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Early smoke detection using Digital Image Processing technology is an important
research field, which has great applications in reducing fire hazards and
protecting the ecological environment. Due to the complex changes of color,
shape and size of smoke with time, it is challenging to accurately recognize
smoke from a given image. In addition, limited by domain shift, the trained
detector is difficult to adapt to the smoke in real scenes, resulting in a sharp
drop in detection performance. In order to solve this problem, an unsupervised
domain adaptive smoke detection algorithm rely on Multilevel feature
Cooperative Alignment and Fusion (MCAF) was proposed in this paper. Firstly,
the cooperative domain alignment is performed on the features of different
scales obtained by the feature extraction network to reduce the domain
difference and enhance the generalization ability of the model. Secondly,
multilevel feature fusion modules were embedded at different depths of the
network to enhance the representation ability of small targets. The proposed
method is evaluated on multiple datasets, and the results show the effectiveness
of the method.
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1 Introduction

Natural disasters have always been the main cause of power grid failures. Among them,
forest fires are easy to cause serious failures of multiple transmission lines due to coupling,
causing irreparable losses to power equipment, posing a great threat to the safe operation of the
power system, and even affecting people’s normal life. The early occurrence of wildfire is often
accompanied by the rise of smoke. Therefore, smoke detection is an important method to
effectively avoid fire hazards.

Thanks to the rapid development of deep learning [1–6] and the wide applications in other
computer vision tasks such as image fusion [7], image dehazing [8] and semantic segmentation
[9], the performances of smoke detection have been remarkably improved in recent year, there
are still many difficulties to detect smoke in real time. Usually, the training of deep learning
models requires a large amount of data, it is extremely difficult to collect thousands of smoke
images and manually label in actual scenes. Some researchers have proposed synthetic smoke
datasets [10] to make up for this defect. However, due to the domain gap between the synthetic
smoke and the real scene smoke, the performance of the detection model is limited. Figure 1
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shows the synthetic smoke and real smoke, there is a large difference
between them. In the real scene, due to the unknown weather
conditions, it is easy to cause the color, shape and transparency of
smoke to change, so that the smoke obtained by the acquisition
equipment has differences in resolution, view and brightness,
which further increases the difficulty of real-time detection of
smoke and fire. It is necessary to study an algorithm that can
transfer the knowledge learned from a labeled dataset (source
domain) to another unlabeled dataset (target domain).

One approach to solve this problem is Unsupervised Domain
Adaptive Object Detection (UDAOD) [11], which aims to adapt the
detector using labeled source data and unlabeled target data to alleviate
the performance degradation by learning a feature representation that
is not affected by domain gap. Existing UDAOD methods can be
classified into: style transfer based methods [12–14], self-training
based methods [15,16], and domain alignment based methods
[17–19].

The method based on style transfer usually uses GAN [20] to
transfer the style of the target domain image to the source domain
image, and then uses the transformed image to supervise training the
detection network, to reduce the domain shift caused by the style
difference. However, the smoke image obtained in the real scene has
complex background, the image generated by style transfer is different
from the real image to some extent, and GAN increases the calculation
amount of the model, the final detection performance is highly
dependent on the quality of the generated image. Therefore, such
methods cannot be well applied to the smoke detection task in the
actual scene.

The method based on self-training generally trains the detection
model with the source data, then inputs the target data to predict
pseudo-label, and finally fine-tunes the model with the pseudo-labels.
However, the shape, color and background of smoke in the real scene
are not fixed, which is easy to make the predicted pseudo-labels have
noise. Fine-tuning the model with noisy pseudo-labels will reduce the
detection performance of the model.

Domain alignment based methods achieve feature alignment by
adversarial learning. Although such methods have achieved
considerable improvement, they align the boundary distribution of
the two domains without considering the category information, which
may lead to incorrect alignment of samples from different categories of
the source domain and the target domain, thus failing to train the best

model. The detection category of this work is only smoke, so the above
problem does not exist. Existing methods consider the alignment of
global features, while this paper aligns features of different scales.

The existing smoke detection work [21,22] pays little attention to
cross-domain detection. In order to solve the problems faced by smoke
detection in real scenes, this paper proposes a domain adaptive smoke
detection algorithm based on multi-level feature fusion and alignment.
Specifically, considering the problem of small and fuzzy smoke caused by
long shooting distance, the algorithm proposes a multi-level and multi-
scale feature fusion strategy to enhance the feature representation ability
of the model for small targets. In addition, in order to reduce the domain
difference, the algorithm proposes amulti-level feature alignment strategy
to reduce the distribution difference between the source domain and the
target domain on different levels of features. Comparedwith the two-stage
object detection method, the proposed method is based on YOLOv5 [23],
which does not require candidate box prediction and screening, and
improves the detection speed.

The main contributions of this paper contain:

• A Multilevel Feature Cooperative domain Alignment method is
proposed to reduce the data distribution difference between the
source domain and the target domain at the multi-scale feature
level.

• A Multilevel Feature Fusion method is proposed to enhance the
feature representation ability of small target smoke by fusing
features of different scales at different levels of the network.

• The proposed method can perform end-to-end training and
detection without additional candidate box calculation and
screening, which ensures the training and detection efficiency
of the model.

2 Related work

2.1 Object detection

Object detection is a task to classify and locate objects for a
given image, which is one of the important research contents in
Computer Vision. Recently, deep learning based methods can be
divided into two-stage object detection and single-stage object
detection.

FIGURE 1
(A) Real smoke and (B) synthetic smoke. Real smoke has variable color and shape, while synthetic smoke [10] has relatively fixed shape and color.
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The two-stage object detection algorithm include two steps: the
first step generates the candidate regions, and the second step classifies
the candidate regions and regress their positions. The basic idea is to
generate regions with high recall such that all objects on the image
belong to at least one candidate region. In the second step, the
candidate regions generated in the first step are classified by a deep
model. Typical two-stage object detection algorithms include R-CNN
[24], SPP-net [25], Fast R-CNN [26], Faster R-CNN [27], etc. Due to
the large number of candidate regions generated by these algorithms,
there are more repeated information and more invalid regions, which
leads to large amount of calculation and slow detection speed.

Because the two-stage method needs to process a large number of
candidate regions in turn, the detection speed is generally slow. To solve
this problem, the one-stage object detection algorithm came into being.
Compared with the two-stage object detection algorithm, the one-stage
object detection algorithm does not need to generate candidate regions,
and directly returns the object category and location on the input image,
so the detection speed is faster, but the accuracy is slightly worse. Typical
one-stage object detection algorithms include YOLO [28], SSD [29], etc.

2.2 Domain adaptation for object detection

Domain adaptation has been widely studied in Computer Vision.
The object detection method based on deep learning is affected by the
domain shift, and the network trained on one dataset often performs
poorly on other datasets, which is often encountered in real scenarios.
Unsupervised Domain Adaptive Object Detection (UDAOD) [30]
aims to reduce the domain gap between training data and test data and
improve detection performance. Existing UDAOD methods can be
divided into: style transfer based methods, self-training based
methods, and domain alignment based methods.

Object detection based on style transfer is a popularmethod in the past
few years, and the representative literatures of this kind of method are
[12–14].Hsu et al. [12] proposed a progressive domain adaptationmethod,
which decomposed the problem into two subtasks. Firstly, based on Cycle-
GAN [31], synthesized an intermediate domain located in the distribution
of the source domain and the target domain, and then adopted a
progressive adaptation strategy to gradually narrow the domain gap
through the intermediate domain. Inoue et al. [13] believe that the

FIGURE 2
The pipeline of our proposed method. See the experiment section for more network details.
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differences between the source and target domains mainly lie in their
underlying features, such as color and texture. By generating similar images
with the target domain images based on Cycle-GAN to capture these
differences, and then fine-tuning the fully supervised trained detector use
the generated images to make the detector robustly to these differences.
Kim et al. [14] proposed a two-stage method of Domain Diversification
and Multi-domain Invariant Representation Learning to alleviate pixel-
level and feature-level domain differences at the same time. In the Domain
Diversification stage, samples with different domain differences are
generated from labeled source domain data to improve the adaptability
of the model. Suchmethods alleviate the impact of domain differences to a
certain extent, but the introduced GAN network increases the amount of
computation, and the accuracy of the detector highly depends on the
quality of the generated image, which is not suitable for real scenes.

Self-training based object detection [15,16] generally predicts pseudo-
labels in the predicted target domain, and then uses the predicted pseudo-
labels to fine-tune themodel. However, the noise contained in the pseudo-
labels will have a negative impact on the performance of the model. Kim
et al. [15] proposed a weak self-training method to reduce the adverse
effects of inaccurate pseudo-labels and stabilize the learning process.
RoyChowdhury et al. [16] proposed an improved knowledge distillation
loss by using existing high-confidence detectors to directly obtain the
pseudo-labels of the target domain, and studied several methods to assign
soft labels to the training samples of the target domain.

Object detection based on domain alignment [17–19] is one of
the more commonly used methods. Wu et al. [17] proposed a
disentangled representation method based on vector
decomposition, attempting to disentangle the representation of
domain-invariant features and domain-specific features, to realize
domain alignment. Saito et al. [18] proposed a weakly alignment
model, which uses adversarial learning to focus the adversarial
alignment loss on globally similar images and pays less attention to
globally dissimilar images. Zhu et al. [19] believe that the
traditional domain adaptive method to align the whole image,
while the object detection essentially focuses on the region of
interest (local region), and propose to only focus on the relevant
region and perform domain alignment.

2.3 Smoke detection

In recent years, researchers have proposed many smoke detection
algorithms based on deep learning. Yin et al. [32] proposed a
convolutional neural network with depth normalization to

automatically extract smoke features and classify them, which
reduced the influence of smoke shape and color to a certain extent.
In order to further solve the problem of smoke shape and color
changes, Gu et al. [33] proposed a dual-channel neural network by
successively connecting multiple convolutional layers and Max
pooling layers. A batch normalization layer is then selectively
attached to each convolutional layer to prevent overfitting and
speed up training. zhao et al. [34] proposed that the depth-wise
separable method with fixed convolution kernel instead of training
iteration was used for smoke detection, which could improve the speed
of the algorithm and meet the requirements of real-time fire
propagation for speed detection [21]. proposed a Convolutional
Neural Network (CNN) -based smoke detection and segmentation
framework for clear and hazy environments, employing EfficientNet
for better smoke detection [35]. proposed a smoke detection method
in normal and foggy weather that combines attention mechanism with
feature-level and decision-level fusion modules. An attention
mechanism module combining spatial attention and channel
attention was proposed to solve the problem of small smoke
detection. Secondly, a lightweight feature-level and decision-level
fusion module is proposed, which can not only improve the
recognition ability of similar objects such as smoke and fog, but
also ensure the real-time performance of the model. Zhan et al.
[36] proposed a recursive pyramid network with deconvolution
and dilated convolution to solve the problem of low detection
accuracy caused by high smoke transparency and unclear edges.

Most of the existing smoke detection methods are trained and
tested on the same dataset, combined with practical application, this
paper focuses on smoke detection in real scenes, and proposes a
domain adaptive smoke detection algorithm based on Multilevel
feature Cooperative Alignment and Fusion.

3 Proposed method

The structure of Multilevel feature Cooperative Alignment and
Fusion (MCAF) algorithm is shown in Figure 2. The algorithm takes
YOLOv5 [23] object detection network as the baseline, and is
composed of Multilevel Feature Cooperative Alignment module
(MFCA) and Multilevel Feature Fusion module (MFF). Specifically,
for the given smoke image in the source domain and the target
domain, Backbone (denoted as E) is used to extract smoke-related
features, and then domain alignment is achieved through the
cooperation between multi-scale classifiers W0, W1, W2 in MFCA

FIGURE 3
Training process. (A) Update Wo, (B) Fixed Wo and update E.
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to reduce the domain differences between the source and target
domain features, where, W0, W1, W2 has the same structure, which
are consists of a global average pooling, fully connected layer. The
difference is that their input feature sizes are not the same. Finally, in
the Neck of the detector network (The object detectors developed in
recent years often insert some layers between the backbone and the
detector, people usually call this part the Neck of the detector) embed
feature fusion module at different positions to make the obtained
features better adapt to targets of different sizes. Through the end-to-
end training of MCAF algorithm, a better detection effect is obtained.

3.1 Model pretrain

In order to make the smoke detection network adapt to real
scenarios, pre-training is carried out first. The smoke data in the
source and target domains are defined as Xs � {xsi }N

s

i�1 and X
t � {xti }N

t

i�1,
where xsi and xti denote the ith sample of the training set in the source
and target domains, respectively, Ns and Nt denote the number of
training samples in the source and target domains, respectively.
During training, the object detection network is optimized by
minimizing the following loss function,

LYOLOv5 � Lclass + Lobj + Lloc (1)
where LYOLOv5 denote the total loss function of YOLOv5 [23]. Lclass,
Lobj, Lloc denote the classification loss, confidence loss and localization
loss, respectively.

In addition, in order to make W0, W1, W2 have the ability to
distinguish features from the source domain or the target domain, the
following loss function is minimized to optimize,

Lid Wo( ) � ∑
2

o�0
CE Wo Eo xsi( )( ), y0( ) + CE Wo Eo xti( )( ), y1( ) (2)

where CE (·) denotes the cross-entropy loss, Eo (o = 0, 1, 2) denote the
features output by different network depths of E (the details can be
seen in Figure 2), y0 = 0 and y1 = 1 denote the domain labels of the
source and target domains, respectively.

Throughmodel pre-training, the object detection network has a basic
detection ability andW0,W1,W2 can distinguish the source domain and
target domain samples. However, when testing on unseen smoke datasets,
the detection performance will drop sharply due to the domain shift
between different datasets. In order to reduce the data distribution
difference between the source domain and the target domain, this
paper proposes Multilevel Feature Cooperative Alignment module.

3.2 Multilevel feature cooperative alignment
(MFCA)

In order to mitigate the impact of inter-domain differences, this
paper proposes a Multilevel Feature Aooperative domain Alignment
module. The gap between the source and target domains is narrowed
by adversarial learning between E and W0, W1, W2. In theory, if the
extracted features from source and target domain do not have

FIGURE 4
The structure of Fusion model.
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differences, W0, W1, W2 should not be able to distinguish the source
domain and the target domain. By minimizing the following loss
function to realize,

Ladv E( ) � ∑
2

o�0
CE Wo Eo xsi( )( ), y1( ) + CE Wo Eo xti( )( ), y0( ) (3)

At this time, the parameters of E (where E include E0, E1, E2) are
updated by fixing the parameters of W0, W1, W2, and the source
domain and target domain features are cross-constrained by domain
labels. In this way, the extracted features are trained to adapt to the
source domain and target domain, and the effect of domain alignment
is achieved. The training process is shown in Figure 3. It is worth
noting that, this paper not only uses the above way to mitigate the
domain differences in the final features of Backbone, but also
constrains the intermediate features of Backbone at the same time,
and finally alleviates the impact of domain differences through the
cooperative alignment of multi-level features.

3.3 Multilevel feature fusion (MFF)

In real scenes, smoke changes with time in different colors and
shapes, which increases the difficulty of feature extraction. In order
to improve the robustness of smoke features, this paper proposes to
embed a Multilevel Feature Fusion module (MFF) in the Neck part
of the detection network, the design of this module is shown in
Figure 4.

Specifically, for the feature map F output by C3_1 module in Neck,
it is divided into two branches. Follow CBAM [37], the first branch is
enhanced by Channel Attention Module (CAM) and Spatial attention
module (SAM), and the second branch is enhanced by
1×1 convolutional layer (Conv1×1) to adjust the feature
dimensions and increase the non-linear mapping ability of the
network. The deep features are further extracted, and then the
correlation matrix A is calculated for the features of the two branches,

A � Sigmoid Conv SAM CAM F( )( );Conv F( )[ ]( ) (4)
where, Sigmoid (·) represents the sigmoid activation function, F
represents the output of C3_1 module in Neck, [a; b] denotes
concatenation of a and b, Conv denotes 1×1 convolution, SAM
and CAM denote spatial attention module and channel attention
module, respectively. The relation matrix A reflects the relationship
between the corresponding positions of the feature maps obtained by
the two branches, and the larger the value is, the more important it is.
Finally, the feature maps of the two branches are fused by the following
operations, and the fused features FFusion are used as the input of the
later network layer.

FFusion � Conv A ⊗ FSAM; 1 − A( )Conv F( )[ ]( ) ⊕ F (5)
where, FSAM = SAM(CAM(F)) denotes the output of the spatial
attention module, ⊗ denotes element-wise multiplication, and ⊕
denotes element-wise addition. It can be seen that the proposed
fusion module adaptively adjusts the contribution of the two
branches at the corresponding positions of A and 1-A, so as to

FIGURE 5
The details of the C3 module, SPPF module and other module in Figure 2.
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achieve a better fusion effect, and finally improve the robustness of
smoke features and enhance the representation ability of small target
smoke.

3.4 Optimization

By considering all the loss functions jointly, the objective function
in this paper is as follows,

Ltotal E,Wo( ) � LYOLOv5 + Lid Wo( ) + Ladv E( ) (6)
Firstly, the detection network and classifier are trained to have the
basic smoke detection ability and the ability to distinguish the source
domain and the target domain by LYOLOv5 and Lid (Wo), respectively.
Then, the adversarial learning strategy is used to alleviate the
differences between the source domain and the target domain
through Ladv(E).

4 Experiments

In order to prove the effectiveness of the proposed method
(MCAF), this chapter carries out a large number of experiments.
Firstly, the data set used in the experiment is introduced, and then the
performance of the proposed method is compared with that of
classical object detection algorithms. Finally, the effectiveness and
superiority of the proposed method are demonstrated by ablation
experiments.

4.1 Datasets and evaluation protocol

The real scene dataset True_smoke (TS) used in this
experiment contains a total of 4,128 images. Among them,
1,275 images were taken from real transmission lines,
2,853 images were taken from google search engine and State

Key Laboratory of Fire Science of University of Science and
Technology of China. The training set and test set were divided
according to a ratio of 7:3, and LabelImg was used for annotation,
and the annotation format was the same as that of the popular
dataset PAS-CAL VOC [38], the annotation information was
stored in the. xml file. In addition, the synthetic datasets
RFdataset (RF) [10] and SFdataset (SF) [10] are also used for
experiments. RFdataset (RF) is synthesized from real smoke and
forest background and contains 12,620 images, where,
3,155 images are used for training and 6,310 images are used
for testing. The SFdataset (SF) is synthesized from simulated
smoke and forest background and contains 12,620 images,
where, 3,155 images are used for training and 6,310 images are
used for testing.

In this paper, Precision, Recall and mean average precision (mAP)
are used as performance evaluation indicators. It is calculated as
follows,

Precision � TP

TP + FP
(7)

Recall � TP

TP + FN
(8)

mAP � 1
N

∑
N

i�1
APi (9)

where, TP is the number of samples correctly predicted as smoke, FP is
the number of samples correctly predicted as smoke, FN is the number
of samples correctly predicted as smoke, N is the total number of
classes, and APi is the Average Precision of class i.

4.2 Implementation details

Considering that the actual application needs to deploy the
algorithm to mobile devices, the YOLOv5s object detection
network is used as the basic framework, and the detailed structure
of each module is shown in Figure 5. In the training phase, the

TABLE 1 Comparison with other methods on RF → TS, RF → SF, SF → TS, and SF → RF. P and R denote Precision and Recall (%),respectively.

Methods RF → TS RF → SF SF → TS SF → RF

P R mAP P R mAP P R mAP P R mAP

YOLOv3 1.79 17.4 12.7 3.69 71.3 78.2 1.33 15.9 8.72 2.85 85.7 59.0

YOLOv5s 21.4 18.6 14.3 84.4 74.6 80.3 16.9 9.77 9.20 64.5 64.8 58.4

Faster-RCNN — — 8.72 — — 65.95 — — 6.23 — — 44.54

MCAF 33.6 23.9 21.6 86.9 82.8 88.5 30.6 17.6 14.3 67.4 66.7 66.0

TABLE 2 The running time of Faster-RCNN and MCAF in several setting.

Methods RF → TS SF → TS

Training time (/h) Testing time (/s) Training time (/h) Testing time (/s)

Faster-RCNN ≈ 14.3 102.6 ≈ 13.5 103.4

MCAF ≈ 1.5 7.2 ≈ 1.3 7.1
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TABLE 3 Ablation study. P and R denote Precision and Recall (%),respectively. MCAF represents the proposed method.

Methods RF → TS SF → TS

P R mAP P R mAP

Baseline 21.4 18.6 14.3 16.9 9.77 9.2

Baseline+MFCA 33.1 20.2 17.2 18.1 16.8 11.2

Baseline+MFF 33.8 20.4 18.6 26.6 14.0 12.3

Baseline+MFCA+MFF (MCAF) 34.6 23.9 21.6 30.6 17.6 14.3
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maximum of epochs is set to 100, in which the first 20 epochs are fore
pretrain. Being similarly to YOLOv5, Mosaic, random cropping,
horizontal flipping, etc., are used for data augmentation. the size of
the input image is uniformly resized to 640 × 640×3 (for length, width
and channel), and the feature maps output by the layer concatenated
with Neck in backbone are used as the input of MFCA module
(specifically, the outputs of the 4th, 6th and 9th layers of backbone
are used as the input of MFCA module). The feature map sizes of the
input three domain classifiers are 80 × 80×128, 40 × 40×256, and 20 ×
20×512, respectively. The three classification networks have the same
structure, consisting of global average pooling and fully connected
layers. In addition, the MFF module is embedded behind the C3_
1 module in Neck. For the training of Backbone, the SGD optimizer
was used with the learning rate set to 0.01 and momentum to 0.3, and
for the training of the three classification networks, the SGD optimizer

was used with the learning rate set to 0.1 and momentum to 0.9. The
batchsize for training and testing both set to 16. This experiment was
performed on pytorch 1.13 [39], and all experiments were done on a
Linux server for NVIDIA GEForce RTX3090Ti.

4.3 Comparison to other methods

At present, there is no public dataset for cross-domain smoke
detection. In addition, existing works are trained under supervised
conditions and cannot be directly compared. The comparison method
in this paper uses more mature object detection methods. These
methods include YOLOv3 [40], YOLOv5s [23], Faster-RCNN [27].
The comparative experimental Settings are RF→ TS, SF→ TS, RF→
SF, SF → RF, (a → b represents a as the source domain and b as the

FIGURE 6
Detection result display. The left is the result of the proposed method, and the right is the result of baseline.
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target domain cross-domain task), and the target domain category and
location labels is unknown during training.

The experimental results are shown in Table 1. It can be seen that
the mAP of the proposed method is much higher than that of classical
object detection methods such as YOLOv3 and faster-RCNN. Such
methods do not consider the inter-domain differences and thus
perform poorly. Compared with YOLOv5s in the four experimental
Settings, the mAP of the method in this paper is increased by 7.3%,
8.2%, 5.1%, 7.6% respectively, indicating that the method in this paper
indeed enhances the ability of the model to extract smoke robust
features.

Table 2 shows the comparison of training and testing time between
the proposed method and Faster-RCNN. It can be seen that
comparing with Faster-RCNN, the proposed method is more
suitable for real-time smoke detection and more efficient.

4.4 Ablation study

This section discusses the ablation study. Firstly, the LYOLOv5-
guided optimized network is considered as Baseline. On the basis of
Baseline, the Multilevel Feature Cooperative Alignment module and
the Multilevel Feature Fusion module are gradually added, which
proves that they are helpful to improve the performance, the results
can be seen in Table 3. Ablation experiments were performed at RF→
TS and SF → TS.

4.4.1 The effectiveness of multilevel feature
cooperative alignment module (MFCA)

In order to alleviate the domain gap existing in the source
domain and the target domain, a multilevel feature cooperative
alignment module is proposed. By following the adversarial
strategy of E and the domain classifier, removing the gap
between the source and target domain. As shown in Table 3,
Baseline on RF → TS, SF → TS Precision/Recall/mAP
respectively is 21.4%/18.6%/14.3% and 16.9%/9.77%/9.2, When
the Multilevel Feature Cooperative Alignment module is added,
the performance is significantly improved, which proves the
effectiveness of this module.

4.4.2 The effectiveness of multilevel feature fusion
module (MFF)

In order to improve the feature representation ability of small
target smoke, a multilevel feature fusion module is proposed. The
feature fusion module is embedded in different depths of Neck in the
detection network to enhance the features of different scales. As can be
seen from Table 3, after adding the Multilevel Feature Fusion module
on the basis of baseline, the Precision/Recall/mAP on RF→ TS and SF
→ TS Raised to 33.8%/20.4%/18.6% and 26.6% 14.0%/12.3%. The
validity of the module is proved.

As shown in Table 3, when the Multilevel Feature Cooperative
Alignment module and the Multilevel Feature Fusion module are
added to baseline at the same time, the overall performance is
improved, indicating that the proposed method is effective.

In addition, Figure 6 shows the visualization of the detection
results. Clearly, with the embedding of the proposed technique, the
models become more powerful in terms of detection, confirming their
significance.

5 Conclusion

Fire prevention is of great significance to the protection of human
property safety, natural environment and industrial equipment.
Smoke detection is helpful in the early warning of fire, and many
researchers continue to improve the detection algorithm to meet the
needs of this field. In order to adapt to smoke detection in real scenes,
this paper proposes an unsupervised domain adaptive smoke
detection algorithm based on multi-level feature fusion and
cooperative alignment. On the one hand, the difference between
the source domain and the target domain data is reduced by the
cooperative alignment of features at different scales. On the other
hand, by embedding fusion modules at different depths of Neck, the
representation ability of features is enhanced. In this paper, the
module structure, training method, loss function and network
parameter setting of the proposed method are introduced in detail.
The effectiveness of each module is proved by ablation experiments.
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