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There is abundant ship information in ship-radiated noise, which is helpful for ship
target recognition, classification and tracking. However, owing to the increasing
complexity of the marine environment, it makes difficult to extract S-RN features.
Dispersion entropy has been proven to be an excellent method to extract the
features of S-RN by analyzing the complexity of S-RN, and has beenwidely used in
feature extraction of S-RN. This paper summarizes the research progress of DE in
the feature extraction of S-RN in recent years, and provides a comprehensive
reference for researchers related to this topic. First, DE and its improved algorithm
are described. Then the traditional and DE-based S-RN feature extraction
methods are summarized, and the application of DE in S-RN feature extraction
methods is concluded from two aspects: methods that apply DE algorithms only
and methods that combine DE with mode decomposition algorithms. Finally, the
research prospects of DE and the summary of this paper are given.
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1 Introduction

In the ocean, sound waves are an effective way to transmit information over long
distances. Ship-radiated noise (S-RN) is a good marine sound source, which is of great
significance to ship navigation safety and marine exploration [1, 2]. However, the ocean is
always accompanied by a large amount of environmental noise, which is a huge interference
to the reception and recognition of S-RN. How to effectively extract the features of S-RN has
become a hot issue [3, 4].

The traditional feature extraction method for S-RN mainly has two types: 1) feature
extraction method based on spectrum analysis. The S-RN is analyzed by the spectrum, and
the line spectrum feature and shape feature of power spectrum in S-RN are extracted [5]. 2)
Feature extraction method based on time-frequency domain analysis. The features of the
S-RN are extracted by Fourier transform [6], wavelet transform [7] and Hilbert-Huang
transform [8], and so on. Although these methods achieved some results, the identification of
S-RN in practical applications still cannot meet the expected requirements.

Recently, some nonlinear dynamical methods have achieved better results in feature
extraction, such as Lempel-Ziv complexity (LZC) [9], fractal dimension [10], entropy [11].
LZC has been successfully applied to feature extraction of S-RN, such as permutation LZC
(PLZC) [12], dispersion LZC (DLZC) [13, 14] and DE-based LZC (DELZC) [15], but it has
high requirements for the length of time series, and its over-dependence on pattern
conversion also limits the ability of LZC to characterize signals. Compared with LZC,
the fractal dimension is suitable for processing various types of nonlinear and nonstationary
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signals like S-RN [16], but this excellent effect costs a lot of time; in
addition, there are only a few types of fractal dimensions, such as box
dimension [9, 17], so the application of fractal method to extract
discriminant features has not been thoroughly studied. Last but not
least, for entropy, the development in feature extraction of S-RN is
more comprehensive and faster than LZC and fractal dimension,
and recently proposed entropy in common use are PE [18–20], DE
[21–23] and slope entropy [24–26]. However, the PE cannot reflect
the amplitude change information of S-RN, and slope entropy is
seriously affected by threshold setting, and the characteristic value is
sufficiently enough. DE is the most widely used in S-RN feature
extraction because of the absence of these defects. In general,
compared with other entropies, LZC and fractal dimension, DE
has higher computational efficiency and deeper stability, and there
are richer research results of DE in feature extraction of S-RN.

The DE-based method has been widely used in feature
extraction of S-RN and has shown superior performance. In this
paper, we will give a comprehensive review of the DE-basedmethods
and divide them into two types: methods that apply DE algorithms
only [27, 28] and methods that combine DE with mode
decomposition algorithms [23, 29]; then we introduce two
aspects of DE in and its application for S-RN. The rest of this
review is structured as follows. Section 2 introduces the DE and its
improved algorithm. Section 3 describes the traditional S-RN feature
extraction methods and the S-RN feature extraction method based
on DE, and summarizes the relevant applications. The prospects of
DE in the feature extraction method for S-RN are presented in
Section 4. Section 5 gives the conclusion of this review.

2 Theory of dispersion entropy

2.1 DE algorithm

DE [30] is one of the important indexes to evaluate the
complexity of time series, which considers the relationship
between amplitudes, and has strong robustness and fast
operability. The specific calculation steps are as follows:

Step 1: For a given time series X � x(j), j � 1, 2, ..., N{ }, it is
mapped to series Y � y(j), j � 1, 2, ..., N{ } by the normal
cumulative distribution function (NCDF), and the element y(j)
is obtained as follows:

y j( ) � 1
σ

��
2π

√ ∫ x j( )
−∞

e
− t−μ( )2

2σ2 dt, j � 1, 2,/, N (1)

where μ and σ represent the mean and standard deviation of
sequence X respectively, and each element y(j) ϵ (0, 1).

Step 2: The series Y is converted to a new series
Zc � zcj, j � 1, 2, ..., N{ }, and the conversion formula is as follows:

zcj � R c · y j( ) + 0.5( ) (2)

where zcj is an integer within [1, 2, ..., c],R a is rounding function and
c indicates the category.
Step 3: The sequence Zc is transformed into l � N − (m − 1)d
components zm,c

i , each component is defined as:

zm,c
i � zci , z

c
i+d, ..., z

c
i+ m−1( )d{ }, i � 1, 2, ..., N − m − 1( )d (3)

wherem is the embedding dimension, and d represents a time delay.
Step 4: Each component is labeled as a dispersion pattern πv0v1vm−1
with zci � v0, zci+d � v1,/, zci+(m−1)d � vm−1. According to step 2,
each element in the component has c values, therefore, there are
cm dispersion patterns corresponding to zm,c

i in total. The
probability of each dispersion pattern can be expressed as:

p πv0v1vm−1( ) � Num πv0v1vm−1( )
N − m − 1( )d (4)

where Num(πv0v1vm−1) indicates the number of dispersion patterns
πv0v1vm−1 of series X.

Step 6: The value of DE can be calculated according to the
formula of Shannon entropy:

DE X,m, c, d( ) � −∑
cm

π�1
p πv0v1vm−1( ) · ln p πv0v1vm−1( )( ) (5)

and the normalized DE (NDE) can be defined as:

NDE X,m, c, d( ) � DE X,m, c, d( )
ln cm

(6)

2.2 Improved DE algorithm

Since DE has excellent ability to represent signal complexity,
many scholars have improved DE to improve the performance of
DE, such as reverse DE (RDE), multiscale DE (MDE), and so on.
According to the different ways of DE improvement, the improved
dispersion entropy is mainly divided into two categories: 1) the
improvement of DE steps; and 2) the preprocessing of DE.

To enhance the capacity of DE to characterize the complexity of
signals, some scholars are committed to optimizing the calculation steps
of DE, and various upgraded versions of DE have been advanced.
Azami et al. [31] developed the fluctuation-based DE (FDE) by
considering the fluctuation of signals, which provides a powerful
tool for analyzing fluctuating signals. Li et al. [21] introduced
distance information to DE, the reverse DE (RDE) is raised and
demonstrates high stability when analyzing various sensor signals.
To address the problem that DE is insensitive to information
perception between adjacent elements of time series [32], proposed
the fine-sortedDE (FSDE) by adding an additional factor to fine sort the
normalized elements. Inspired by FDE and RDE, Jiao et al. [22]
combined the advantages of FDE and RDE to propose fluctuation-
based reverse DE (FRDE), and this operation further improved the
stability and separability of DE. In 2021, the weighted multivariate DE
(WMDE) was proposed [33] by integrating multivariate analysis and
weighted calculation, which is more sensitive to signal changes and
stable. In view of the problem of DE instability due to amplitude
variation, Rostagh et al. [34] introduced a fuzzy membership function
into DE and developed fuzzy DE (FuzzDE), which improves the
performance of DE in detecting frequency changes and periodic
changes. Influenced by fractional order calculation [35,36] proposed
fractional extended DE (FrEDE) and fractional order fuzzy DE
(FuzzDEα) respectively. In addition, Wang et al. [11] advanced a
normalized cumulative residual function (NCRF) to magnify the
difference between dispersion patterns, and give the give the
definition of cumulative residual symbolic DE (CRSDE), which
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realizes the representation of more effective pattern information. In
summary, these improved algorithms can represent more abundant
feature information and have higher anti-noise ability. The overview of
improved DE algorithms based on DE steps are shown in Table 1.

Several improved DE algorithms have been proposed by
preprocessing the signals to enhance the performance of DE.
Zhang et al. [37] proposed MDE by introducing coarse-graining
on the basis of DE to retain information on the potential
characteristics of faults at different scales. Azami et al. [38] and Li
et al. [27] also introduced coarse graining to RDE and FDE, and
proposed multiscale FDE (MRDE) and multiscale FDE (MFDE),
respectively, which describe the complexity of signals from
different scales. In addition [39,40] introduced hierarchical
information and proposed hierarchical DE (HDE) and hierarchical
FDE (HFDE) respectively to characterize the complexity of all band
signals. Xing et al. [41] combined the concepts of hierarchy and
multiscale to propose the hierarchical multiscale RDE (HMRDE),
which reflects the effective information of the bearing signal from both
hierarchical and scaling perspectives. To represent the comprehensive
information on signals, Azami et al. [42] proposed refined composite
MDE (RCMDE), which is a refined composite multiscale processing
based on DE. The proposed RCMDE not only solves the single-scale
problem of DE, but also improves the stability of traditional coarse
graining. Inspired by RCMDE, some scholars immediately proposed
refined composite MFDE (RCMFDE) [43], refined composite RDE
(RCMRDE) [44], and refined composite multiscale FRDE
(RCMFRDE) [28], respectively. Referring to the experience that
fine composite processing can effectively represent signal
complexity, some scholars introduced multivariate theory based on
refined composite multiscale processing, and proposed refined
composite multiscale multivariate MDE (RCMMDE) [45] and
refined composite multiscale multivariate FDE (RCMMFDE) [46],
which have low sensitivity to signal length and high noise resistance.
As the advantages of fine composite multiscale processing and
hierarchical analysis have been recognized, refined composite
HFDE (RCHFDE) [47] and hierarchical refined composite MFDE
(HRCMFDE) [48] have been proposed respectively, which solve the
problem of high frequency signal loss in coarse-graining process. Last
but not least, some scholars have also proposed some other improved
algorithms, such as time-shift multiscale cumulative residual symbolic

(DE) TCRSDE [49], refined time-shift multiscale normalised DE
(RTSMNDE) [11], time-shift MDE (TSMDE) [50], and generalized
RCMFDE (GRCMFDE) [51], which all further improve the
performance of dispersion entropy. The overview of improved DE
algorithms based on preprocessing is listed in Table 2.

Whether the improvement of the DE step or the preprocessing
of the DE further improves the performance of the scattering
entropy and effectively represents the complexity of the signal. In
order to show the development of DE more intuitively, we employ
the Figure 1 to show all the improved DE algorithms.

3 Feature extraction methods for S-RN

The feature extraction of S-RN has been a difficult problem in the
field of underwater acoustic signal processing due to the complexity of
marine environmental noise. To solve this challenge, some S-RN
feature extraction methods have been developed, mainly including
two types: 1) traditional methods, such as those based on spectrum
analysis, or time-frequency domain analysis; and 2) nonlinear
dynamic methods, such as those based on fractal, Lempel-Ziv
complexity (LZC), or entropy. The overall framework of feature
extraction method for S-RN is displayed in Figure 2.

Traditional feature extraction methods have certain limitations
when analyzing non-stationary S-RN, and the feature extraction
results cannot well reflect the true characteristics of the target
signal. While Entropy, LZC and fractal dimension are the
mainstream nonlinear dynamic indexes applied to feature
extraction of S-RN. However, LZC is limited by the length of time
series and binary conversion, and it often needs to be combined with
entropy theory to meet the demand of feature extraction, current
research includes PLZC, DLZC, and DELZC, which have shown
excellent performance in feature extraction. Although the fractal
dimension can effectively analyze nonlinear signals such as S-RN,
it will consume consumes considerable time, and the feature based on
fractal dimension are not sufficiently stable. With the development of
entropy theory, the ability of entropy to represent signals has also been
improved, which can show more feature information of S-RN. From
recent research, it can be seen that PE, DE, and slope entropy are the
three main entropies used in feature extraction of S-RN, these

TABLE 1 The overview of improved DE algorithms based on DE steps.

References Improved DE Improvement Main advantages

[30] FDE Fluctuation information Broadly used for the characterization of real signals

[20] RDE Distance information High distinguishing ability for sensor signals

[31] FSDE Fine-sorted dispersion pattern Provide a powerful aid to feature extraction for fault diagnosis

[21] FRDE Distance information and fluctuation information Facilitates the distinction of ship signals and gear fault signals

[32] WMDE Weight information Reveal the ordinal structure of stock market indices

[33] FuzzDE Fuzzy membership functions Better performance in distinguishing various signlas

[34] FrEDE Fractional calculus Accurately distinguish different faulty states

[35] FuzzDEα Fractional order calculation Detect dynamics changes of signals sensitively

[49] CRSDE Normalized cumulative residual function Excellent performance in detecting dynamics of sleep stages
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TABLE 2 The overview of improved DE algorithms based on preprocessing.

References Improved DE Improvement Main advantages

[36] MDE Coarse-graining Retain information on the potential characteristics of faults at different scales

[37] MFDE Coarse-graining Further understand the dynamics of neurological disease records

[25] MRDE Coarse-graining Describe the complexity of ship signals from different scales

[38] HDE Hierarchical information Characterize the complexity of all band fault signals

[39] HFDE Hierarchical information Compensate for the shortcomings of MFDE in ignoring high frequency component
information

[40] HMRDE Hierarchical coarse-graining Effectively reflect the difference characteristics in different frequency domains

[41] RCMDE Refined composite coarse-graining Fully min the information of biomedical signals

[42] RCMRDE Refined composite coarse-graining Min the comprehensive information on rolling bearing failures

[43] RCMFDE Refined composite coarse-graining Further enhance the stability of MFDE

[26] RCMFRDE Refined composite coarse-graining Reduce damage caused by misidentification of ships

[44] RCMMDE Refined composite multivariate coarse-
graining

Has certain advantages in robustness compare to MDE

[45] RCMMFDE Refined composite multivariate coarse-
graining

Low sensitivity to signal length and high noise resistance

[46] RCHFDE Refined composite hierarchical Has the better stability and robustness than HFDE

[47] HRCMFDE Hierarchical Refined composite coarse-
graining

Solve the problem of high frequency signal loss in coarse grain process

[48] TCRSDE Time-shift coarse-graining Obtain comprehensive Neurodynamics characteristics

[49] RTSMNDE Refined time-shif coarse-graining
normalised

Diagnose the locations and degrees of rolling bearing failures effectively

[50] TSMDE Time-shift coarse-graining Achieve outstanding diagnosis performance for rolling bearing

[51] GRCMFDE Generalized refined composite coarse-
graining

Provide a highly separable feature for diagnosing the fault of rolling bearings

FIGURE 1
Improved DE algorithms.

Frontiers in Physics frontiersin.org04

Ji 10.3389/fphy.2023.1146493

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1146493


entropies get rid of over-dependence on time series length and are
more computationally efficient. Among them, DE is particularly
convenient and effective, because it overcomes the defect that PE
ignores amplitude information and is not limited by threshold
parameters like slope entropy. Therefore, we review and
summarize the DE-based feature extraction methods in this section.

In this section, the references on feature extraction of S-RN based
on DE are listed and summarized as the following two subsections:
methods that apply DE algorithms only, and methods that combine
DEwithmode decomposition algorithms, including empirical wavelet
transform (EWT), intrinsic time-scale decomposition (ITD), and
variational mode decomposition (VMD). Table 1 provides a brief
summary of research articles on applications of DE combined mode
decomposition in feature extraction of S-RN, which were published
after 2015 to cover the latest contributions since the existing review.

3.1 Feature extraction using only DE
algorithm

Due to the high computational efficiency, strong robustness and
separability of DE, it has been introduced into the field of feature
extraction of S-RN. The main steps of feature extraction for S-RN
using only DE are illustrated in Figure 3.

Due to the high computational efficiency, strong robustness and
separability of DE, it has been introduced into the field of feature
extraction of S-RN in recent years. Li et al. [21] first defined the
concept of RDE and take it as a new feature of S-RN, the utilization of
RDE realized the accurate classification of three ship signals. In 2020,
Li et al. [27] successively proposed MRDE-based feature extraction
method and feature extraction method based on MRDE combined
with the gray correlation degree (GRD) [52], the studies indicated that
MRDE performs better thanMDE,MPE and other entropy indexes in
characterizing ship feature. In addition, RCMDE-KNN-based
classification method of S-RN was raised [53], this method
enhances the stability and anti-noise ability of the extracted ship
features, and the recognition rate for four types of ships reaches 100%.
Jiao et al. [22] presented FRDE and applied it to feature extraction of
S-RN, the experimental results show that FRDE feature extraction is
more prominent than PE and DE. Based on FRDE and RCMDE [28],
proposed a novel feature extraction method of S-RN based on
RCMFRDE, the experiments show that the excellent performance
for feature extraction and classification of S-RN. Xiao [54] introduced
hierarchical DE (HDE) into the underwater acoustic field for the first
time, whichmines the information hidden in the high frequency band
of ship radiated noise. Table 3 reveals the applications of DE in feature
extraction of S-RN, in which Rr means recognition rate, MRDE +
GRD means MRDE and GRD.

FIGURE 2
Overall framework of feature extraction method for S-RN.

FIGURE 3
The main steps of feature extraction for S-RN using only DE.

Frontiers in Physics frontiersin.org05

Ji 10.3389/fphy.2023.1146493

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1146493


3.2 Feature extraction combining DE with
mode decomposition algorithms

The feature extraction methods based on mode decomposition
and DE have been widely used in the underwater acoustic field and
show excellent performance. Figure 4 displays the main steps of
S-RN feature method using DE and mode decomposition.

In recent years, some scholars have proposedmany S-RN feature
extraction methods based on DE and mode decomposition and
achieve better results. Li et al. [29] combined ITD with FDE, and
proposed a new S-RN feature extraction method, which achieves
more than 95% classification accuracy for ten types of S-RN,
realizing effective recognition of S-RN [55]. Improved the ITD
and proposed a S-RN feature extraction method combining

improved ITD (IITD) with MDE, which further enhanced the
effect of feature extraction. Yang et al. [23] presented a novel a
S-RN feature extraction technology using VMD and FDE, and the
results presented that the presented technique has better separation
effect and higher discrimination. Li et al [56]. Applied extreme-point
symmetric mode decomposition (ESMD) to decompose the S-RN,
extracted the DE of intrinsic mode functions (IMFs), and effectively
distinguished different types of S-RN. [57] developed a S-RN feature
extraction method based on EWT and RDE, and the results reveled
that EWT not only has better decomposition performance than
empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD), and VMD, but also RDE has better
separability than PE, RPE and DE; in addition, the recognition
rate of the proposed method is higher than 95% for four kinds of

TABLE 3 Applications of DE in feature extraction of S-RN.

References Method Database Metric Main conclusion

[20] RDE Unkonwn 99% Rr Provide an effective complexity metric to analyze S-RN

[25] MRDE National Park Service 100% Rr Accurate recognition of four types of S-RN is realized from different scales

[52] MRDE + GRD National Park Service 97.75% Rr Effectiveness and practicability for feature extraction of S-RN

[53] RCMDE National Park Service 100% Rr More suitable and stable for feature extraction of S-RN

[21] FRDE National Park Service 99.11% Rr The most outstanding recognition effect in four S-RN

[26] RCMFRDE Unkonwn 100% Rt Improve the feature extraction and classification performance of S-RN

[54] HDE Unkonwn 100% Rr Show the different frequency bands feature of signals S-RN

FIGURE 4
The main steps of ship-radiation noise method using DE and mode decomposition.
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S-RN. Yang et al. [58] put forward a S-RN feature method based on
complete ensemble empirical mode decomposition with adaptive
selective noise (CEEMDANSN) and RCMFDE, which effectively
solves the problem of information loss in feature extraction of ship
signals. Li et al. [59] and Liu et al [60] used VMD to decompose the
S-RN, and extracted the MDE and WFDE of IMFs respectively,
which effectively extract the features of S-RN, and the recognition
rate is higher than 90%. Table 4 exhibits the applications of DE
combined mode decomposition in feature extraction of S-RN, in
which Rr means recognition rate, ITD + FDE means ITD and FDE,
VMD + FDE means VMD and FDE.

4 Prospects of DE in feature extraction
method for S-RN

Based on the above research, we can find that traditional feature
extraction methods for S-RN have great limitations, and cannot
effectively reflect the real characteristics of S-RN; moreover,
compared with other nonlinear dynamic indexes such as LZC and
fractal dimension, DE can better represent the complexity of the
signal, and effectively distinguish different types of S-RN. However,
the feature extraction of S-RN has always been the focus of the
research on the development of marine economy and coastal defense,
and the huge development needs promote the output of more relevant
research results. At present, it is hard to meet the growing demand by
relying solely on DE-based indexes. So combining with multiple
features and further upgrade DE with multiple improvement
methods is an important development direction in the future.

(1) Combined with other categories of feature indicators.

Different types of features have their own advantages and
disadvantages, they are applicable to different ship signals.
Combining DE with other types of features for feature extraction,
such as entropy index and LZC-based index, can make full use of the
complementarity between different features. Therefore, DE
combined with other class features is suitable for more complex
environments and unknown ship signals, which can further improve
the feature extraction performance and recognition effect of S-RN.

(2) Upgrade DE with multiple improvement methods.

Different improvements measures of DE have solved different
problems encountered in signal analysis. For the complex and
changeable S-RN, the improvement for a specific problem has
difficulty reflecting the comprehensive characteristic information.
For this reason, integration of multiple improvement methods,
including different computational steps and ship signal
preprocessing, will be one of the future focuses on upgrading the
feature extraction method based on DE.

5 Conclusion

This paper is intended to review the application of DE in feature
extraction of ship-radiated noise, and divides it into two categories:
Only DE theory and the combination of DE andmode decomposition
algorithm. The main conclusions of the review are as follows

(1) Both DE and its improved version improve the feature
extraction effect of S-RN from different aspects, and previous
studies also show that the feature extraction method based on
DE is superior to other entropy measures.

(2) The mode decomposition algorithm is used in feature extraction
to reduce the aliasing effect between feature information,
combined with DE theory, the anti-noise and stability of the
extracted S-RN features are further improved.

(3) Through the review and analysis of the previous DE in the
feature extraction of S-RN, the shortcomings and improvements
of the current method are illuminated, and the future prospects
and work directions are summarized.
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TABLE 4 Applications of DE combined mode decomposition in feature extraction of S-RN.

References Method Database Metric Main conclusion

[27] ITD + FDE Unkonwn 95.8% Rr Effectively achieve the classification of S-RN

[55] Improved ITD + MDE Unkonwn 86% Rr Provide a new scheme for accurate identification of different types of ship signals

[28] VMD + FDE Unkonwn 97.5% Rr More precise for S-RN feature extraction

[56] ESMD + DE Unkonwn 99.5% Rr Assist the feature extraction and classification recognition for S-RN

[57] EWT + RDE National Park Service 99.5% Rr Improve the S-RN separability and stability

[58] CEEMDASN + RCMFDE National Park Service 98.5%Rr Effectively solves the problem of information loss in feature extraction of ship signals

[59] VMD + MDE Unkonwn 100% Rr Extract the line spectrum frequency feature of S-RN

[60] VMD + WFDE National Park Service >90% Rr Accurately and efficiently extract the features of ship signals
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