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Most of the existing studies on the improvement of entropy are based on the
theory of single entropy, ignoring the relationship between one entropy and
another. Inspired by the synergistic relationship between bubble entropy (BE) and
permutation entropy (PE), which has been pointed out by previous authors, this
paper aims to explore the relationship between bubble entropy and dispersion
entropy. Since dispersion entropy outperforms permutation entropy in many
aspects, it provides better stability and enhances the computational efficiency
of permutation entropy. We also speculate that there should be potential synergy
between dispersion entropy and bubble entropy. Through experiments, we
demonstrated the synergistic complementarity between BE and DE and
proposed a double feature extraction method based on BE and DE. For the
single feature extraction experiment, dispersion entropy and bubble entropy
have better recognition performance for sea state signals and bearing signals,
respectively; in double feature extraction, the combination of bubble entropy and
dispersion entropy makes the recognition rate of sea state signals increase by
10.5% and the recognition rate of bearing signals reach 99.5%.
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1 Introduction

In the field of non-linear dynamics, it is important to study about the feature of
complexity, which characterizes the complexity of the signal from a physical point of view [1,
2]. In fact, the existing time-domain and frequency-domain analysis techniques are
applicable to periodic stationary signals and linear signals. However, for complex non-
linear signals, the traditional methods cannot well reflect the non-linear characteristics and
implied information. For time series, entropy and Lempel–Ziv complexity and other non-
linear dynamic indexes are used as an evaluation criterion for signal complexity [3–10],
among which the development of entropy is the most mature.

The entropy theory has been developed to date with a variety of characterizations in
different forms. In 2002, Bandt et al. [11] first proposed the permutation entropy theory,
which can represent the complexity of the permutation order of a one-dimensional time
series with suitable parameters [12]. However, PE does not consider the relationship
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between individual magnitudes in a time series and thus has
limitations for the analysis of the time series [13]. Based on the
original theory of PE, many scholars have studied various
improvements, such as the proposed weighted-permutation
entropy as a complexity measure for time series incorporating
amplitude information [14], reverse permutation entropy as a
method to identify different sleep stages by using
electroencephalogram data [15], and multiscale permutation
entropy to solve the problem of PE’s inability to fully
characterize the dynamics of complex EEG sequences [16] as
well as refined composite processing based on multiscale
cases [17].

In 2016, Mostafa Rostaghi and Hamed Azami [18] proposed
dispersion entropy, an algorithm that overcomes the deficiencies of
PE and provides better stability and increased computational
efficiency. By processing the steps on the original DE algorithm
accordingly, scholars have proposed refined composite multiscale
dispersion entropy that is similar to refined composite multiscale
permutation entropy [19], fluctuation-based dispersion entropy as a
measure to deal with only the fluctuations of time series [20], reverse
dispersion entropy as a new complexity measure for sensor signals
[21], and hierarchical dispersion entropy as a new method of fault
feature extraction [22].

In 2017, George Manis et al. [23] first proposed a new time series
complexity metric, bubble entropy, which is an entropy with almost
no parameters, and the algorithm is extensive by creating a more
coarse-grained distribution through a sorting process that better
reduces the impact of parameter selection.

Research on improvement and optimization based on a single
entropy is more common, often adding weight, reverse,
multiscale, refined composite, fluctuation, and other
operations to the original entropy. Conversely, some scholars
proposed new theories based on the combination of the core of a
single primitive entropy approach; for example, permuted
distribution entropy is the combination of PE and distribution
entropy [24], fuzzy dispersion entropy is inspired by fuzzy
entropy (FE) and DE [25], fractional order fuzzy dispersion
entropy is proposed to introduce fractional order calculation
and fuzzy membership function [26].

However, few people study the relationship between one entropy
and another. David Cuesta-Frau and Borja Vargas studied the
synergistic relationship between BE and PE in 2019 [27], and if
DE is the improvement of PE, then BE and DE may also have a
synergistic and complementary relationship with each other.
Therefore, this paper proposed a double feature extraction
method based on BE and DE and applied it to the sea state
signal in the field of hydro-acoustics and the bearing signal for
fault diagnosis.

The remainder of the paper is organized as follows: Section 2
describes detailed algorithm theories of BE and DE; Section 3 indicates
the theoretical logic of BE, PE, DE, and FE and process of the proposed
feature extraction method; Section 4 conducts the single feature
extraction experiments of sea state signals and bearing signals;
Section 5 performs the double feature extraction experiments of the
same practical signals with different combinations, as well as carries out
the analysis and comparison of experimental results; and ultimately,
Section 6 elaborates the essential conclusion of this paper.

2 BE and DE

2.1 Theory of BE

As an entropy with almost no parameters, the theory of BE is
very simple, similar to PE. The algorithm makes the
distribution more coarse-grained by sorting, thus better
reducing the impact of parameter selection and expanding the
limitations of use.

Step 1: Given that the time series x � x1, x2,/, xN. According to
the given embedding dimension m, the original signal is mapped to
the m-dimensional phase space X in the way of time delay τ of 1,
where each element is represented by Xi.

X � X1, X2,/, XN−m+1, (1)
Xi � xi, xi+1,/, xi+m−1( ) i � 1, 2,/, N −m + 1. (2)

Step 2: Them elements in Xi are arranged in ascending order, and
the number of swaps ni can be obtained.
Step 3The probability pi is derived by normalizing the individual ni
to the total number N −m + 1.

pi � ni
N −m + 1

. (3)

Step 3: The entropy value Hm
swaps(X) can be calculated by

substituting the probability into the following equation:

Hm
swaps X( ) � −log ∑

N−m+1

i�1
p2
i . (4)

Step 4: The value of Hm+1
swaps(X) when embedding dimension m

equals m + 1 is calculated by repeating Steps 1–4.

Step 5: The value of BE is available as follows:

bEn � Hm+1
swaps X( ) −Hm

swaps X( )( )
ln m + 1/m − 1( ) . (5)

2.2 Theory of DE

DE often appears as the optimization of PE, and its
characteristics lie in the mapping process and the selection of the
dispersion mode. Compared with PE, this theory provides good
stability and increased computational efficiency.
Step 1Given that the time series x � x1, x2,/, xN. y �
y1, y2,/, yN can be acquired by mapping x to a normal
distribution function, after which z � z1, z2,/, zN can be
obtained by mapping to a linear equation.

yi � 1
σ

���
2π

√ ∫
xi

−∞
e− t−μ( )2/2σ2dt, (6)

zi � round c p yi + 0.5( ), (7)
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where μ and σ2 are set to expectation and variance of xi, respectively, c
is the number of categories, and round denotes the integer function.
Step 2 The phase space reconstruction of z based on the value of
embedding dimension m is carried out to compose the corresponding
(N −m + 1)τ dispersion patterns πv0v1/vm−1, and the probability of
occurrence of different kinds of dispersion patterns is calculated. It is
worth noting that the time delay τ in this step is 1.

p πv0v1/vm−1( ) � Num i | i≤N −m + 1, πv0v1/vm−1{ }
N −m + 1

. (8)

step 3 According to Step 1 and Step 2, each element in the
component has c values, so there are cm dispersion patterns.
Therefore, the normalized DE is defined by the following formula:

dEn � −∑
cm

π�1
p πv0v1/vm−1( ) ln p πv0v1/vm−1( )

ln c( m) . (9)

3 Algorithm analysis and method
proposal

In this paper, four entropies are introduced and applied to sea
state signals and bearing signals, each of which has a unique theory
and different focus, so the algorithms are also different. Figure 1
briefly describes the theoretical logic of BE, PE, DE, and FE.

For BE, the original time series is first reconstructed to get the
m-dimensional phase space, and then the number of swaps is
obtained by sorting each vector in ascending order, then the
corresponding probabilities are calculated, and finally the value is
attained by substituting into the BE-specific formula.

For PE, the original time series is first reconstructed to get the
m-dimensional phase space, and then the changedm-dimensional phase

space is constructed by sorting each element in each vector according to
the value size, then the corresponding probability is calculated, and
finally the value is obtained by substituting into the PE-specific formula.

For DE, the original time series is first mapped by the normal
distribution function to get the changed time series and then mapped
again by using the linear equation to change the time series again. After
this step, the m-dimensional phase space is obtained by reconstruction,
then the dispersion pattern probability is calculated, and finally the
value is obtained by substituting into the DE-specific formula.

For FE, the original time series is first reconstructed to obtain the
m-dimensional phase space, then the distance and fuzzy affiliation
are calculated, later its mean value is calculated, and finally the value
is obtained by substituting into the FE-specific formula.

By comparing the four entropies as a whole, it is obvious that:
BE, PE, and FE reconstruct the phase space first and then perform
other operations afterward, where BE and PE both get the
corresponding results by sorting, while DE is a direct processing
of the time series through two mappings before reconstructing the
phase space; both BE and FE need to calculate the difference in the
m + 1 case, and this step reduces the influence of the embedding
dimension on the results to some extent.

The aforementioned description is the theoretical part of the four
entropies, based on which we propose the feature extraction methods of
single and double features. Figure 2 provides the flow chart of the feature
extraction methods of single and double features taken in this paper.

Based on the analysis and comparison of the algorithm, we apply
it to the feature extraction experiment for verification and further
research. The feature extraction method includes four main steps:

Step 1: Diverse types of sea state signals (SSSs) and bearing signals
(BSs) are applied as the input of the feature extraction experiment,
where the length of each type of sea state or bearing signals is the
same with identical sampling points.

FIGURE 1
Theoretical logic of BE, PE, DE, and FE.
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Step 2: For four types of sea state or bearing signals, the values of
BE, PE, DE, and FE can be extracted. For double feature extraction,
one step needs to be added: the values of BE, PE, DE, and FE are
combined two by two, and thus there are six combination forms.

Step 3: The K-nearest neighbor (KNN) [28] is accepted to classify
each type of sea state or bearing signals.

Step 4: The recognition rate can be attained and employed for the
expression of recognition ability.

4 Single feature extraction

4.1 Sea state signals and bearing signals

In this study, four different types of SSS and BS from
website1 and website2 are selected for feature extraction and

classification recognition in the form of complexity. For SSSs
and BSs, the size of sample points is 1.3 × 106 and 1.2 × 105,
respectively, and the sampling frequency for both are 44.1 kHz.
Four diverse types of SSSs and BSs can be represented by sssI,
sssII, sssIII, and sssIV and bsI, bsII, bsIII, and bsIV, respectively.
Among these different types of signals, we selected 100 samples,
starting from the sample point of the same serial number,
and each sample consists of 2000 sampling points for sea
state signals and 1,000 for bearing signals. Figure 3 shows the
normalized time-domain waveforms of four diverse types of
SSSs and BSs.

4.2 Feature extraction

For the 100 samples selected, we introduce BE, PE, DE, and
FE and calculate the entropy values as the complexity feature.
Table 1 illustrates the parameter settings for each type of entropy.

As can be seen from Table 1, the time delay τ and the embedding
dimension m of all entropies are 1 and 3, respectively; only DE has
the category number c and its value is 6; the correlation coefficient r
of FE is 0.2. Figure 4 depicts the distributions of BE, PE, DE, and FE
for the selected 100 samples under specific parameter settings for
SSSs and BSs.

FIGURE 2
Flow chart of single and double feature extraction methods taken in this paper.

TABLE 1 Parameter settings for each type of entropy.

Complexity index Embedding dimension m Time delay τ Category number c Correlation coefficient r

BE 3 1 — —

PE 3 1 — —

DE 3 1 6 —

FE 3 1 - 0.2

1 [Online]. Available: https://www.nps.gov/glba/learn/nature/
soundclips.htm.

2 [Online]. Available: http://csegroups.case.edu/bearingdatacenter/pages/
download-data-file.
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According to the observation in Figure 4, the distributions of
different entropies have specificity; for SSSs, DE has better
distribution characteristics, and all kinds of signals are almost
located in the same line with a small amount of an overlapping
phenomenon, while BE and PE have obvious deficiencies in
distinguishing sssI and sssIII, as well as sssII and sssIV; for

BSs, the distribution of bsII and bsIII are too close to each
other for PE, DE, and FE, and even a large mixing occurs,
which is obviously not easy to differentiate, while BE
overcomes this problem, and there appears only a small
number of confusing sample points when differentiating bsIII
and bsIV.

FIGURE 3
Normalized time-domain waveforms of four diverse types of SSSs and BSs: (A) sssI, (B) sssII, (C) sssIII, (D) sssIV, (E) bsI, (F) bsII, (G) bsIII, (H) bsIV.
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4.3 Feature classification and recognition

To further explore the ability of BE, PE, DE, and FE to classify
and recognize the four diverse types of SSSs and BSs, KNN was

appointed to classify and recognize by taking the first 50 sample
points as a training sample set and the rest as a test sample set.
Table 2 and Table 3 summarize the feature classification and
recognition results obtained for SSSs and BSs separately.

FIGURE 4
Distributions of BE, PE, DE, and FE for the selected 100 samples under specific parameter settings: (A–D) Distribution of SSSs, (E–H) Distribution
of BSs.
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From Table 2 and Table 3, it can be seen that BE, PE, DE, and FE
have different numbers of misidentified samples for each type of sea
state and bearing signals, meaning that they have specificity in
recognizing the four diverse types of SSSs and BSs; as far as the
average recognition rate is concerned, the average recognition rate of
DE for SSSs is the highest, and that of PE, BE, and FE is in the
decreasing trend; for BSs, BE has the best recognition capability,
whose average recognition rate reaches up to 92.5%.

In the single feature extraction method, DE and BE have the best
classification recognition properties to mine the unique features of
different types of signals. Nevertheless, their average recognition
rates under single feature still have a lot of room for improvement,
especially for DE.

In order to further improve the average recognition rate, we
propose to combine BE with other entropies to make full use of their
specificity for the recognition of various types of signals, that is, the
unique advantages of each other, to form a complementary double
feature, so as to optimize the feature extraction method based on BE,
which would make the final average recognition rate and the
recognition efficiency better.

5 Double feature extraction

5.1 Double feature extraction method based
on two-by-two combination

For the sake of the full utilization of specificity, we combine all
the entropies mentioned two by two and denote the combination as
A&B, where A and B represent any two of the four entropies. For
example, BE&DE represents the combined form of BE and DE, and
their order does not matter. Therefore, for BE, PE, DE, and FE, there
exist six combination forms. Figures 5, 6 list the entropy distribution

and classification recognition results for BE&PE, BE&DE, BE&FE,
PE&DE, PE&FE, and DE&FE for SSSs and BSs separately.

Comparing the various combinations shown in Figures 5, 6, we
can see that the entropy distributions for SSSs and BSs are different
for each type of combination, and therefore have different
classification recognition results.

For SSSs, the entropy values between sssI and sssIII as well as
between sssII and sssIV are obviously mixed and consequently
difficult to distinguish, especially for sssII, which are often
misidentified as sssIV. By comparison, it is found that BE&DE
has the best recognition rate among all combinations.

For BSs, the entropy distribution of bsI is far from the other
signals and is distinguishable, while the misidentification mainly
occurs in bsII, bsIII, and bsIV, among which the combination
BE&DE has only one sample point misidentification and has an
obvious classification advantage.

5.2 Comparison and analysis of the results of
single and double feature extraction
experiments

For the sake of more intuitively comparing the difference in
the average recognition rates under single and double feature
extraction methods, Table 4 indicates the average recognition
rate of each combination of categories for SSSs and BSs under
double features.

In accordance with the information in Table 4, the average
recognition rate of the single and double features differed greatly
before and after the combination of entropies, compared with
Table 2 and Table 3; in the case of double feature extraction, the
average recognition rate achieves 94% for all combinations involving
DE for SSSs and up to 99% for all combinations involving BE for BSs,

TABLE 2 Feature classification and recognition results obtained for SSSs.

Entropy Number of misidentified samples for each type of sea state signals Average recognition rate (%)

sssI sssII sssIII sssIV

BE 23 20 14 3 60.0

PE 8 2 9 21 75.0

DE 2 14 8 8 84.0

FE 27 37 20 15 50.5

TABLE 3 Feature classification and recognition results obtained for BSs.

Entropy Number of misidentified samples for each type of bearing signals Average recognition rate (%)

bsI bsII bsIII bsIV

BE 0 1 9 5 92.5

PE 0 11 18 0 85.5

DE 0 22 22 3 76.5

FE 0 17 22 3 79.0

Frontiers in Physics frontiersin.org07

Jiang et al. 10.3389/fphy.2023.1163767

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1163767


FIGURE 5
Entropy distribution and classification recognition results of
BE&PE, BE&DE, BE&FE, PE&DE, PE&FE, and DE&FE of SSSs: distribution
of different entropy combinations (Left column); classification
recognition results (Right column).

FIGURE 6
Entropy distribution and classification recognition results of
BE&PE, BE&DE, BE&FE, PE&DE, PE&FE, and DE&FE of BSs: distribution
of different entropy combinations (Left column); classification
recognition results (Right column).
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which revealed that the initial capability to classify a single feature
can be effectively modified by adding BE and DE as another feature;
comparing the data in each column of the table confirms that
BE&DE has the highest average recognition rate, that is, 94.5%
for SSSs and 99.5% for BSs.

Figures 7, 8 show the average recognition rate and the difference
analysis for SSSs and BSs, respectively. In the legend, & represents
the combination, while A and B represent two of the four entropies,
as described previously.

It is obvious from the aforementioned figures that the original
recognition ability is improved by adding another feature. For SSSs,
DE has the best recognition ability when used as a single feature and
BE has a very poor recognition ability of 60%, while the combination
of both achieves the highest recognition effect of 94.5%. For BSs, the
situation is the opposite: BE is the entropy with the highest average
recognition rate in the single feature extraction, while DE just has the
lowest average recognition rate among the four entropies mentioned
in this paper, but the combination of both can even reach 99.5%.

Generally speaking, combining two entropies with the highest
average recognition rate and the second highest average recognition
rate in single feature extraction should have a stronger combination
to yield the highest final recognition rate, but for both SSSs and BSs,
BE&DE has the best recognition rate, which implies that there is
some synergy between BE and DE that can promote and improve
each other.

6 Conclusion

In this study, we proposed BE&DE as a double feature
extraction method based on the potential synergistic
complementarity between BE and DE and applied it to the sea
state signal in the field of hydro-acoustics and the bearing signal
for fault diagnosis. The main conclusions drawn from this paper
are as follows:

(1) Through the comparison and analysis of the algorithms, it
can be seen that the essential difference between DE and BE is
that DE makes use of the mapping relationship, while BE
utilizes the number of exchanges to construct the vector, so it
is speculated that there may be an assisting role between BE
and DE.

(2) For sea state signals, DE has significant superiority, and for
bearing signals, BE has better recognition performance. For
different practical signals, different methods are applied in
different suitable areas, but DE and BE are more effective
compared to PE and FE.

(3) Based on the synergistic and complementary relationship
between BE and DE, we proposed the combination form
BE&DE and experimentally verified that the method
possesses the best efficiency of signal classification and
recognition.

TABLE 4 Average recognition rate of each combination of categories for SSSs
and BSs under double features.

Combination Average recognition rate

SSSs (%) BSs (%)

BE&PE 78.5 99.0

BE&DE 94.5 99.5

BE&FE 66.5 98.5

PE&DE 94.0 86.0

PE&FE 76.5 91.5

DE&FE 93.5 86.0

FIGURE 8
Average recognition rate and difference analysis of BSs.

FIGURE 7
Average recognition rate and difference analysis of SSSs.
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