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The direction-of-arrival (DOA) tracking of underwater targets is an important
research topic in sonar signal processing. Considering that the underwater DOA
tracking is a typical multi-target problem under unknown underwater
environment with missing detection, false alarm, and uncertain measurement
noise, a robust underwater multi-target DOA tracking method for uncertain
measurement noise is proposed. First, a kinematic model of the multiple
underwater targets and bearing angle measurement model with missing
detection and false alarms are established. Then, the multi-target DOA tracking
algorithm is derived by using the cardinalized probability hypothesis density
(CPHD) filter, the performance of which largely depends on the accuracy of
the parameter ofmeasurement noise variance. In addition, the variational Bayesian
approach is used to adaptively estimate the uncertain measurement of noise
variance for each measurement of target in the real time of tracking. Thus, the
robust underwater multi-target DOA tracking is carried out. Finally,
comprehensive experimental validations and discussions are made to prove
that the proposed algorithm can provide robust DOA tracking in the multi-
target tracking scenario with uncertain measurement noise.
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1 Introduction

The direction-of-arrival (DOA) estimation and tracking is an important research topic
in sonar signal processing [1–5]. For the scenario of moving targets, the traditional DOA
estimation methods cut the measurement of the output of sonar array signal into small
periods in time to process, which ignores the kinematic characteristics of the targets [6–8].
The DOA tracking methods not only use the measurement information but also rely on the
kinematic characteristics of the underwater targets [9–18]. Therefore, by not only depending
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on the current measurements but also utilizing the prior kinematic
information of an unknown underwater target, the DOA tracking
methods can provide more robust and accurate results than the
traditional DOA estimation methods.

In view of the advantages of theDOA trackingmethods, researchers
have carried out a lot of work aroundDOA tracking. TheDOA tracking
methods first take the outputs of the sonar array signals or results of the
traditional DOA estimation methods as the measurements. Then,
considering the typical kinematics of the underwater targets, the
kinematic model by the bearing angle is established. Then, based on
the framework of the Bayesian filter theory [19], the bearing angle of the
target can be recursively estimated from the current measurements.
Depending on the bearing angle measurements obtained by the
traditional DOA estimation methods, the Kalman filter (KF) is
always utilized as the DOA tracking algorithm [9, 10] for the linear
relationship between the measurement and bearing angle of the target.
Besides utilizing the bearing angle measurements, some research take
the outputs of sonar array signals as measurements. However, under
such a circumstance, themathematical relationship between the bearing
angle of the target and the measurement is non-linear. For such non-
linear problems, many tracking algorithms based on the non-linear
Bayesian filter have proposed the extended Kalman filter (EKF) [11,
12].The first-order Taylor series expansion of the measurement model
was used to approximate the non-linear model to a linear model. The
unscented Kalman filter (UKF) [20, 21] uses a group of determined
sigma points to linearize the non-linear model. The particle filter (PF)
[22] generates and transforms a large number of arbitrary particles to
represent the distribution of the target state. Thus, the PF can
theoretically achieve accurate tracking in any non-linear tracking
system with any distribution of the uncertainties, while the
computational complexity of the PF stays significant.

Although the tracking techniques are widely utilized in the scenario
of underwater target tracking, most of them are only applicable to the
single-target tracking scenario [9–12, 20–22]. However, the underwater
DOA tracking issue is a typical multi-target tracking scenario where the
multi-target tracking techniques should be considered and proposed.
The methods for multi-target tracking problem can be divided into two
categories: the traditional data associationmethods and randomfinite set
(RFS)–based multi-target tracking methods. The data association
methods establish the association between measurements and targets,
so as to transform the multi-target tracking problem into a single-target
tracking problem to use the abovementioned single-target tracking
methods. However, these data association techniques have to match
every measurement with its target which can make computation highly
complexwith large number of targets or false alarms caused by uncertain
measurement noise [23, 24]. From the beginning of this century, the
RFS-based multi-target tracking methods have developed rapidly to
overcome the drawbacks caused by the data association techniques. The
RFS can be defined by a set with elements along with the number of the
elements which are subjected to random distributions. The RFS-based
multi-target tracking methods define the states and measurements of
targets as RFSs such that the data association procedure can be avoided.
As a result, by utilizing the RFS technique, the computational complexity
of multi-target tracking can be hugely reduced, especially when the
number of targets and false alarms is large. For the RFS-based multi-
target tracking, Mahler first proposed the concept of “first-order
moment filter,” also known as probability hypothesis density (PHD)
filter [25]. Since, the PHD filter has no closed-form solution in general,

Vo et al. [26] proposed sequential Monte Carlo solution for the PHD
filter (SMC-PHD), and Clark et al. [27] proposed the Gaussian mixture
model implementation of the PHD filter (GM-PHD), which push the
PHD filter from theory to application. The GM-PHD filter requires both
the kinematic model of targets and the measurement model to be linear.
The SMC-HD filter represents the distribution of the states of the targets
by generating and transferringmany of the particles, which is suitable for
non-linearmodels. However, the calculation of the particles leads to high
computation overload. Subsequently, Mahler [28, 29] introduced the
cardinality distribution to describe the number of targets on the basis of
the PHD filter to make a more accurate estimation of the number of
targets and proposed the CPHD filter. Similar to the PHD filter, the
CPHD filter also has no closed-form solution in general and has to be
implemented on the basis of the SMC or GM model [30]. Considering
that the computational complexity of the RFS-based method is lower
than that of the data association method, researchers have proposed
many multi-target DOA tracking methods based on the PHD and
CPHD filters [13–16]. These methods use the output of the array signal
as measurements with the non-linear measurement model, thus
implementing them based on SMC.

Due to high-dimension array signal–based measurements and the
large number of particles for the SMC method, the existing RFS-based
multi-target DOA tracking methods get a large computation overload.
Moreover, in the real scenario of underwater tracking, the unknown
ocean environment always results in uncertain measurement noise.
Thus, besides considering the computational complexity,
accomplishing robust and accurate tracking when the measurements
are in a low SNR scenario is also important, especially in the underwater
target tracking case. However, most of the existing DOA tracking
methods assume the measurement noise to be a certain stochastic
process which leads to the degradation of the tracking performance
in the real scenario of uncertain measurement noise. To deal with the
uncertain measurement noise, Zhang et al. [12] derived a robust single-
target DOA tracking method based on the EKF by estimating the
measurement noise covariance matrix (MNCM) by using the improved
Sage-Husa algorithm. By estimating the MNCM in a maximum-
likelihood (ML) framework, the expectation-maximum adaptive
Kalman filter (EM-AKF) was proposed [31, 32]. Sarkka and
Hartikainen [33, 34] assumed the MNCM to be subject to an inverse
Wishart distribution and iteratively estimated the MNCM by using
variational Bayesian approach, namely, the variational Bayesian adaptive
Kalman filter (VB-AKF). Huang et al. [37] assumed the mean square
error matrix (MSEM) to also be subjected to an inverse Wishart
distribution and jointly estimated it along with the MNCM to
improve the performance of VB-AKF. In the existing works, the
superior accuracy and stability of the VB-AKF has been
demonstrated [33–37]. However, the MNCM estimation method has
not been applied to robust multi-target DOA tracking yet. Thus,
considering the uncertain underwater environment and its influences
on the underwater target tracking missions, adopting variational
Bayesian online estimation technique into the multitarget tracking
scenario is inspiring and necessary.

In this article, the bearing angle estimates obtained by using the
traditional DOA estimation method are regarded as the measurements,
and the multi-target DOA tracking algorithm is derived by using the
GM-CPHD filter. Different from most of the existing tracking
algorithms, we considered the uncertain measurement noise caused
by the unknown underwater environment, which always makes a
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certain tracking algorithm diverge. Thus, the variational Bayesian
approach is utilized to estimate the covariance matrix of the
measurement noise along with the states of targets in the framework
of the GM-CPHD filter. In this way, the variational Bayesian GM-
CPHD filter (VB-GMCPHD) for robust underwater multi-target DOA
tracking is proposed for the scenario of robust tracking under uncertain
measurement noise. Finally, the results of the experiment show the
robustness and accuracy of the proposed method in real underwater
multi-target DOA tracking scenario. The contributions of this article are
summarized as follows:

First, the multi-target DOA tracking algorithm is derived by
using the GM-CPHD filter for the real underwater tracking scenario
with missing detection and false alarm.

Second, the issue of uncertain measurement noise is addressed
by using the variational Bayesian approach to estimate the
measurement noise variance. Thus, the VB-GMCPHD for robust
underwater multi-target DOA tracking is proposed.

Finally, the real experimental data is utilized to verify the
superior accuracy and robustness of the proposed method in real
underwater DOA tracking scenario.

The rest of this article is organized as follows: in Section 2, the
problem of underwater multi-target DOA tracking with missing
detection and false alarm is formulated. In Section 3, the GM-CPHD
filter for DOA tracking is described. In Section 4, based on the
variational Bayesian approach, an innovative multi-target DOA
tracking method for uncertain measurement noise scenario,
namely the VB-GMCPHD, is proposed. In Section 5,
experimental validations are made and the results are proved,
demonstrating the superior performance of the proposed VB-
GMCPHD. Finally, the conclusions are drawn in Section 6.

2 Multi-target tracking models

The sets of the states of the targets and the measurements are
assumed to be RFSs. Assuming that nk targets exist within the
detection range of the sonar at time step k and the state of the in-th
target is xink , the set of the states of targets at time step k is expressed
as Xk � x1k, x

2
k, ..., x

nk
k{ }. Let θk denote the bearing angle of the in-th

target (θink is the angle between the target and positive x-axis with
respect to the positive counterclockwise.) and _θ

in
k denote the change

rate of θink , then the state of the in-th target is expressed as
xink � (θink , _θ

in
k )T, where (·)T denotes the matrix transposition.

Since the underwater targets are usually not maneuvering to save
energy and keep concealed, the bearing angles of the targets are
assumed to be subject to the constant velocity (CV) model. The CV
model of the state of the in-th target is expressed as

xink � Fk|k−1x
in
k−1 + Gkwk

Fk|k−1 � 1 T
0 1

[ ],Gk � T2/2
T

[ ]
⎧⎪⎪⎨⎪⎪⎩ , (1)

where Fk|k−1 and Gk are the state transition matrix and the noise
driving matrix, wk denotes the zero-mean Gaussian process noise
with the covariance matrix Qk caused by the unknown
underwater environment, and T is the interval between the
adjacent time steps.

The estimates of the bearing angles of the targets with error
obtained by the traditional DOA estimation methods are taken as

measurements. Considering the probability of missing detection and
false alarm, the number of measurements and the states of the
targets are always different in a multi-target tracking problem. It is
assumed that md

k targets are detected and mf
k false alarms exist,

i.e., mk � md
k +mf

k measurements are obtained at time step k. The
set of measurements at time step k are expressed as
Zk � z1k, z

2
k, ..., z

mk
k{ }. Then the measurement of the idm-th detected

target z i
d
m
k at time step k can be expressed as

z i
d
m
k � Hkx

idm
k + vk, (2)

where Hk denotes the measurement matrix and Hk � [1, 0], vk is
the error of the bearing angle estimate obtained by using
traditional DOA estimation, which is subject to Gaussian
distribution with zero mean and variance of σ2r,k. The false
alarms z1k, z

2
k, ..., z

mf
k

k are assumed to be subject to Poisson
distribution with intensity of κk.

3 GM-CPHD filter for multi-target DOA
tracking

The CPHD filter performs multi-target tracking by
recursively calculating the PHD and the cardinality
distribution to represent the distribution of the states and the
number of the targets, respectively. The closed-form solution of
the CPHD filter is given in the assumption of the linear Gaussian
mixture (GM) model, which is called the GM-CPHD filter. Each
component of the Gaussian mixture model represents the
respective states of the targets [30].

The cardinality distribution pk−1(n) and the PHD vk−1(x) are
assumed to be known, and vk−1(x) is subject to the Gaussianmixture
model as

vk−1 x( ) � ∑Jk−1
i�1
w i( )

k−1N xk;m
i( )

k−1,P
i( )

k−1( ), (3)

where w(i)
k−1 denotes the weight, N(·;m,P) denotes the Gaussian

distribution with the mean of m and covariance matrix of P, and m(i)
k−1

andP(i)
k−1 denote the estimate of the state of the target and themean square

error matrix (MSEM), respectively. Then, the process of the GM-CPHD
filter at time step k is divided into prediction and update as follows:

(1) Prediction

Once the cardinality distribution pk−1(n) at time step k − 1 is
given, the predicted cardinality distribution is expressed as

pk|k−1 n( ) � ∑n
j�0
pΓ,k n − j( )∑∞

l�j
Cj

l pk−1 l( )pj
s,k 1 − ps,k( )l−j, (4)

where Cj
l � l!/(j!(l − j)!), pΓ,k(·) is the cardinality distribution of

birth targets, and ps,k is the probability of targets surviving.
Once the PHD vk−1(x) at time step k − 1 is given, the predicted

PHD is expressed as

vk|k−1 x( ) � vs,k|k−1 x( ) + γk x( ), (5)
where vs,k|k−1(x) and γk(x) denote the PHD of surviving targets and
birth targets, respectively. vs,k|k−1(x) is expressed as
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vs,k|k−1 x( ) � ps,k∑Jk−1
j�1

w
j( )

k−1N x;m
j( )

s,k|k−1,P
j( )

s,k|k−1( ), (6)

where the predicted statem(j)
s,k|k−1 and predictedMSEM P(j)

s,k|k−1 of the
j-th surviving target is given as follows:

m
j( )

s,k|k−1 � Fk−1m
j( )

k−1 , (7)
P

j( )
s,k|k−1 � Gkσ

2
qG

T
k + Fk−1P

j( )
k−1 F

T
k−1. (8)

The PHD of birth targets γk(x) is also subject to the Gaussian
mixture model as follows:

γk x( ) � ∑Jγ,k
i�1
w i( )

γ,kN x;m i( )
γ,k,P

i( )
γ,k( ). (9)

where Jγ,k denotes the number of components of the Gaussian
mixture model for γk(x), and w(i)

γ,k,m
(i)
γ,k, and P

(i)
γ,k denote the weight,

state, and MSEM of the i-th birth target, respectively.
According to Equations 5, 6, and 9, the predicted PHD can be

expressed as follows:

vk|k−1 x( ) � ∑Jk|k−1
i�1

w i( )
k|k−1N x;m i( )

k|k−1,P
i( )

k|k−1( ), (10)

where w(i)
k|k−1, m

(i)
k|k−1, and P(i)

k|k−1 denote the weight, predicted estimate
of the state, and predicted MSEM of the i-th target, respectively.

(2) Update

The cardinality distribution pk(n) and PHD vk(x) at time step k
are obtained by using the measurement set Zk to update pk|k−1(n)
and vk|k−1(x) as follows:

pk n( ) � Ψ0
k wk|k−1,Zk[ ] n( )pk|k−1 n( )
〈Ψ0

k wk|k−1,Zk[ ], pk|k−1〉
, (11)

vk x( ) � 〈Ψ1
k wk|k−1,Zk[ ], pk|k−1〉

〈Ψ0
k wk|k−1,Zk[ ], pk|k−1〉 1 − pD,k( )vk|k−1 x( )

+ ∑
z∈Zk

∑Jk|k−1
j�1

w
j( )

k z( )N x;m
j( )

k ,P
j( )

k( ), (12)

where 〈α, β〉 denotes the inner product of α and β,
i.e., 〈α, β〉 � ∑L

l�1αlβl (α � [α1, α2, ..., αL], β � [β1, β2, ..., βL]), and
pD,k denotes the detection probability, and

Ψu
k w,Z[ ] n( ) � ∑min Z| |,n( )

j�0
Z| | − j( )pK,k Z| | − j( )

Aj+u
n

1 − pD,k( )n− j+u( )
〈1,w〉j+u

ej Λk w,Z( )( ), (13)

Λk,z x( ) � 〈1, κk〉
κk z( ) pD,kw

Tqk z( ): z ∈ Z{ }, (14)

wk|k−1 � w 1( )
k|k−1, . . . , w

Jk|k−1( )
k|k−1[ ]T, (15)

qk z( ) � q 1( )
k z( ), . . . , q Jk|k−1( )

k z( )[ ]T, (16)

q
j( )

k z( ) � N z; η
j( )

k|k−1, S
j( )

k|k−1( ), (17)

η
j( )

k|k−1 � Hkm
j( )

k|k−1, (18)
S

j( )
k|k−1 � HkP

j( )
k|k−1H

T
k + σ2r,k, (19)

w
j( )

k z( ) � pD,kw
j( )

k|k−1q
j( )

k z( ) 〈Ψ
1
k wk|k−1,Zk\ z{ }[ ], pk|k−1〉
〈Ψ0

k wk|k−1,Zk[ ], pk|k−1〉
〈1, κk〉
κk z( ) ,

(20)
m

j( )
k z( ) � m

j( )
k|k−1 + K

j( )
k z − η

j( )
k|k−1( ), (21)

P
j( )

k � I − K
j( )

k Hk[ ]P j( )
k|k−1, (22)

K
j( )

k � P
j( )

k|k−1H
T
k S

j( )
k|k−1[ ]−1, (23)

where |Z| denotes the number of the elements of the set Z, pK,k

denotes the cardinality distribution of false alarm at time step k, ej(·)
denotes elementary symmetric function of order j, and
ej(Z) � ∑

S⊆Z,|S|�j
(∏
ζ∈S

ζ), e0(Z) � 1, Aj
l � l!/(l − j)!, and Zk\ z{ }

denotes the set Zk without element z.
At last, the components with tiny weight are pruned away, the

components with uniform distribution are combined, and the
maximum number of components is limited [27]. Then, the
updated PHD at time step k is expressed in the Gaussian mixture
model as follows:

vk x( ) � ∑Jk
i�1
w i( )

k N x;m i( )
k ,P i( )

k( ), (24)

wherew(i)
k ,m(i)

k , and P(i)
k denote the weight, estimate of the state, and

MSEM of the i-th target at time step k, respectively.
The n corresponding to the maximum value of the cardinality

distribution pk(n) is the estimate of the number of targets. The m(i)
k

corresponding to the components with the N̂k largest weight in the
PHD vk(x) is the estimate of the target states. The first element of
the estimated state vector is the estimate of the bearing angle of the
target. By substituting pk(n) and vk(x) into the next time step, the
GM-CPHD filter can be used to recursively estimate the state of the
target to carry out DOA tracking.

4 VB-GMPHD filter for robust multi-
target DOA tracking with uncertain
measurement noise

The existing DOA tracking techniques usually assume that the
measurement noise is a certain stochastic process, which means the
MNCM is constant. However, in the real scenario of underwater
tracking, the unknown underwater environment always results in
uncertain measurement noise, which means the MNCM is time
varying. Thus, the assumption of the existing DOA tracking
technology on constant MNCM is inconsistent with the real
scenario, which results in the decline of tracking performance. In
order to improve the robustness of multi-target DOA tracking,
variational Bayesian approach is used to estimate the MNCM in
the real time of tracking. In this article, the measurement is a number
instead of a vector, thus the MNCM reduces to the measurement
noise variance.

4.1 Choice of prior distribution

In the multi-target DOA tracking scenario, when using the im-th
measurement to estimate the corresponding in-th target, the one-
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step predicted probability density distribution (PDF) p(xink |z im1: k−1)
and the likelihood PDF p(z imk |xink ) are assumed to be subject to
Gaussian distributions in the framework of the KF [35] as follows:

p xink
∣∣∣∣z im1:k−1,Pk|k−1( ) � N xink ; x̂

in
k|k−1,P

in
k|k−1( ), (25)

p z imk
∣∣∣∣xink , σ2r,k( ) � N z imk ;Hkx

in
k , σ

2
r,k( ), (26)

where N(·; μ,Σ) denotes the PDF of the Gaussian distribution with
mean μ and covariance matrix Σ, Hk is the measurement matrix
given in Equation 2, and σ2r,k denotes the measurement noise
variance. x̂ink|k−1 and Pin

k|k−1 denote the predicted state and
predicted MSEM of the in-th target, respectively, which are
expressed as

x̂ink|k−1 � Fk|k−1x̂
in
k−1|k−1, (27)

Pin
k|k−1 � Fk|k−1P

in
k−1|k−1F

T
k|k−1 + Qk−1, (28)

where x̂ink−1|k−1 and Pin
k−1|k−1 are the estimates of the state and MSEM

of the in-th target at time step k-1, respectively.
In order to infer xink along with σ2r,k, a conjugate prior

distribution has to be selected for the fluctuant σ2r,k, since a
conjugate distribution can guarantee the same functional forms
of the prior distribution and posterior distribution. In the Bayesian
theory, the inverse Wishart distribution is usually used as the
conjugate prior for the covariance matrix of a Gaussian
distribution with known mean [36]. Since σ2r,k is the variance of
the Gaussian distribution, the prior distribution p(σ2r,k|z im1: k−1) is
selected as the inverse Wishart distribution, given by

p σ2r,k
∣∣∣∣z im1: k−1( ) � IW σ2r,k; ûk|k−1, Ûk|k−1( ), (29)

where IW(·; λ,Ψ) denotes the PDF of the inverse Wishart
distribution with degree of freedom (dof) λ and inverse scale
matrix Ψ [37], ûk|k−1 and Ûk|k−1 are the dof and inverse scale
matrix of p(σ2r,k|z im1: k−1), respectively.

The posterior distribution p(σ2r,k−1|z im1: k−1) is also subject to an
inverse Wishart distribution as follows:

p σ2r,k−1
∣∣∣∣z im1: k−1( ) � IW σ2r,k−1; ûk−1|k−1, Ûk−1|k−1( ). (30)

To guarantee that p(σ2r,k−1|z im1: k−1) is the inverse Wishart
distribution given by Equation 29, the previous approximate
posterior distribution is spread through a forgetting factor
ρ ∈ (0, 1], which indicates the extent of time fluctuations of the
MNCM. Then, the prior dof ûk|k−1 and prior inverse scale matrix
Ûk|k−1 are given as follows [34]:

ûk|k−1 � ρ ûk−1|k−1 − r−1( ) + r + 1, (31)
Ûk|k−1 � ρÛk−1|k−1. (32)

where r denotes the order of the MNCM σ2r,k.

4.2 Variational approximations of posterior
PDFs

According to the variational Bayesian approximation, the joint
posterior PDF of the state of the in-th target xink and MNCM σ2r,k is
approximated to

p xink , σ
2
r,k | z im1: k( ) ≈ q xink( )q σ2r,k( ), (33)

where q(xink ) and q(σ2r,k) are the approximate posterior PDFs of xink
and σ2r,k, respectively [38, 39]. The variational Bayesian
approximation is formed by minimizing the Kullback–Leibler
divergence (KLD) between the true joint distribution p(xink , σ2r,k |
z im1: k) and the approximate distribution q(xink )q(σ2r,k), i.e.,
q xink( ), q σ2r,k( ){ } � arg min KLD q xink( )q σ2r,k( ) ‖ p xink , σ

2
r,k | z im1: k( )( ),

(34)
where KLD(q(x) ‖ p(x)) denotes the KLD between q(x) and p(x)
[38, 39], and

KLD q x( ) ‖ p x( )( ) � ∫ q x( )log q x( )
p x( ) dx. (35)

The optimal solution of Equation 34 satisfies the following
equations [39]:

log q xink( ) � Eσ2
r,k

logp xink , σ
2
r,k, z

im
1: k( )[ ] + cx, (36)

log q σ2r,k( ) � Exin
k
logp xink , σ

2
r,k, z

im
1: k( )[ ] + cR, (37)

where Exin
k
[·] and Eσ2

r,k
[·] denote the expectation with regard to xink

and σ2r,k, respectively, and cx and cR denote the constants with
respect to xink and σ2r,k, respectively. Since the variational parameters
of q(xink ) and q(σ2r,k) are coupled, a fixed point iteration process is
applied to solve Equations 36, 37, i.e., the approximate posterior
PDF q(xink ) is updated to q(n+1)(xink ) at the n + 1-th iteration using
the posterior PDF q(n)(σ2r,k), and q(σ2r,k) is updated to q(n+1)(σ2r,k)
using the posterior q(n)(xink ).

According to Equations 25, 26, 29, the joint PDF is
expressed as

p xink , σ
2
r,k, z

im
1: k( ) � p z imk

∣∣∣∣xink , σ2r,k( )p xink
∣∣∣∣z im1: k−1( )p σ2r,k

∣∣∣∣z im1: k−1( )p z im1: k−1( )
� N z imk ; h xink( ), σ2r,k( )N xink ; x̂

in
k|k−1,P

in
k|k−1( )

× IW σ2r,k; ûk|k−1, Ûk|k−1( )p z im1: k−1( ) (38)

(1) Update of xink

The posterior q(n+1)(xink |z im1: k−1) is updated according to the
extended Kalman filter equations as

q n+1( ) xink
∣∣∣∣z im1: k−1( ) � N xink ; x̂

n+1( )
k|k , P̂

n+1( )
k|k( ), (39)

where the mean vector x̂(n+1)k|k and the covariance matrix P̂
(n+1)
k|k are

given as follows:

K n+1( )
k � Pin

k|k−1 Hk( )T HkP
in
k|k−1 Hk( )T + σ n( )

r,k( )2( )−1
, (40)

x̂ n+1( )
k|k � x̂ink|k−1 + K n+1( )

k z imk −Hkx̂k|k−1( ), (41)
P n+1( )
k|k � Pin

k|k−1 − K n+1( )
k H n( )

k Pin
k|k−1. (42)

(2) Update of σ2r,k

According to Equation 38, log q(n)(σ2r,k) is given by
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log q n+1( ) σ2r,k( )
� −0.5 r + ûk|k−1 + 2( )log σ2r,k∣∣∣∣ ∣∣∣∣ − 0.5tr Ûk|k−1 σ2r,k( )−1( )

− 0.5 z imk −Hkx
in
k( )T σ2r,k( )−1 z imk −Hkx

in
k( ) + cR

� −0.5 r + ûk|k−1 + 2( )log σ2r,k∣∣∣∣ ∣∣∣∣ − 0.5tr B n( )
k + Ûk|k−1( ) σ2r,k( )−1( ) + cR

(43)
where

B n( )
k � E n( ) z imk −Hkx

in
k( ) z imk −Hkx

in
k( )T[ ]

� E n( ) (z imk −Hkx̂
n( )

k|k +Hkx̂
n( )

k|k −Hkx
in
k[ ) z imk −Hkx̂

n( )
k|k +Hkx̂

n( )
k|k −Hkx

in
k( )T]

� z imk −Hkx̂
n( )

k|k( ) z imk −Hkx̂
n( )

k|k( )T +HkE
n( ) xink − x̂ n( )

k|k( ) xink − x̂ n( )
k|k( )T[ ]HT

k

� z imk −Hkx̂
n( )

k|k( ) z imk −Hkx̂
n( )

k|k( )T +HkP
n( )

k|kH
T
k .

(44)

From Equation 43, q(n+1)(σ2r,k) is updated as

q n+1( ) σ2r,k( ) � IW σ2r,k; û
n+1( )

k , Û
n+1( )

k( ), (45)

where the dof û(n+1)k and the inverse scale matrix Û
(n+1)
k are given as

follows:

û n+1( )
k � ûk|k−1 + 1, (46)

Û
n+1( )
k � B n( )

k + Ûk|k−1. (47)
Then, according to Equation 38, log q(n)(xink ) is given by

log q n+1( ) xk( ) � −0.5 z imk −Hkx
in
k( )TE n+1( ) σ2r,k( )−1[ ] z imk −Hkx

in
k( )

−0.5 xink − x̂ink|k−1( )TP−1
k|k−1 xink − x̂ink|k−1( ) + cx

(48)

where E(n+1)[(σ2r,k)−1] is given by

E n+1( ) σ2r,k( )−1[ ] � û n+1( )
k −m − 1( ) Û

n+1( )
k( )−1

. (49)

The modified one-step predicted PDF p(n+1)(zk|xk) at the
n + 1-th iteration is defined as

p n+1( ) z imk
∣∣∣∣xink( ) � N z imk ;Hkx

in
k , σ̂ n+1( )

r,k( )2( ), (50)

where the modified MNCM (σ̂(n+1)r,k )2 is formulated as

σ̂ n+1( )
r,k( )2 � E n+1( ) σ2r,k( )−1[ ]{ }−1 � Û

n+1( )
k / û n+1( )

k −m − 1( ). (51)

Finally, after N fixed-point iterations, the variational
approximations of the posterior PDFs for the in-th target are
given as follows:

q xink( ) ≈ q N( ) xink( ) � N xink ; x̂
N( )

k|k ,P
N( )
k|k( ) � N xink ; x̂

in
k|k,P

in
k|k( ), (52)

q σ2r,k( ) ≈ q N( ) σ2r,k( ) � IW σ2r,k; û
N( )

k , Û
N( )

k( ) � IW σ2r,k; ûk|k, Ûk|k( ).
(53)

4.3 Algorithm of VB-GMCPHD filter

According to the above derivation, the pseudo-code of the
variational Bayesian GM-CPHD filter (VB-GMCPHD) for DOA
tracking at one time step is given in Algorithm 1.

1. Initialize GM components w(i)
0 ,m(i)

0 ,P(i)
0{ }J0

i�1 and

cardinality distribution p0(n);
For k � 1: K

Prediction:

2. Predict the cardinality distribution pk|k−1(n) by using

Equation 4;

3. Calculate the components of survive targets:

For i � 1: Jk−1
w(i)

s,k|k−1 � ps,kw
(i)
k−1, m(i)

s,k|k−1 � Fk−1m(i)
k−1,

P(i)
s,k|k−1 � Gkσ2qG

T
k + Fk−1P(i)

k−1F
T
k−1;

û(i)k|k−1 � ρ(û(i)k−1 − r − 1) + r + 1, Û
(i)
k|k−1 � ρÛ

(i)
k−1.

End

4. Add the components of birth

targets w(i)
γ,k,m

(i)
γ,k,P

(i)
γ,k{ }i�Jk−1+Jγ,k

i�Jk−1+1
;

5. Express the predicted GM components as

w(i)
k|k−1,m

(i)
k|k−1,P

(i)
k|k−1{ }i�Jk|k−1

i�1 , where Jk|k−1 � Jk−1 + Jγ,k;

Update:

6. Update the cardinality distribution pk(n) by using

Equation 11;

7. Update GM components of targets:

For i � 1: Jk|k−1
w(i)

k � 〈Ψ1
k[wk|k−1,Zk], pk|k−1〉

〈Ψ0
k[wk|k−1,Zk], pk|k−1〉

(1 − pD,k)w(i)
k−1, m(i)

k � m(i)
k|k−1,

P(i)
k � P(i)

k|k−1;
End

For m � 1: mk

For i � 1: Jk|k−1
8. Estimate σ2r,k along with states of targets by using VB

iterations

Initialization: m̂(0)
k|k � m(i)

k|k−1, (σ̂(0)r,k )2 � Ûk|k−1/ûk|k−1.
For n � 0: N − 1

S(n)
k|k−1 � HkP

i
k|k−1H

T
k + (σ̂(n)r,k )2

K(n+1)
k � P(i)

k|k−1(Hk)T(S(n)
k|k−1)−1, m̂(n+1)

k|k � m̂k|k−1 + K(n+1)
k (zm − Hkm̂

(n)
k|k ),

P(n+1)
k|k � P(i)

k|k−1 − K(n+1)
k HkP

(i)
k|k−1.

B(n+1)
k � (zm − Hkm̂

(n+1)
k|k )(zm − Hkm̂

(n+1)
k|k )T + HkP

(n+1)
k|k (Hk)T,

Û
(n+1)
k|k � Ûk|k−1 + B(n+1)

k , û(n+1)k|k � ûk|k−1 + 1,

(σ̂(n+1)r,k )2 � Û
(n+1)
k|k /û(n+1)k|k .

End

Sk|k−1 � S(N)
k|k−1

m(Jk|k−1+(m−1)mk+i)
k � m̂(N)

k|k ,

P(Jk|k−1+(m−1)mk+i)
k � P(N)

k|k ;

w(Jk|k−1+(m−1)mk+i)
k � pD,kw

(i)
k|k−1q

(i)
k (zm) 〈Ψ

1
k[wk|k−1,Zk\ zm{ }], pk|k−1〉
〈Ψ0

k[wk|k−1,Zk], pk|k−1〉
〈1,κk〉
κk(zm)

End
End

9. Jk|k � Jk|k−1 + Jk|k−1mk, Prune, merge, and limit the Jk|k
components, and new Jk components are obtained;

10. Express the updated GM components as w(i)
k ,m(i)

k ,P(i)
k{ }i�Jk

i�1 ;
11. The n corresponding to the peak of pk(n) is the

estimate of the target number;

12. The m(i)
k corresponding to the N̂k components with the

largest weight is the estimate of target states.

End

Algorithm 1. VB-CPHD filter for Robust multi-target DOA tracking
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5 Results and discussion

5.1 Experimental setup

The open experimental data set SWellEx-96 [40] is used to
verify the tracking performance of the proposed VB-GMCPHD
filter for robust DOA tracking. The experiment was performed at
the United States Marine Physical Laboratory from 10 to 18 May
1996, approximately 12 km from the tip of Point Loma near San
Diego, California. The data of the north horizontal linear array of
the S59 event of the experiment is used in this section. 900 s of
experimental data is used to test the proposed method in this
section. Before the experiment, a CTD is used to obtain the sound
velocity in the experimental area. The experimental ship tows a
continuous sound source at a depth of 54 m at a speed of 5 knots
and sails north, which is named target 1 in this article. In addition,
an uncooperative ship sails from northwest to southeast with
continuous radiating noise, which is named target 2 in this article.
The radar system of an experimental ship records the distance and
bearing of the uncooperative ship and derives the latitude and
longitude of the uncooperative ship. The horizontal linear array is
placed on the seafloor at a depth of 213 m and continuously
records the received acoustic signal at a sampling frequency of
3,276.8 Hz. The horizontal array consists of 32 elements, among
which 27 elements provide effective data. The positions of the
effective elements are shown in Figure 1, where the position of the
first element is taken as the origin of coordinates. Figure 1 shows
that the elements are actually not arranged in a straight line but in
a slight curve. Therefore, the port and starboard ambiguity
problem of a linear array is avoided.

To evaluate the difference between the real set and estimated
set of the states of the targets, an evaluation has to be chosen.
Because the number of elements of the real set and estimated set of
the states of the targets is different, the root-mean-square type of
evaluation (such as the root mean square error) is not usable. In
this article, optimal sub-pattern assignment (OSPA) error is
selected to evaluate the multi-target tracking performance,
which is defined as follows [41]:

d c( )
p X,Y( ) � 1

n
min
π ∈ Π

∑m
i�1
d c( ) xi, yπ i( )( )p + cp n −m( )⎛⎝ ⎞⎠1/p

, m≤ n

d c( )
p X,Y( ) � d c( )

p Y ,X( ), m> n

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(54)

where d(c)p (X,Y) is the OSPA error, X � x1, x2, ..., xm{ } and Y �
y1, y2, ..., yn{ } are RFSs, Π denotes the set made up with m elements
from 1, 2, ..., n{ }, and d(c)(x,y) � min d(x,y), c{ }, d(x,y) is the
Euclidean distance between x and y, while c and p denote the
truncation parameter and order, and are set to 5 and 1, respectively.
The smaller the OSPA error means the higher the precision.

5.2 Experimental results

The minimum variance distortionless response (MVDR) was used
to obtain the measurement of the bearing angles of the targets at
48 Hz–52 Hz every 10 s, and the bearing angle scans from 0 to 360°

every 1°. According to the CTD data, the sound velocity was set to
1,493 m/s. The bearing time recording (BTR) obtained by theMVDR is
given by the background 3D color diagram of Figure 2A. The true
bearing angles of the two targets are given by the black line. The bearing
angles corresponding to the peaks of the spectrum are extracted at each
moment, and the obtained measurements of bearing angles of targets
are shown by red dots in Figure 2A. Figure 2A shows trajectories of
three targets. The bearing angle of target 1 moves from 135° to 50°, the
bearing angle of target 2 moves from 285° to 275°, and the bearing angle
of an unknown uncooperative target stays near 320°, which is named
target 3 in this article. Figure 2A also shows some error, missing
detection, and false alarm in the measurements.

The proposed robust multi-target DOA tracking method is used to
process the bearing angle measurements, and the results of KF-JPDA
[42], GM-PHD filter [27], and GM-CPHD filter [30] are also given for
comparison. The process noise variance of the CV model is set to
2.5 × 10−4. The detection probability and false alarm probability are set
to 0.9 and 0.1, respectively. The measurement noise variance σ2r,k of KF-
JPDA,GM-PHD filter, andGM-CPHD filter is set to 25. The parameters
û0, Û0, and ρ of the VB- GMCPHD are set to 12, 12 σ2r,k, and 0.95,
respectively, and the number of VB iterations N is set to 5.

The tracking results of KF-JPDA, GM-PHD filter, GM-CPHD
filter, and VB-GMCPHD filter are shown in Figures 2B–E, and the
OSPA errors are shown in Figure 2F. The average OSPA errors
tracking step are shown in Table 1; Figures 2B–E show that all multi-
target DOA tracking methods carried out stable tracking of the three
targets, and the tracking trajectories are consistent with the real
trajectories. Figure 2F and Table 1 show that KF-JPDA, GM-PHD
filter, GM-CPHD filter, and the proposed VB-GMCPHD filter
significantly reduce OSPA errors on the basis of measurements,
and the OSPA errors of the VB-GMCPHD filter are slightly smaller
than those of the KF-JPDA, GM-PHD filter, and GM-CPHD filter.

Since the power of measurement noise hardly varies in the
experiment, the performance of the proposed VB-GMCPHD filter
for the robust multi-target DOA tracking improves slightly when
compared to the other methods. In order to further test the
robustness of the proposed robust underwater multi-target DOA
tracking method in the scenario of uncertain measurement noise, a
period of high-power noise was added to the experimental data from

FIGURE 1
Position of the horizontal linear array.
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500 s to 600 s. Then, the abovementioned process was repeated for the
data with added noise.

The BTR and bearing angle measurements obtained by MVDR
are shown in Figure 3A. The tracking results of KF-JPDA, GM-PHD
filter, GM-CPHD filter, and VB-GMCPHD filter are shown in

Figures 3B–E, respectively. The OSPA errors of the tracking
results are shown in Figure 3F, and the average OSPA errors per
tracking step are shown in Table 2.

Figure 3 shows that KF-JPDA, GM-PHD filter, and GM-CPHD
filter provide stable tracking of the bearing angles of the three targets

FIGURE 2
Bearing anglemeasurements, tracking results, and the OSPA errors of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB-GMCPHD filter. (A) Bearing
angle measurements. (B) Tracking result of KF-JPDA. (C) The tracking result of GM-PHD filter. (D) The tracking result of GM-CPHD filter. (E) The tracking
result of VB-GMCPHD filter. (F) OSPA errors of tracking results.
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TABLE 1 The average OSPA errors of the tracking results of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB- GMCPHD filter in one tracking step.

KF-JPDA GM-PHD GM-CPHD VB- GMCPHD

Average OSPA error (°) 3.42 2.67 2.24 1.93

FIGURE 3
Bearing angle measurements, tracking results, and OSPA errors of KF-JPDA, GM-PHD filter, GM-CPHD filter, and VB-GMCPHD filter when
processing the experimental data with added noise. (A) Bearing anglemeasurements. (B) Tracking result of KF-JPDA. (C) Tracking result of GM-PHD filter.
(D) Tracking result of GM-CPHD filter. (E) Tracking result of VB-GMCPHD filter. (F) OSPA errors of tracking results.
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when the measurement noise variance is stationary from 0 to 500 s.
However, when themeasurement noise variance increases from 500 s to
600 s, the assumption of fixed measurement noise variance of KF-
JPDA, GM-PHD filter, and GM-CPHD filter becomes inconsistent
with the real increasing measurement noise variance, which results in
inaccurate Kalman filter gain. Therefore, the KF-JPDA, GM-PHD filter,
and GM-CPHD filter carry out fluctuating tracking trajectory or even
miss tracking, which results in an increasing of the OSPA error. The
OSPA error of the proposed VB-GMCPHD filter for robust multi-
target DOA tracking is significantly less than that of the KF-JPDA, GM-
PHD filter, and GM-CPHD filter. The reason is that the VB-GMCPHD
filter estimates the measurement noise variance in the real time of
tracking so the Kalman filter gain calculated by using the estimate of
measurement noise variance is more accurate. Therefore, the increasing
measurement noise variance hardly affects the performance of the VB-
GMCPHD filter, and the robust DOA tracking with uncertain
measurement noise is carried out. Table 2 proves the superiority of
the proposed VB-GMCPHD filter in robustness again.

6 Conclusion

The robust multi-target underwater DOA tracking problem in
uncertain measurement noise scenario is studied in this article. In order
to solve the underwater multi-target DOA tracking problem, a multi-
target DOA tracking technique is derived on the basis of the GM-
CPHD filter, which is combined the kinematics of the target, the bearing
angle measurements, and the multi-target tracking scheme at the same
time. Then, considering the uncertain measurement noise results from
unknown underwater environment, the online measurement estimator
is designed on the basis of the variational Bayesian approach to estimate
themeasurement noise variance alongwith the states of the targets as an
integrated part during the multi-target DOA tracking procedure. Thus,
a robust underwater multi-target DOA tracking method with uncertain
measurement noise, namedVB-GMCPHD filter, is proposed. From the
experiment results validated by real sea trial data, the accuracy and
robustness of the proposed VB-GMCPHD is verified and
comprehensive discussions are made. From the experimental results
and discussions, the proposed VB-GMCPHD can be regarded as an
alternative method to accomplish DOA tracking missions, especially
when the underwater environment is uncertain.
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