model. In
addition, we introduce the constraint for the desired time in the
TS-TSP. We begin with a brief review of the TS-TSP in the
following section and describe the Hamiltonian formulation of
our routing phase.

2.2.1 Time-scheduled traveling salesman problem
To introduce the concept of time into TSP, we first divide the

time zone into time intervals based on the unit time Δt. Then, the
variable τ ∈ Z>0 is used to represent a certain time interval. In other
words, we identify the time interval with τ in the following
correspondence:

τ( ) ↦ tτ , tτ+1[ ) 1#τ#T − 1( ), tτ+1 − tτ � Δt, (14)
where T is the length of time considered.

Let N be the total number of buildings. We define the variable
xτ,a(1#τ#T, 1#a#N) as

xτ,a � 1 when an adjuster visits building a at time τ( )
0 otherwise( ){ .

For each time interval τ, we also define the time-duration matrix
(nτab) and cost-matrix (dτab) as

nτab �
the time required tomove b to a at time τ( )

Δt⌈ ⌉,
dτ
ab � the cost tomove b to a at time τ( ).

(15)

Now, the Hamiltonian of TS-TSP is formulated as follows:

Hroute x( ) � ∑
1#a≠b#N
1#τ#T−1

dτ
ab − μ

ρ
× xτ+nτ

ab
,axτ,b + λ ∑

1#δτ#nτ
ab
−1
xτ+δτ,axτ,b

⎛⎜⎝ ⎞⎟⎠

+λ ∑
1#a< b#N
1#τ#T

xτ,axτ,b + ∑
1#a#N

1#τ≠τ′#T

xτ,axτ′,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)

where x = (xτ,a) ∈ {0,1}T×N and

λ> 0, μ � dmax, ρ � dmax − dmin

λ
.

The first term is the total cost to be minimized, and the second term
is the constraint prohibiting any early arrivals.

2.2.2 Formulation of route optimization
We give the Hamiltonian formulation of the routing phase. First,

we prepare some notations. Let pa be the time required for
witnessing building a and TG = {T1, . . ., TM} a set of desired
time zones. If ℓ ≠ m, Tℓ ∩ Tm = ∅. Furthermore, let Nm be a set
of buildings, where the desired time is Tm ∈ TG. Here, we assume the
following:

• The time required to travel between two buildings does not
depend on τ:

∀τ, τ′0nτab � nτ′ab.

• The cost to travel between two buildings is travel time:

dτ
ab � nab.

• The time required for witnessing is included in travel
time, namely, rewriting travel time from building b to a
by eab:

eab � nab + pb.

• Every adjuster starts from a certain office (depot) and backs
there. Depot is not included in the number of buildings to
witness.

Under these assumptions, we introduce constraints for the
routing phase. Every adjuster starts from the depot and backs
there, so the route prohibits early arrivals from the depot (at τ =
1) and ensures that the adjuster arrives at the depot within time T.
The adjuster must also conduct a witnessing that satisfies the desired
time for each building.

These constraints can be formulated as follows:

• The constraint that forbids early arrivals from the depot is as
follows (as Eq. 16):

∑
1#a#N

1< τ#ea,depot−1

x1,depotxτ,a � ∑
1#a#N

1< τ#ea,depot−1

xτ,a. (17)

• The constraint that arrives at the depot within time T is

∑
1#a#N

T−edepot,a#τ#T

xτ,a. (18)

• For a building with desired time Tm, it is sufficient to satisfy
xτ,a = 1 for some τ ∈ Tm, so the constraint for the desired
time is

∑
Tm∈TG

∑
a∈Nm

∑
τ ∈ Tm

xτ,a − 1⎛⎝ ⎞⎠2

. (19)

Finally, the Hamiltonian of the routing phase is

Hroute x( ) � ∑
1#a≠b#N
1#τ#T−1

nab − μ

ρ
× xτ+eab,axτ,b + λ ∑

1#δτ#eab−1
xτ+δτ,axτ,b

⎛⎝ ⎞⎠

+λ ∑
1#a< b#N
1#τ#T

xτ,axτ,b + ∑
1#a#N

1#τ≠τ′#T

xτ,axτ′,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+λ ∑
1#a#N

1< τ#ea,depot−1

xτ,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + λ ∑

1#a#N
T−edepot,a#τ#T

xτ,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+λ ∑
Tm∈TG

∑
a∈Nm

∑
τ ∈ Tm

xτ,a − 1⎛⎝ ⎞⎠2

. (20)

This is based on the negatively shifted energy method [32].
However, the constraint for desired time is formulated in squared
penalty. In our experiments, we confirmed that one can obtain
feasible solutions even with a squared penalty. The problem size for
this optimization is N × T.
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3 Results

In this section, we present the results of numerical experiments
on ARP using the D-Wave machine and the Hamiltonian
constructed in the previous section. To evaluate the impact on
the solution of differences in each input parameter of the problem
(number of buildings, difficulty level for assessment, distribution
of time required for witnessing, etc.), we defined a base case for the
ARP and a derived case in which each input parameter of the base
case was partially modified. In Section 3.1, we describe the specific
Hamiltonian and various input parameters of the base case used in
the numerical experiments. For the base case, we compare the
solutions obtained in the clustering phase in Section 3.2 and the
routing phase in Section 3.3, respectively, and describe whether
there are solutions that do not satisfy the constraints depending on
whether they are in a sparsely populated or urban area.

Here, we used the following two QUBO solvers for numerical
experiments available viaD-Wave Ocean SDK3. The first is called Neal,
a solver using the classical method based on simulated annealing (SA)
[33]. The second, called hybrid_v2, is a hybrid of classical and quantum
methods and is one of the solvers in D-Wave’s HSS that can solve larger
sizes at faster speeds by appropriately decomposing the size of the input
QUBO and performing parallel processing. The latest solver as of
2022 is hybrid_v2, which can handle as input a fully connected graph of
up to 20,000 nodes. In this study, we used the HSS solution for
comparison with the Neal (SA) solution.

The comparison of the SA and HSS solutions obtained with the
aforementioned solver in terms of processing time is given in Section 3.4.
Finally, in Section 3.5, we describe the overall numerical experiments

obtained in the base case and its derivatives. As a summary of the results,
the solution in the clustering phase is feasible in all cases, and some break
solutions occur in the routing phase. The HSS solution in the clustering
phase has a solution time advantage over the SA solution in all cases.

3.1 Settings

In the numerical experiments,multiple cases were set up and verified
for the ARP. The details of the settings are described as follows. The
target area was chosen to be near Kawajiri Station in Kumamoto
Prefecture, Japan, as an example of major earthquake damage in the
past (Figure 1). First, we defined the size of the problem in the clustering
phase as one instance such that 100 visits are divided into 20 clusters. The
instances were configuredwith information on the buildings to be visited
(location, distance between buildings, difficulty level for assessment,
required time, and desired time for witnessing) and the percentage of
corresponding adjuster specs for each instance. To account for the effect
of the different geographic distributions of instances, we prepared
10 instances, as shown in Figure 2. As a practical matter, the
numbers of adjusters and their specs are limited, and considering the
matching constraints between specs and difficulty, it becomes obvious
that if there is a bias in the difficulty levels, a feasible solution in the
routing will not be obtained. Therefore, the adjuster’s spec ratio and the
assessment difficulty ratio were set to be completely common (fixed) in
each instance. In contrast, the time required for witnessing and the
desired time for witnessing were set to change from case to case. The
common settings for case-independent instances are as in Table 1.
Furthermore, we defined the base case as shown inTable 2 for the ratio of
time desired forwitnessing. For each of the settings inTable 2, we defined
cases as a derivation of the base case with each of the parameters changed
except the depot location. Numerical experiments were also conducted
for these cases (details are given in Section 3.5).

FIGURE 1
Map of 16 km radius around Kawajiri Station (the red dot in the
center).

FIGURE 2
Ten instances with different geographic distributions in the base
case.

3 https://docs.ocean.dwavesys.com/en/stable/.
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Furthermore, by setting up numerical experiments as
described previously, Hdiv and Hmatching in Eq. 13 can be
written down specifically, respectively. Thus, the Hamiltonian
Hsim

clustering(x) of the clustering phase in the numerical
experiment is as follows:

Hsim
clustering x( )� A ∑K−1

k�0
∑
uv( )∈E

Duvx
k
ux

k
v + B ∑N−1

n�0
1 − ∑K−1

k�0
xk
n

⎛⎝ ⎞⎠2

+D ∑K−1
k�0

M − ∑N−1

n�0
xk
n

⎛⎝ ⎞⎠2

+C ∑K−1
k�0

∑
n ∈ AM

enx
k
n

⎛⎝ ⎞⎠2

+ ∑
n ∈ PM1

enx
k
n

⎛⎝ ⎞⎠2

+ ∑
n ∈ PM2

enx
k
n

⎛⎝ ⎞⎠2⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭

+E ∑
n∈Hard

∑
k ∈ High

xk
n − 1⎛⎝ ⎞⎠2

+ ∑
n∈Normal

∑
k ∈ High ∪ Middle

xk
n − 1⎛⎝ ⎞⎠2⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭,

(21)

where N = 100, K = 20, andM = 5 correspond to the total number of
visits, the total number of clusters, and the number of elements per
cluster, respectively, and Dμ] represent the distance matrix between
visits μ and ]. We used A = 1, B = D = E = max(Duv) × K × 2, C = 60
for each coefficient.

Similarly, the desired time constraint in Eq. 20 can be specifically
written down, and the Hamiltonian Hsim

route(x) for the routing phase
in the numerical experiment becomes

Hsim
route x( ) � ∑

1#a≠b#N
1#τ#T−1

nab − μ

ρ
× xτ+eab ,axτ,b + λ ∑

1#δτ#eab−1
xτ+δτ,axτ,b

⎛⎝ ⎞⎠

+λ ∑
1#a< b#N
1#τ#T

xτ,axτ,b + ∑
1#a#N

1#τ≠τ′#T

xτ,axτ′,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+λ ∑
1#a#N

1< τ#ea,depot−1

xτ,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + λ ∑

1#a#N
T−edepot,a#τ#T

xτ,a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+λ⎧⎨⎩ ∑
a∈AM

∑
τ ∈ AM

xτ,a − 1⎛⎝ ⎞⎠2

+ ∑
b∈PM1

∑
τ ∈ PM1

xτ,b − 1⎛⎝ ⎞⎠2

+ ∑
c∈PM2

∑
τ ∈ PM2

xτ,c − 1⎛⎝ ⎞⎠2⎫⎬⎭, (22)

where N = 5 and T = 324 correspond to the number of buildings per
cluster and the number of time intervals, respectively, and ∑a∈AM

TABLE 1 Common settings for each instance.

Item Detail Note

Depot Kawajiri Station Examples of past disasters

Operating hours 9:00–17:00 Not considering lunch break

Number of cases per adjuster 5 Synonymous with the number of elements per cluster

Difficulty levels Hard/normal/easy Assuming three levels

Adjuster’s specs High/middle/low Assuming three typesa

Desired time for witnessing AM/PM1/PM2 Assuming three zonesb

Adjuster spec ratio 2:3:15 high:middle:low in this order

Difficulty level ratio 6:16:78 hard:normal:easy in this order

Average travel speed of adjuster 40 km/h Assuming general road travel by vehicle

aHigh can assess all three difficulty levels mentioned previously, middle can assess normal and easy, and low can assess only easy.
bWe define AM = 9:00–11:30, PM1 = 12:00–14:00, and PM2 = 14:30–16:30 and assume that all visits have one desired time for witnessing each.

TABLE 2 Settings for each instance in the base case.

Item Detail

Depot location Center of distribution

Distribution radius of buildings 16.0 km

Number of buildings 100

Number of adjusters (clusters) 20

Ratio of desired time for witnessing AM:PM1:PM2 = 40:30:30

Ratio of required time for witnessinga 0.5 h:1.0 h:1.5 h = 75:23:2

Unit time in TS-TSP Δt = 0.25 (#τ = 32)

aThe time required for witnessing is assumed to be proportional to the total area of the building, with 0.5 h being less than 100 m2, 1.0 h being between 100 m2 and 200 m2, and 1.5 h being

between 200 m2 and 300 m2 (h represents hours).

4 As the total operating hours is 8 h (Table 1) and the unit time is Δt = 0.25
(Table 2), the number of time intervals is 8/0.25 = 32, according to the
correspondence Eq. 14.
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means taking the sum for building a such that the desired time for
witnessing is the AM zone (the same for PM1 and PM2). nab in the
first term can be obtained using the distance matrix Dab and Eq. 15.
We took λ = 40 for the coefficient.

3.2 Clustering

Here are some of the clustering results for each instance in the
base case using the Hamiltonian in Eq. 21, accounting for the
matchings of adjusters and buildings and dispersion in the
required and desired time for witnessing.

Figure 3 shows5 a portion of the clustering results for instance
No. 1 of the base case. The red point cloud in Figure 2, an example of
an urban area, color-coded by clusters to visualize the location
relationships and the data for each of the same clusters, is shown in
Table 3. The distances between buildings in the cluster are short
because of the high density near the depot, but the buildings closest
to each other are necessarily not in the same cluster, which means
the difficulty and spec correspondence and dispersion of desired and
required time for witnessing are considered. For clusters other than
those shown in Figure 3 and Table 3, the matching conditions for
adjusters (clusters) and buildings were satisfied, and the required
time and desired time for witnessing were appropriately distributed.
There was no solution that did not satisfy the constraints (we call
such a solution “break solution”) for either the SA or HSS solutions.
No break solution occurred in all other instances, including sparsely

populated areas, confirming that a feasible solution was obtained
during the entire clustering phase.

3.3 Routing

Here are some of the results of route optimization using Eq. 22
for the results of the clustering described in Section 3.2. In the
routing phase, unlike the clustering phase, some cases occurred
where feasible solutions were not obtained, so we also addressed
such solutions.

Figure 4 visualizes the solution of route optimization for one
cluster belonging to instance No. 1, corresponding to the top five
clusters in Tables 3, 4 summarizes the travel time in the travel order
for each visit. As shown in the chart, the route departs from the
depot and returns to the depot within 8 h and is such that the desired
time for witnessing each visit is satisfied. In addition, it was
confirmed that all the route optimization solutions for the other
clusters in instance No. 1 are also feasible.

Conversely, only in instance No. 9, the brown point cloud in
Figure 2, break solutions occurred in 2 out of 20 clusters. Figure 5
visualizes one of the clusters in instance No. 9, which is one of the
solutions for which the constraint was broken. Table 5 summarizes
the travel time for each building in order of travel; the desired time
zone for witnessing the fourth visit is AM, but as a solution, it arrives
at PM1, which breaks the desired time constraint. Similarly, for the
other break solution, the break of the desired time constraint
occurred in a cluster in a sparsely populated area far from the
depot, resulting in a solution with a relatively long total travel
distance. For these solutions, optimization with only the

TABLE 3 Data for each of the three clusters in instance No. 1 of the base case:
the top five, middle five, and bottom five points belong to different clusters
(corresponding to red, blue, and green in Figure 3).

Desired time Difficulty Required
time (h)

Adjuster’s
spec

AM Normal 0.5 High

PM2 Easy 1.0 High

PM1 Hard 0.5 High

AM Hard 0.5 High

PM1 Normal 0.5 High

AM Hard 0.5 High

PM2 Hard 0.5 High

AM Normal 0.5 High

PM1 Hard 0.5 High

PM1 Hard 0.5 High

AM Normal 1.0 Middle

AM Normal 0.5 Middle

PM2 Normal 0.5 Middle

PM2 Normal 0.5 Middle

PM1 Normal 1.0 Middle

FIGURE 3
Location of the three clusters in instance No. 1 of the base case.

5 For ease of viewing, the figure shows only three of the 20 clusters
contained in each instance.
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constraint term after excluding the cost term, the first term in Eq. 22,
did not break, suggesting that the trade-off between travel time
minimization and desired time constraints is more pronounced in
the case of long total travel distances.

3.4 Processing time

In the base case, we measured processing times in the two
phases of the numerical experiment, the clustering and routing
phases, and compared the differences between the solvers. The
processing time was defined as the QUBO computation and
solving time for both clustering and routing, both for one
instance (for clustering, the process of dividing 100 buildings
into 20 clusters of 5 elements each; for routing, the routing
process for 20 clusters). The results are shown in Table 6. The
processing time variation in clustering is small for HSS but large

for routing. HSS, including quantum annealing, is superior in
clustering, whereas SA is superior in the routing phase. The reason
for these differences is that HSS performs quantum annealing
while dividing QUBO according to the problem size, which is
effective for large problems. However, extra processing time is
presumably required for too small problems. The advantages of
HSS will become even more effective when the problem size per
processing unit increases during the routing phase.

For the break solution in the routing described previously, no
feasible solution was obtained by HSS instead of SA. The break
solution occurred even when the entire routing phase was solved
with HSS from the beginning, and the same was true when both
clustering and routing phases were solved consistently with HSS.
Focusing especially on the clustering phase, where the superiority of
the HSS solution was confirmed in terms of processing time, the
percentage of solutions with the smaller energy value is shown in
Table 7. The largest energy difference occurred at instance No. 6,

FIGURE 4
Route visualization for cluster No. 1 in instance No. 1 of the base
case (paths are represented by red, green, blue, light blue, purple, and
yellow in that order).

TABLE 4 Route optimization results for cluster No. 1 at instance No. 1 in the base case.

Itinerarya Travel time (h) Arrival time (h) Arrival time zone Desired time zone Required time (h)

Depot — — — — —

1 0.25 1.5 AM AM 0.5

4 0.25 2.25 AM AM 0.5

2 0.25 4.25 PM1 PM1 0.5

3 0.25 5.0 PM1 PM1 0.5

5 0.25 6.5 PM2 PM2 1.0

Depot 0.25 6.75 — — —

aThe number (1, 2, 3, . . .) in the itinerary column is the ID of the building, not the order of the visits. The order of visits is from the top to the bottom of the column.

FIGURE 5
Route visualization for the break solution in instance No. 9 of the
base case (paths are represented by red, green, blue, light blue, purple,
and yellow in that order).
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yellow dots in Figure 2, where the HSS solution was 4.6% smaller
than the SA solution in terms of magnitude. However, this level of
energy difference is considered to have a small impact on the routing
phase solution because there are cases where the break solution
occurs in the routing phase, regardless of whether the HSS or SA
solution is used in the clustering phase.

In this paper, clustering is performed in the form of assigning a
building to each adjuster, so even if a feasible solution is obtained in the
clustering phase, the impact of the solution will strongly affect the next
routing phase. To reduce this effect, for example, let us consider the case
where the number of elements in one cluster increased. In this form of
TS-VRP, a route optimization in which several people visit dozens of
buildings, it may be possible to reduce the number of break solutions in
the HSS solver and reduce the processing time. Mitigating the
constraints that the solution of the clustering phase imposes on the
next routing phase is a topic for future work.

3.5 Results of other cases

A list of changes from the base case for each case is shown in
Table 8. The application of the results of five numerical experiments,

each with SA for all cases, is shown in Table 9. Here, the processing
time is calculated by the total processing time of the clustering and
routing phases according to Table 6. The percentage of break
solutions means the percentage of the total 200 route
optimization solutions. In all cases, the changes in each setting
value affected the processing time and solution quality. However,
especially for case #4, although the processing time was reduced, the
quality dropped significantly due to many broken solutions in the
final routing phase caused by the increase in unit time in route
optimization. There are instances of urban and sparsely populated
areas in the numerical experiments. Particularly, in the former,
where buildings to visit are relatively close to each other, a too large
unit time would have a negative impact on the routing optimization.
Therefore, an appropriate value for the problem setting should be set
like the unit time of route optimization. It was also found that when
there is no significant bias in the desired time zone, as in #1 and #2, a
feasible solution is sufficient in the area within a radius of 16 km. For
cases such as #5–#7, where there is a significant bias in the desired
time zone, the Q2Q approach requires measures to ease the
constraints on the routing solution by adjusting the size of the
solution passed between the two phases, as described in Section 3.4.
As also discussed in Section 3.4, the HSS has advantages, at least in

TABLE 5 Example of break solutions for route optimization results at instance No. 9 in the base case. The meaning of the “Itinerary” column is the same as in
Table 4. A fourth visit breaks the desired time constraint.

Itinerary Travel time (h) Arrival time (h) Arrival time zone Desired time zone Required time (h)

Depot — — — — —

3 0.75 2.5 AM AM 0.5

2 0.5 3.5 PM1 PM1 0.5

1 0.25 4.25 PM1 PM1 0.5

5 0.25 5.0 PM1 AM 0.5

4 0.25 5.75 PM2 PM2 1.0

Depot 0.25 7.0 — — —

TABLE 6 Processing time for each solver in each phase.

Phase Problem size Number of problems Processing timea (min)

Neal (SA) HSS

Clustering 20 × 100 1 0.6 ± 0.1 0.4 ± 0.0

Routing 32 × 5 20 (sequential) 3.1 ± 0.0 5.8 ± 1.0

aThe numerical experiments were run five times to measure the time.

Bold is used to mean the better value.

TABLE 7 Energetic advantage of each solver in the clustering phase.

Phase Problem size Number of problems Maximum energy difference (%) Percentage of
solutions with low

energy (%)

Neal HSS

Clustering 20 × 100 10 4.6 30 70

Bold is used to mean the better value.
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clustering. Therefore, when HSS is used for severe cases such as #2,
#7, and #8, it may be possible to suppress break solutions.

Conversely, it is also important in real-world problems to
consider multiple targets for optimization. In this paper, we
aimed to optimize total travel time and total witnessing time, but
various optimization targets depend on the needs, such as
optimization to minimize the number of adjusters to
be dispatched or optimization to complete all witnessing in a
minimum number of operating days at the expense of operating
time. These will be discussed in future prospects.

4 Conclusion

We formulate a real-world problem, the adjuster route
optimization problem (ARP) in a QUBO form, and propose a
method to solve it using quantum annealing. ARP is an
optimization problem that extends VRP and can be solved using a
2-phase-heuristics approach, as in [23]. In the clustering phase, to
determine the buildings to be witnessed by the adjuster, constraints
were introduced to achieve adjuster/building matching and distribute
the required and desired time for witnessing without bias for the next
routing phase. In the routing phase, to determine the order of
witnessing by the adjuster, the constraint was introduced to satisfy

the desired time for witnessing that each building has. These
constraints may be applicable not only to ARP but also to other
real-world problems related to VRP.

Furthermore, we confirmed that our formulation works
correctly by conducting numerical experiments using the actual
quantum annealing machine D-Wave. We also confirmed the
superiority of D-Wave Leap’s Hybrid Solver Service over classical
algorithms. We hope that our research will help speed up witnessing
operations during disasters using quantum computers.

While the constraints introduced in this paper alone are
sufficient to make the model practical, additional conditions will
likely need to be considered to actually implement the model in
witnessing operations. For example, it may be necessary to consider
break times, such as lunch (this can be realized by “state” in [32]), or
routes that cannot be taken in the event of a disaster in the distance
matrix. It is also a challenge to add and validate constraints to the
model that may be necessary in the future.
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TABLE 8 Differences between the base case and other cases.

# Difference Base value Modified value

1 (base) — — —

2 Large distribution radius 16.0 km 32.0 km

3 Fewer buildings and adjusters (# of buildings, # of adjusters) = (100, 20) (50, 10)

4 Large unit time Δt = 0.25 0.5

5 Busy in AM AM:PM1:PM2 = 40:30:30 60:20:20

6 Busy in PM1 AM:PM1:PM2 = 40:30:30 30:50:20

7 Busy in PM2 AM:PM1:PM2 = 40:30:30 30:20:50

8 Visits with large areas 0.5 h:1.0 h:1.5 h = 75:23:2 35:62:3

TABLE 9 Summary of numerical experimental results in each case.

# Difference �Ta (min) Presence of break sol. # of sol. �Vb Summary

1 (base) — 3.7 ± 0.1 1 out of 5 2 (1%) 0.33 —

2 Large radius 3.8 ± 0.2 5 out of 5 9 ~18 (4.5% ~9%) 0.36 Break sol. increased

3 Fewer buildings 1.7 ± 0.0 1 out of 5 2 (1%) 0.34 Computation time reduced

4 Large unit time 1.9 ± 0.2 5 out of 5 17 ~42 (8.5% ~21%) 0.34 Computation time for route optimization reduced

5 Busy in AM 3.8 ± 0.2 5 out of 5 7 ~17 (3.5% ~8.5%) 1.05 AM break sol. increased

6 Busy in PM1 3.9 ± 0.2 1 out of 5 1 (0.5%) 0.63 Very few break sol.

7 Busy in PM2 3.9 ± 0.2 5 out of 5 26 ~45 (13% ~22.5%) 0.64 PM2 break sol. increased

8 With large areas 4.0 ± 0.1 5 out of 5 6 ~18 (3% ~9%) 0.28 PM2 break sol. increased

a�T means average processing time.
b �V means average variance of desired time.
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