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In this paper, we propose and demonstrate experimentally an optomechanical
torsion sensor using a microfiber mechanical resonator. The torsion angle could
be obtained by monitoring the resonant frequency shifts of the microfiber
resonator. Theoretical and experimental results show that the shift of resonant
frequency is non-linear to the torsion angle, and the fundamental mode is more
sensitive than other higher modes. The highest sensitivity of the sensor tested in
our experiments is 1,687 Hz/degree, and the corresponding resolution of torsion
angle is up to 0.0006°, which is 2 orders of magnitude higher than that of the
reported fiber-optic torsion sensors. The proposed sensor is a promising
candidate for the practical engineering applications.
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1 Introduction

Torsion detection is essential in the security monitoring of large-scale mechanical
equipment and anthropomorphic robotics applications [1-3]. Fiber-optic sensor is one of
the most common torsion sensors owe to their advantages such as small size, light weight,
robustness, telemetry, and immunity to electromagnetic interference [4, 5]. A number of
fiber-optic torsion sensing mechanisms have been reported over the past few years, such as
long-period fiber gratings [6, 7], fiber Bragg gratings [8, 9], Mach-Zehnder interferometers
[10, 11], Sagnac interferometers [12, 13], and multimode interferometers [14, 15]. However,
the angle resolutions of the reported fiber-optic torsion sensors based on those sensing
mechanisms are more than 0.1°, so how to further reduce the detectable minimum torsion
angle is a challenge for the fiber-optic torsion sensors.

Optomechanical systems studying the interaction between light and mechanical
resonator provide a promising platform for ultrasensitive sensing technologies [16-27].
Various ultrasensitive optomechanical sensors have been demonstrated and used to
measure multiple physical quantities, such as magnetic fields [28-31], displacements
[32], accelerations [33-35], masses [36-39], ultrasounds [40-43], current [44], and
temperature [45]. Therefore, it is significant to extend optomechanical ultrasensitive
sensing mechanisms to fiber-optic sensing technologies. In this letter, we propose and
experimentally demonstrate a microfiber optomechanical torsion sensor, where the
torsion angle could be obtained by monitoring the resonant frequency shifts of the
microfiber resonator. The torsion sensor is fabricated by splicing a microfiber between
two single mode fibers (SMFs). The high acoustic impedance mismatching at the splicing
spots resulted from the huge difference of the diameters between the microfiber and
SMFs could confine vibrating modes to the microfiber section to make the microfiber
work as a mechanical resonator. The resonant frequency of the microfiber mechanical

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fphy.2023.1147644/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1147644/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1147644&domain=pdf&date_stamp=2023-04-21
mailto:qzhang@sxu.edu.cn
mailto:qzhang@sxu.edu.cn
mailto:yongmin@sxu.edu.cn
mailto:yongmin@sxu.edu.cn
https://doi.org/10.3389/fphy.2023.1147644
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1147644

Zhang et al.

resonator changes when a torsion angle is applied to the proposed
device. The theoretical and experimental results show that the
shift of resonant frequency is non-linear to the torsion angle, and
the fundamental mode is more sensitive than other higher modes.
The highest sensitivity of the sensor tested in our experiments is
1,687 Hz/degree, and the corresponding detectable minimal
torsion angle is low to 0.0006°, which is 2 orders of magnitude
higher than that of the reported fiber-optic torsion sensors.
Therefore, the proposed device is a promising candidate for
the practical applications.

2 Fabrication of microfiber
optomechanical torsion sensor

A schematic diagram of the fabrication process of the sensor
is shown in Figure 1A. The process for the fabrication of this
device is simple and repeatable. Using an oxyhydrogen flame to
scan a SMF with axial stress, a microfiber could be fabricated
easily, and the length and diameter of the microfiber could be
of the
oxyhydrogen flame. In our experiments, the microfiber is

tailored accurately by changing the parameters

fabricated by a commercial optical fiber tapering machine
(AFBT-8000, Shandong Coupler Technology), where the
diameter error of the microfiber is less than 0.2 um. Then, the
microfiber is cleaved at the red dashed line, and the part with
uniform waist is spliced with a SMF by a fusion splicer
(S183ver.2, FITEL), where the splicing parameters are the arc
power 70, fusion time 0.8 s and the offset is 300. The same
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FIGURE 1

(A) Schematic of the fabrication process of the sensor. (B) Optical
micrograph of the sensor. The white scale bar at the lower right corner
is 50 pym.
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FIGURE 2

Schematic diagram of the sensor at a torsion angle 6.

fabrication process is applied to the other end of the
microfiber, where the length of the microfiber is designed
according to the practical need. As a result, the microfiber
with uniform diameter is spliced between two SMFs, and it
could work as a mechanical resonator because of the high
acoustic impedance mismatching at the splicing spots. It
should be noted that an offset is useful for protect the
microfiber from deformation when it is spliced with the SMFs.
Meanwhile, the flatness of the end faces in the microfiber
dominates the quality factor Q,, of the mechanical resonator.
The optical micrograph of the microfiber torsion sensor is shown
in Figure 1B, where the diameter and length of the microfiber are
13 um and 950 um, respectively. The white scale bar at the lower
right corner in Figure 1B is 50 pm.

3 Principle of microfiber
optomechanical torsion sensor

Micromechanical resonators have extraordinary sensitivity,
and have been applied to measure tiny force and mass changes by
monitoring the resonant frequency shifts [46, 47]. As shown in
Figure 1, the abrupt junctions between the microfiber and SMFs
could confine resonant mechanical modes to the microfiber
section, thereby enabling high mechanical quality factors Q,,
at low gas pressures. A large difference between the diameters of
SMF and microfiber is beneficial to reduce the clamping loss and
improve the Q,, of the resonator. The resolution of sensor
benefits from the Q,, of the resonator. The resonant frequency
fu of the nth mode of the microfiber resonator can be expressed

as [48]:
_ (@n+1)’m |EI ocAL?
fal0) =51 \ﬁ(“nZnZEI) ()

where L and A are the length and cross-sectional area of the
microfiber, E and I is the Young’s modulus and the moment of
inertia, d is the diameter of the beam, p is the density, and o is the
axial tensile stress in the microfiber.

According to Eq. 1, the resonant frequency of the microfiber
resonator could shift by adjusting the axial tensile stress. Figure 2
shows the theory model of the microfiber resonator with a torsion
angle 6. The line AB changes to AC when a torsion angle 8 is applied
to the microfiber resonator, where the corresponding axial tensile
stress ¢ from the torsion angle 6 is [49]:
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Calculated shifts of mechanical resonant frequencies as a
function of torsion angle 6.

FIGURE 4

Schematic of the experimental setup, including a vacuum

chamber (VC), variable optical attenuator (VOA), photodetector (PD),
and electronic spectrum analyzer (ESA).
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Combining Eqs 1, 2, the torsion angle 8 could be demodulated
by analyzing the resonant frequency shift of the microfiber
resonator. Figure 3 shows that the theoretic frequency shifts
Af, of different mechanical resonant modes as a function of
torsion angle 6 for a microfiber with a length of 950 pum and a
diameter of 13 um. The frequency shift of the fundamental mode
is more than other higher modes, and the frequency shifts will
decrease as the mode n increases. Therefore, it is more sensitive to
choose the fundamental mode as a sensing quantity than other
modes.
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Normalized mechanical power spectrum of the fundamental
mode for the sensor. Inset mode shape of the fundamental mode.
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FIGURE 6

Measured and calculated mechanical resonant frequency shifts
of the sensor as a function of torsion angle.

4 Experiment and discussion

The scheme of the experimental setup for characterizing the
sensor is shown in Figure 4. The light from a continuous-wave laser
with a wavelength of 1,550 nm (LSM-DFB-1550, OPEAK) is
injected into the variable optical attenuator and the sensor by
standard SMFs, where the lead-in SMF connects with the sensor
by a fiber-optic adapter. The transmission light from the sensor is
converted to the corresponding electrical signal by a fast
photodetector (PDB440, Thorlabs). By demodulating the
electrical signal from the photodetector with an electronic
spectrum analyzer (ESA, RBW is 1 Hz), we can get the resonant
frequency of the microfiber mechanical resonator and the torsion
angle. The sensor is mounted onto a mechanical holder with a rotary
stepper positioner (Attocube, ANR51/RES) and a piezoelectric stack
(Green, PI, PD050.3x1). The piezoelectric stack is used to excite the
microfiber mechanical resonator to monitoring the shift of the
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resonant frequency, because the thermal noise of the microfiber
resonator is difficult to be identified directly in our experiments. It
should be noted that it is possible to abandon the piezoelectric stack
for the proposed sensing mechanism when the thermal noise of the
microfiber resonator could be detected successfully. The sensor and
holder are fixed in a vacuum chamber with a gas pressure of 5 x
1077 mbar in our experiments.

The measured normalized mechanical power spectrum of
fundamental mode for the sensor with 950-um length and 13-pm
diameter is shown in Figure 5. The circular points and red solid line
are the experimental data and fitted curve according to the response
function of the mechanical resonator, respectively. Figure 5 shows
that the resonant frequency of the fundamental mode is 64.102 kHz
and the linewidth is 12 Hz. Therefore, the corresponding Q,, of the
mechanical resonator is 5,300. The inset is the mode shape of the
resonant mode in Figure 5.

To demonstrate the torsion sensor, we tested the response of the
sensor to the torsion by using the rotary stepper positioner at room
temperature. Figure 6 shows the measured and calculated mechanical
resonant frequency shifts of the sensor as a function of torsion angle
from 0° to 50°. The black solid line represents the calculated curve
according to the Eqs 1, 2. The red solid line and square symbols are the
fitting curve and measured frequency shifts. As shown in Figure 6, when
the torsion angle increases, the resonant frequency shifts to the large
frequency. The change of the resonant frequency is 44.562 kHz over 50°
change in the torsion angle. The resonant frequency shift is non-linearly
proportional to the torsion angle, and becomes larger as the torsion
angle increases. The difference between the calculated and measured
curves is mainly due to the splicing spots between the SMF and the
microfiber, where the properties of the splicing spots are different from
the microfiber. When the power of arc discharge is lower than the
optimal value, air bubbles appear in the splicing spots, which results in
the decrement of the connection area A between the microfiber and the
SMEF. The corresponding shift of resonant frequency reduces according
to Eqs 1, 2. In our experiments, the splicing spots of the sensors are easy
to break when the torsion angle is larger than 50°. Therefore, the splicing
technique between the SMF and microfiber needs to be further
optimized to improve the measure range and sensitivity of the
proposed sensor. According to the fitting curve of the measured
data, the highest sensitivity of the sensor tested in our experiments
is 1,687 Hz/degree, and the corresponding resolution of torsion angle is
up to 0.0006. To the best of our knowledge, the maximum of the
resonant wavelength shifts for the reported fiber-optic torsion sensors is
320 pm/degree in Ref. [13], and the corresponding the resolution of
torsion angle is 0.064° using an optical spectrum analyzer with a
representative resolution of 20 pm. The resolution of torsion angle is
improved about 2 orders of magnitude for the proposed sensor.
Therefore, the proposed device can provide a real-time high-
sensitive measurement of the torsion angle.

5 Conclusion

In conclusion, we have demonstrated a novel optomechanical
torsion sensor based on a microfiber mechanical resonator. The
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torsion angle can be determined directly from a measure of the
resonant frequency shift of the microfiber mechanical resonator.
Experimental results show that the achieved highest sensitivity of
the sensor with a 950-um length and 13-um diameter reaches
1,687 Hz/degree. The proposed torsion sensor has advantages of
small size, light weight, multiplexing, remote measurement, and
immunity to electromagnetic interference, and therefore could be
used in some precision machinery equipment fields. For example,
the torsion sensors for intelligent robots should be compact and
light to avoid a major modification in kinematics and dynamics
of robots. In addition, low torsional stiffness is beneficial to
reduce the influence on the natural frequency of the robot
arm. The proposed torsion sensor could also be embedded
into mechanical shafts to monitor the torque loads and health
condition of the shafts, and particularly suitable for applications
in harsh environments.
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