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In this study, the T-matrix method combined with the addition theorems of
spherical basis functions is applied to semi-analytically compute the
underwater far-field acoustic scattering of a pair of rigid spheroids with
arbitrary incident angles. The involvement of the addition theorems renders
the multiple scattering fields of each spheroid to be translated into an identical
origin. The accuracy and convergence property of the proposed method are
verified and validated. The interference of specular reflectionwave and Franzwave
can be spotted from the oscillations of the form function. Furthermore, the
propagation paths of specular reflection and Franz waves are quantitatively
analyzed in the time domain with conclusions that the Franz waves reach the
observation point subsequent to specular reflection waves and the time interval
between these two wave series is equal to the time cost of the Franz waves
traveling along the sphere surfaces. Finally, the effects of separation distances,
aspect ratios (the ratio of the polar radius to equatorial radius), non-dimensional
frequencies, and incidence angles of the plane wave on the far-field acoustic
scattering of a pair of rigid spheroids are studied by the T-matrix method.
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1 Introduction

The study of underwater target acoustic scattering gains attentions from researchers, and
the relative research studies are widely applied in engineering practices such as underwater
target detection, positioning, imaging, and underwater communication. The mechanism of
multiple-target acoustic scattering is more complex than that of single-target scattering due
to the existence of multiple scattering. In this study, a pair of rigid spheroids is chosen as the
target to investigate the multiple acoustic scattering characteristics.

In the past decades, a series of numerical and analytical methods are proposed to solve
the underwater acoustic scattering problem. Numerical methods such as the finite element
method (FEM) and boundary element method (BEM) can solve acoustic scattering problems
under complex conditions [1–3]. Recently, various extended methods, like the smooth finite
element method and meshfree method [4–7], are proposed to solve the underwater acoustic
scattering issues. However, the computational efficiency of those numerical methods
decreases as the frequency increases because of the requirement of very dense meshes.

OPEN ACCESS

EDITED BY

Glauber T. Silva,
Federal University of Alagoas, Brazil

REVIEWED BY

Vladimir Rabinovich,
National Polytechnic Institute (IPN),
Mexico
Bernhard Johan Hoenders,
University of Groningen, Netherlands

*CORRESPONDENCE

Wei Li,
hustliw@hust.edu.cn

RECEIVED 21 February 2023
ACCEPTED 17 May 2023
PUBLISHED 02 June 2023

CITATION

Yang Y, Gui Q, Zhang Y, Chai Y and Li W
(2023), Acoustic scattering of a pair of
rigid spheroids based on the T-
matrix method.
Front. Phys. 11:1170811.
doi: 10.3389/fphy.2023.1170811

COPYRIGHT

© 2023 Yang, Gui, Zhang, Chai and Li.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Methods
PUBLISHED 02 June 2023
DOI 10.3389/fphy.2023.1170811

https://www.frontiersin.org/articles/10.3389/fphy.2023.1170811/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1170811/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1170811/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1170811&domain=pdf&date_stamp=2023-06-02
mailto:hustliw@hust.edu.cn
mailto:hustliw@hust.edu.cn
https://doi.org/10.3389/fphy.2023.1170811
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1170811


Compared to the numerical methods, the analytical method can
provide precise solutions with a faster convergence speed. In
addition, the physical understanding of the acoustic scattering
wave can be explained by the analytical solutions. Rayleigh first
derived the Bessel–Legendre series (mathematical) solution for the
acoustic scattering of a sphere by the variable separation method.
However, his works are only competent to cases with small non-
dimensional frequencies ka [8]. Based on Rayleigh’s work, various
extended analytical methods, like the partial wave series (PWS)
method and Sommerfeld–Watson transformation (SWT), are
proposed to obtain the mathematical expressions of acoustic
scattering of the single simple target (such as the sphere and
circular cylinder) [9–11]. Záviška proposed the multipole method
to solve the two-dimensional multiple scattering by a series of
circular cylinders [12]. Eyges extended the multipole method to
the multiple scattering of two spheres [13]. The key to the multipole
method is the addition theorems of the spherical basis functions
which transform the multiple scattering fields of different targets to a
field with a uniform origin [14, 15]. Gabrielli derived the analytical
solutions to the acoustic scattering problems of two spheres using
the symmetry properties, which are widely used in quantum physics
[15, 16]. However, there are some limitations to analytical methods
in solving the acoustic scattering of non-spherical targets in the
spherical coordinate system. Consequently, the semi-analytical
method is applied to study the far-field acoustic scattering of a
pair of rigid spheroids.

The T-matrix method, a typical semi-analytical method, is first
proposed by Waterman for electromagnetic scattering problems
[17] and later extended to the acoustic scattering field [18]. The
T-matrix method is defined as the semi-analytical method derived
from the Helmholtz integral equation and null-field theory, and the
infinite matrix needs to be truncated. The crux of the T-matrix
method is to expand all the field quantities by a set of orthogonal
basis functions and solve the unknown expansion coefficients. In
addition, the T-matrix method is suitable for the acoustic scattering
problem with arbitrary incidence and scattering angles. Peterson
derived the T-matrix expression for multi-target scattering based on
the addition theorems of spherical basis functions and calculates the
numerical result of a pair of identical spheres under the plane wave

incidence [19]. Most of the published literature works focus on the
acoustic scattering of a pair of spheres and spheroids with small
aspect ratios (i.e., the ratio of the polar radius to equatorial radius is
less than 2). However, it is important to study the acoustic scattering
mechanism of a pair of rigid oblate spheroids and prolate spheroids,
which are extensively used in hydrodynamics and underwater
engineering.

In this work, the addition theorems are embedded in the
T-matrix method to investigate the underwater far-field acoustic
scattering characteristics of a pair of rigid spheroids with different
aspect ratios ensonified by plane waves at different angles. The
propagation paths of the returning backscattering waves from a pair
of rigid spheres are analyzed by using the geometric and numerical
method in the time domain. The structure of this work is as follows:
In Section 2, acoustic scatterings of a single rigid spheroid are
considered by the traditional T-matrix method; in addition, the
addition theorems are embedded in the T-matrix method to
investigate the scatterings of a pair of rigid spheroids. In Section
3, some numerical experiments are carried out to verify the accuracy
and convergence of the T-matrix method for the acoustic scattering
of a pair of rigid spheroids. Furthermore, the effects of the separation
distance between spheroids, aspect ratios, non-dimensional
frequencies, and incidence angles of the plane wave on the
acoustic scattering of a pair of rigid spheroids are investigated,
while conclusions are provided in Section 4.

2 T-matrix method

In this section, a rigid spheroid and a spheroid pair are
considered. The acoustic scatterings of such models under plane
wave incidence at an arbitrary angle are investigated using the
T-matrix method.

2.1 For a rigid spheroid

As shown in Figure 1, a rigid rotation spheroid with the polar
radius b (distance from the center point to the endpoint of the

FIGURE 1
Geometry model for the acoustic scattering of a rigid (A) prolate and (B) oblate spheroid.
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spheroid located in the rotation axis Oz) and equatorial radius a is
positioned in an ideal fluid medium with density ρ and sound
velocity c. The angle between the incident plane wave P and axis Oz
is θi. The surface shape function S(θ) of the spheroid is only related
to the polar angle θ, such that

S θ( ) � cos 2 θ/b2 + sin 2 θ/a2( )−1/2. (1)
The entire wave field can be constructed by the scalar velocity

potential because the wave field exists only in the ideal fluid
medium. For convenience, in what follows, the monochromatic
time factor exp(−iωt) of all velocity potentials is omitted. The
total wave field Φ(r) is the sum of the incident field Φi(r) and
scattering field Φs(r):

Φ r( ) � Φi r( ) +Φs r( ). (2)
All of the aforementioned velocity potentials satisfy the

Helmholtz equation:

∇2 + k2( ) Φ r( )
Φi r( )
Φs r( )

⎛⎜⎝ ⎞⎟⎠ � 0, (3)

where k � ω/c is the wave number. Waterman discussed the
aforementioned three field functions in detail [18]. The outer
surface S of the ellipsoid is smooth, so that the
Poincare–Huygens principle and Gauss theorem can be applied.
The Helmholtz integral representation equation can be expressed as

Φi r( ) + ∫
S
Φ+n · ∇g r, r′( ) − n · ∇+Φ( )g r, r′( )[ ] dS

� Φ r( ) r outside S
0 r inside S,

{ (4)

where Φ+ is the velocity potential on the outer surface of the
spheroid. n · ∇+Φ denotes the normal velocity on the outer
surface of the spheroid. g(r, r′) is the free-field Green’s function,
which can be expressed as

g r, r′( ) � exp ik r − r′
∣∣∣∣ ∣∣∣∣( )/ k r − r′

∣∣∣∣ ∣∣∣∣( ). (5)

The crucial point is to expand the whole field quantities with a
set of orthogonal basis functions and solve the corresponding
unknown coefficients. The scalar spherical basis function is
expressed as

Φnmσ r( ) � h 1( )
n kr( )Ynmσ θ,φ( )

� hn kr( )ξnm′ Pm
n cos θ( ) cos mφ( ), σ � e

sin mφ( ), σ � o
( ), (6)

where Pm
n (cos θ) is the associated Legendre function of order n and

rankm. The azimuthal parity index σ is either even or odd. h(1)n (kr)
is a spherical Hankel function of the first kind. The normalization
coefficients ξ

nm
′ can be expressed as

ξnm
′ � εm 2n + 1( ) n −m( )![ ]1/2 × 4π n +m( )![ ]−1/2, (7)

with εm � 1, m � 0
2, m ≠ 0

{ . The value range of the order index is
n � 0, 1,/, ∞, and the rank index m takes the integer values m �
0, 1,/, n.

The incident and scattered field can be expanded into the form
of the weighted sum of the scalar basis function with the expanded

coefficients. The regular spherical basis function, denoted by
ReΦnmσ , is obtained by substituting the first-kind spherical Bessel
function jn(kr) for h(1)n (kr) into Eq. 6. Therefore, the incident and
scattered fields can be expanded as

Φi r( ) � ∑
nmσ

anmσReΦnmσ r( ), (8)

Φs r( ) � ∑
nmσ

fnmσΦnmσ r( ), (9)

where ∑
nmσ

� ∑∞
n�0

∑n
m�0

∑
σ

is the triple summation symbol, anmσ denotes

the expanded coefficient of the incident field, and fnmσ denotes the
unknown expanded coefficient of the scattering field. For a plane
harmonic wave, the expanded coefficient is

anmσ � 4πξnm
′inPm

n cos θi( ) cos mφi( ), σ � e
sin mφi( ), σ � o

( ). (10)

Furthermore, the free-field Green’s function g(r, r′) can be
expanded using the spherical basis function as

g r, r′( ) � ∑
nmσ

ikΦnmσ r>( )ReΦnmσ r<( ), (11)

where r> � r, r> r′
r′, r< r′{ and r< � r, r< r′

r′, r> r′{ . r′ is the modulus of the

point r′ on the surface S of the spheroid. r is the modulus of the field
point r. The expanded expression of the unknown surface fieldΦ+ is

Φ+ r′( ) � ∑
nmσ

αnmσReΦnmσ r′( ), (12)

where αnmσ , which is omitted in the process of deriving the T-matrix,
is the expanded coefficient of the unknown surface field.

For a rigid spheroid, the boundary of the spheroid at r � S(θ)
satisfies the Neumann boundary condition:

n · ∇+Φ r( )∣∣∣∣r�S θ( ) � 0. (13)

Substituting Eqs 6–13 into Eq. 4 yields

i ∑
n′m′σ′

Qnmσ,n′m′σ′αn′m′σ′ � −anmσ , (14)

i ∑
n′m′σ′

ReQnmσ,n′m′σ′αn′m′σ′ � fnmσ , (15)

where

Qnmσ,n′m′σ′ � k∫
S
ReΦn′m′σ′ r′( )n · ∇Φnmσ r′( )dS. (16)

The detailed expression of Qnmσ,n′m′σ′ is obtained by substituting
Eq. 6 into Eq. 16:

Qnmσ,n′m′σ′ � ∫π

0
ξn′m′
′ jn′ kr( )Pm′

n′ cos θ( )ξnm

×
zhn kr( )

zr
Pm
n cos θ( )−[ rθ

r2
hn kr( )× zPm

n cos θ( )
zθ

]
× r2 sin θdθ∫2π

0

cosm′φ
sinm′φ

( ) cosmφ

sinmφ
( )dφ,

(17)
where rθ � zr(θ)/zθ and r(θ) � S(θ). In the expression of the
Q-matrix, the symmetry of the scatterer leads to certain elements
in the Q-matrix becoming zero. In this study, the rotational symmetry
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of the spheroidmakes the Q-matrix block diagonal of the submatrices,
and thus, the computation can be simplified.

From Eqs 14, 15, the relationship between scattering and
incident expanded coefficients can be expressed as

fnmσ � Tanmσ , (18)
where the transitionmatrixT, showing the influence of the geometry
of the spheroid, the incident angle, and the frequency of the plane
wave [20, 21], is expressed as

T � − ReQ( )Q−1. (19)

2.2 For a pair of rigid spheroids

In this part, the formula of the T-matrix method for a pair of
rigid spheroids immersed in the idea fluid is derived. The geometry
of the configuration to be considered is shown in Figure 2. The
formula of the T-matrix method for a pair of rigid spheroids is
derived exactly like Eq. 4:

Φi r( ) + ∫
S1+S2

Φ+n · ∇g r, r′( ) − n · ∇+Φ( )g r, r′( )[ ] dS
� Φ r( ) r outside S1 and S2

0 r inside S1 or S2.
{ (20)

The incident field Φi(r) and the free-field Green’s function
g(r, r′) need to be expanded at origins O1 and O2 to obtain the
Q-matrix of each of the spheroids, which are analogous to Eq. 16.
When the field point r is located inside S1,

r � r1 − d, r′ � r1
′, r − r1

′ � r1 − r1
″, r − r2

′ � r1 − r2
″ + 2d( ), (21)

where d � O1O
����→ � OO2

����→
. According to Eq. 11, Green’s functions

g(r, r1′) and g(r, r2′) can be written as

g r, r1
′( ) � ∑

nmσ

ikΦnmσ r1
″( )ReΦnmσ r1( ), (22)

g r, r2
′( ) � ∑

nmσ

ikΦnmσ r2
″ + 2d( )ReΦnmσ r1( ). (23)

From Eqs 8, 21, where r � r1 − d, the incident fields can be
expressed as

Φi r( ) � ∑
nmσ

anmσReΦnmσ r1 − d( ). (24)

The addition theorems of the spherical basis functions are used
in Eqs 23, 24. The translation properties are as follows [22, 23]:

ReΦnmσ r + d( ) � ∑
n′m′σ′

R̂nmσ,n′m′σ′ d( )ReΦn′m′σ′ r( ),

Φnmσ r + d( ) �
∑

n′m′σ′
R̂nmσ,n′m′σ′ d( )Φn′m′σ′ r( ), r| |> d| |,

∑
n′m′σ′

Rnmσ,n′m′σ′ d( )ReΦn′m′σ′ r( ) r| |< d| |,
⎧⎪⎪⎨⎪⎪⎩

(25)

where the coordinates of the vector d in the spherical coordinate
system are (d, η,ψ). R̂ is the regular form of R by replacing the
spherical Hankel function with spherical Bessel functions. The
matrices R̂nmσ,n′m′σ′(d) are given as

R̂nmσ,n′m′σ′ d( )� −1( )m
2

εm ·εm′[ ]1/2[ −1( )m′Cnm,n′m′ d,η( )cos m−m′( )ψ
+ −1( )σCnm,−n′m′ d,η( )cos m+m′( )ψ],σ�σ′,

R̂nmσ,n′m′σ′ d( )� −1( )m
2

εm ·εm′[ ]1/2[ −1( )σ′+m′Cnm,n′m′ d,η( )sin m−m′( )ψ
+Cnm,−n′m′ d,η( )sin m+m′( )ψ],σ≠σ′,

(26)

FIGURE 2
Geometry model for the acoustic scattering of a pair of rigid spheroids.
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where

Cnm,n′m′ d,η( )
� ∑n+n′

λ� n−n′| |
−1( )m′+n+ n+n′+λ( )/2 2λ+1( ) 2n+1( ) 2n′+1( ) λ− m−m′( )[ ]!

λ+ m−m′( )[ ]![ ]1/2

×
n n′ λ

0 0 0
( ) n n′ λ

m−m′− m−m′( )( )jλ kd( )Pm−m′
λ cosη( ),

(27)

where
· · ·
· · ·( ) is theWigner 3-j symbol [24]; its expression is given as

follows:

j1 j2 j3

m1 m2 m3
( )
� −1( )j1−j2−m3δ−m3 ,m1+m2

j1 + j2 − j3( )! j2 + j3 − j1( )! j1 + j3 − j2( )!
j1 + j2 + j3 + 1( )!{

× Π
i�1,2,3

ji +mi( )! ji −mi( )}∑
v

−1( )vv![ j1 + j2 − j3 − v( )!
× j2 +m2 − v( )! j3 − j1 −m2 + v( )! j3 − j2 +m1 + v( )!
× j1 −m1 − v( )!]−1,δ−m3 ,m1+m2 � 1,δ−m3 ,m1+m2 � 0,−m3 ≠m1 +m2.

(28)
In this study, the expression of the matrices R̂nmσ,n′m′σ′(± d) for

the special case of the offset along the z-axis is

R̂nmσ,n′m′σ′ ± d( ) � ∑n+n′
λ� n−n′| |

−1( )m′+n+ n+n′+λ( )/2 2λ + 1( ) 2n + 1( ) 2n′ + 1( )[ ]1/2
×

n n′ λ
0 0 0

( ) n n′ λ
m −m′ 0

( ) ± 1( )λjλ kd( )

× δσσ′δmm′

1, m> 0
1, m � 0, σ � e
1, m � 0, σ � o.

⎧⎪⎨⎪⎩ (29)

Substituting Eqs 22–25 into the second formula of Eq. 20
yields

0 � ∑
nmσ

∑
n′m′σ′

anmσ R̂nmσ,n′m′σ′ −d( )ReΦn′m′σ′ r1( ) + ∑
nmσ

ik∫
S1
ReΦnmσ r1( ) Φ+ r1″( ){

× n · ∇Φnmσ r1″( ) − n · ∇+Φ r1″( )( )Φnmσ r1″( )}dS + ∑
nmσ

∑
n′m′σ′

ik

× Rnmσ,n′m′σ′ 2d( )∫
S2
ReΦnmσ r1( ) Φ+ r2″( ){ n · ∇Φn′m′σ′ r2″( )

− n · ∇+Φ r2″( )( )ReΦn′m′σ(r2″}dS.
(30)

The expansion coefficients of the unknown surface fields of two
spheroids are α1nmσ and α2nmσ , respectively. The boundary of these
two spheroids satisfies the Neumann boundary condition. In this
way, Eq. 30 can be expressed as

FIGURE 3
Convergence study of the T-matrix method for a pair of rigid spheres. The backscattering modulus |f∞| of a pair of rigid spheres was calculated at
end-on incidence (θi � 0°) with the dimensionless frequency kb � 5 versus Nmax for a pair of rigid spheres with separation distances 2d � 2b and 4b,
respectively.

FIGURE 4
Convergence study of the T-matrix method for a pair of rigid
spheroids with aspect ratio b/a � 4 for the separation distance
2d � 4r0. The backscattering modulus |f∞| of a pair of rigid spheroids
was calculated with the dimensionless frequency kb � 10 versus
Nmax under three incident cases (θi � 0°,45°, and 90°).
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0 � ∑
n′m′σ′

an′m′σ′R̂nmσ,n′m′σ′ −d( ) − i ∑
n′m′σ′

Q1
nmσ,n′m′σ′α

1
n′m′σ′

−i ∑
n′m′σ′

∑
n″m″σ″

Rnmσ,n′m′σ′ 2d( )ReQ2
n′m′σ′,n″m″σ″α

2
n″m″σ″,

(31)
where Q1

nmσ,n′m′σ′ and Q2
nmσ,n′m′σ′ are given by Eq. 17, with the

integrals taken over S1 and S2. Expressing the aforementioned
equation in terms of matrices and vectors yields

R̂
t −d( )a � iQ1α1 + iR 2d( )ReQ2α2, (32)

where R̂
t(−d) � R̂(d) and the superscript “t” denotes the

transposition of the matrix. In the same way, when the field
point r is located inside S2,

R̂
t
d( )a � iR −2d( )ReQ1α1 + iQ2α2. (33)

Considering the field point r located outside the sphere SO
(the smallest external sphere containing both spheroids S1 and
S2 with O as the center of the sphere), according to Eq. 11,
the free-field Green’s functions g(r, r1′) and g(r, r2′) can be
written as

g r, r1
′( ) � ∑

nmσ

ikΦnmσ r( )ReΦnmσ r1
′( )

� ∑
nmσ

∑
n′m′σ′

ikΦnmσ r( )R̂nmσ,n′m′σ′ −d( )ReΦn′m′σ′ r1
″( ), (34)

g r, r2
′( ) � ∑

nmσ

ikΦnmσ r( )ReΦnmσ r2
′( )

� ∑
nmσ

∑
n′m′σ′

ikΦnmσ r( )R̂nmσ,n′m′σ′ d( )ReΦn′m′σ′ r2
″( ). (35)

Substituting Eqs 34, 35, 9 into the first formula of Eq. 20 yields

f � −iR̂ −d( )ReQ1α1 − iR̂ d( )ReQ2α2. (36)
From Eqs 32, 33, the surface field coefficients α1 and α2 can be

solved into expressions in terms of the incident field coefficient a.
Afterward, the transition matrix T(1, 2) can be obtained by
substituting the solved α1 and α2 into Eq. 36, such that

T 1, 2( ) � R̂ −d( ) T 1( ) I−[{ R 2d( )T 2( )R −2d( )T 1( )]−1
× I+[ R 2d( )T 2( )R̂ −2d( )]}R̂ d( )
+ R̂ d( ) T 2( ) I−[{ R −2d( )T 1( )R 2d( )T 2( )]−1
× I+[ R −2d( )T 1( )R̂ 2d( )]}R̂ −d( ), (37)

FIGURE 5
Accuracy study of the T-matrix method for a pair of rigid spheres. (A) Backscattering cross section of a pair of rigid spheres at broadside incidence
(θi � 90°) for kb � 2 versus separation distance 2kd. (B) Backscattering cross section of a pair of rigid spheres for kb � 2 and 2kd � 4.5 versus the incidence
angle θi. (C) Backscattering form function |f∞| of a pair of rigid spheres at broadside incidence (θi � 90°) versus kb for the separation distance 2d � 2b. (D)
Backscattering form function |f∞| of a pair of rigid spheres at broadside incidence (θi � 90°) versus kb for the separation distance 2d � 2b.
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where I is the identity matrix and T(1) (T(2)) is the T-matrix
formulation of spheroids S1 (S2), which can be calculated using
Eq. 19.

Since the far-field scattering characteristics are majorly
considered in the current study, the form function f∞ can be
defined by [25, 26]

f∞ kr0, θ,φ( ) � lim
r ����→∞

2r
r0

Φs

Φ0
e−ikr, (38)

where r0 � max(a, b). According to Eq. 38, the factors that affect the
form function are the observation position of the scattering field,
incident angle, and non-dimensional frequency.

FIGURE 6
Backscattering form function |f∞| (solid lines) of a pair of rigid spheres at oblique incidence (θi � 45°) versus kb for the separation distances (A)
2d � 2b and (B) 2d � 4b. The backscattering form function |f∞| of a pair of rigid spheres at end-on incidence (θi � 0°) versus kb for separation distances (C)
2d � 2b and (D) 2d � 4b. The dashed lines represent twice the value of the backscattering form function |f∞| of a single rigid sphere.

TABLE 1 Time intervals regarding the peak-to-peak intervals in Panel (a) of Figure 7.

Time interval Predicted by the geometric model (ms) Obtained from Figure 7 (ms)

t2–t1 3.41 3.29

t3–t1 5.30 5.37

t4–t3 3.41 3.30

TABLE 2 Time intervals regarding the peak-to-peak intervals in Panel (b) of Figure 7.

Time interval Predicted by the geometric model (ms) Obtained from Figure 7 (ms)

t2–t1 3.41 3.32

t3–t1 3.75 3.74

t4–t3 3.41 3.33
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3 Numerical examples and results

In this section, the convergence and accuracy of the T-matrix
method for calculating the acoustic scattering of a pair of rigid
spheres and spheroids are shown by several numerical experiments.
Afterward, the monostatic and bistatic acoustic scattering form
function modulus |f∞| of a pair of rigid spheroids illuminated
by the plane wave are calculated by the T-matrix method
considering various models with a range of aspect ratios b/a,
separation distances 2d, non-dimensional frequencies kr0
(r0 � max(a, b)), and incidence angles θi.

3.1 Numerical validation

The convergence of theT-matrixmethod for calculating the acoustic
scattering of a pair of rigid spheres under the plane wave end-on
incidence (θi � 0+) is verified. According to the aforementioned
theoretical formulation, the infinite summation in the Q-matrix and
R-matrix must be truncated at the appropriate limit Nmax. Figure 3
shows the results of |f∞| versusNmax under the end-on incidence case
with the non-dimensional frequency kb � 5 at separation distances 2d �
2b and 4b. It can be seen from Figure 3 that the T-matrix method
converges faster in calculating the acoustic scattering problem of a pair of
spheres. The relative convergence error of |f∞| can be given by [27]

ε N max( ) � f∞ N max( ) − f∞ N ′
max( )

f∞ N ′
max( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣. (39)

The truncation factor N ′
max in this study is expressed as

N ′
max � Int(k × (2d + r0)) + 5. When the dimensionless frequency

kb � 5, the values of the truncation factor N ′
max are taken as 20 and

30 for separation distances of d � b and 2b, respectively. As shown in
Figure 3, the form function modulus begins to converge, whereNmax is
greater than 14 and 26, respectively, and the relative convergence error
could reach 10−5 ~ 10−6. Therefore, the expression of the truncation
factor Nmax is verified to be correct and feasible. Furthermore, the
convergence and accuracy of the T-matrix method for calculating the
acoustic scattering of a pair of rigid spheroids are studied. Figure 4 shows
the backscattering modulus |f∞| of a pair of rigid spheroids with b/a �
4 for the separation distance 2d � 4r0 versusNmax with kb � 10 under
three incident cases (θi � 0°, 45°, and 90°). The results show that all the
curves have good convergence and the solutions are stable and accurate.
Similarly, the relative convergence error could reach 10−5 ~ 10−6.

In the following, some numerical experiment results of the
acoustic scattering of a pair of rigid spheres calculated by the
present method are compared with Peterson’s works [19] and the
analytical results. The comparison results are shown in Figure 5. The
circles are values according to the data from Peterson’s works, while
the solid lines are calculated by the present method. Panel (a) of
Figure 5 displays the backscattering cross section of a pair of rigid
spheres at the broadside incidence case (θi � 90+,φi � 0+) for kb � 2
versus the separation distance 2kd. It can be seen from Panel (a) of
the figure that the numerical results are in complete agreement with
Peterson’s solutions. The scattering cross section is defined by

σN r, θs,φs; θi,φi( ) � 4πr2
Φs| |2
Φ0| |2

1
πb2

. (40)

Panel (b) of Figure 5 displays the far-field backscattering cross
section σN versus the incidence angle θi of a pair of rigid spheroids
for kb � 2 and 2kd � 4.5. It is in complete agreement with the results
in Figure 7 of Peterson’s works. It can be assured that the T-matrix
method is sufficiently accurate in calculating the acoustic scattering
of a pair of rigid spheres at arbitrary angular incidence. As shown in
panels (c) and (d), the results of the backscattering form function
|f∞| of a pair of rigid spheres at the broadside incidence case
calculated by the present method are exactly the same as those
calculated by the analytical method [28] for separation distances
2d � 2b and 4b. It can be seen from the aforementioned comparison
that the T-matrix method is effective in computing the acoustic
scattering of a pair of rigid spheres and spheroids.

3.2 Far-field acoustic scattering properties
of a pair of rigid spheres

In this part, the far-field scattering properties of a pair of rigid
spheres under the plane wave at arbitrary incident angles are studied

TABLE 3 Time intervals regarding the peak-to-peak intervals in Panel (c) of Figure 7.

Time interval Predicted by the geometric model (ms) Obtained from Figure 7 (ms)

t2–t1 = t4–t3 3.41 3.54

FIGURE 7
Propagation path of the backscatteringwaves by a pair of spheres
at (A) end-on incidence and (B) oblique incidence.

Frontiers in Physics frontiersin.org08

Yang et al. 10.3389/fphy.2023.1170811

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1170811


by the T-matrix method. Figure 6 displays the backscattering form
function |f∞| versus the dimensionless frequency ka of a pair of
rigid spheres with two values of the separation distance (2d � 2b and

4b) under oblique (θi � 45°) incidence and end-on (θi � 0°)
incidence, respectively. As shown in Panels (a) and (b), it can be
seen that the form function |f∞| (solid line) of a pair of spheres is
below the values (dashed line) of twice the form function modulus of
a single rigid sphere under plane wave oblique incidence.
Furthermore, the backscattering form function curves oscillate
faster as the separation distance increases at the oblique
incidence case. This phenomenon is similar to the end-on
incidence case (see Panels (c) and (d) of Figure 6), but the
number of peaks in the backscattering form function curves
under the oblique incidence case at the same separation distance
is less than the end-on incidence case. In the end-on incidence case,
the amplitude of the backscattering form function |f∞| tends to be
stable as kb increases for the separation distance of 2d � 4b (see
Panel (d) of Figure 6). The reason for these oscillations in the
backscattering form function curves is due to the interference
between the specular reflection wave components and Franz
wave components in the backscattering response wave [29, 30]. It
can be seen that the oscillation period in the backscattering form
function curves (solid line) of a pair of rigid spheres is not a constant
compared to that (dashed line) of the single rigid sphere [31, 32].
The propagation mechanisms of the specular reflection and Franz
wave in the backscattering response wave by a pair of rigid spheres
are discussed in the following paragraph.

The path of backscattering waves by a pair of rigid spheres
ensonified by the pulse wave from end-on incidence and oblique
incidence, respectively, is shown in Panels (a) and (b) of Figure 7. P1

and P3 represent specular reflection waves, which propagate
backwards immediately when the incident wave reaches the front
of the first sphere and the second sphere, respectively. P2 and P4

represent the backward Franz waves, which diffracted around the
shadowed surface of the obstacle, from the first sphere and second
sphere, respectively. We define the moments of the arrival of
backscattering response wave components P1, P2, P3, and P4 at
the observation point as t1, t2, t3, and t4, respectively. The time
intervals under end-on incidence can be predicted by the following
equations:

t2 − t1 � CD +DEF + FG( )
c

,

t3 − t1 � 2 × CD +DH( )/c,
t4 − t3 � HI + IJK + KL( )/c,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(41)

where c denotes the velocity of the specular reflection wave.
Likewise, the time intervals under the oblique incidence can be
predicted as

t2 − t1 � CD +DEF + FG( )/c,
t3 − t1 � 2 ×MN/c,
t4 − t3 � HI + IJK +KL( )

c
.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(42)

The ideal fluid medium around the spheres is water. The
velocity of the specular reflection wave is 1,510 m/s, and the
scattering field point is located at (−30, 0). The time domain
response results obtained by the inverse fast Fourier transform
(IFFT) of the frequency domain response results [33] of a pair of
rigid spheres at three incidence cases (θi � 0°, 45°, and 90°) of

FIGURE 8
Backscattering response waves of a pair of rigid spheres in the
time domain for the separation distance 2d � 4b � 4m under the pulse
wave. (A) End-on incidence (θi � 0°), (B) oblique incidence (θi � 45°),
and (C) broadside incidence (θi � 90°).
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pulse waves for the separation distance 2d � 4b � 4m are shown
in Figures 8A–C. Four obvious peaks can be obtained from
Figures 8A, B. The specular reflection waves from the first
sphere and second sphere lead to two peaks with the largest
values. The two peaks with the smaller values are the Franz
waves of the first sphere and second sphere, respectively. The
values of Franz waves are smaller than those of specular

reflection waves due to radiation damping when the Franz
wave propagates in the shadowed area of the sphere. It can be
seen that there are only two obvious peaks in Panel (c) of
Figure 8 because the two spheres do not block each other in
the direction of the pulse wave. In the case of broadside
incidence (θi � 90°), the specular reflection waves of two
spheres reach the observing point at the same time, and

FIGURE 9
Bistatic 2D directivity pattern (solid line) of a pair of rigid spheres at end-on (θi � 0°) incidence with kb � 2 for separation distances (A) 2d � 2b and (B)
2d � 4b. The bistatic 2D directivity pattern of a pair of rigid spheres at oblique (θi � 45°) incidence with kb � 2 for separation distances (C) 2d � 2b and (D)
2d � 4b. The bistatic 2D directivity pattern of a pair of rigid spheres at broadside (θi � 90°) incidencewith kb � 2 for separation distances (E) 2d � 2b and (F)
2d � 4b. The dashed lines represent twice the value of the 2D directivity pattern of a single rigid sphere under three cases of incident angles (θi � 0°,
45°, and 90°) for kb � 2.
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subsequently, the Franz waves also reach the observing point at
another identical time point. Furthermore, the time intervals
corresponding to the peak-to-peak intervals for a pair of rigid
spheres with three incidence cases (θi � 0°, 45°, and 90°) of the
pulse wave for the separation distance 2d � 4b � 4m in Figure 8

are listed in Tables 1, 2, 3. The predicted results based on the
geometric model are calculated from Eqs 41, 42. As can be seen
from Tables 1, 2, 3, the results calculated by the T-matrix method
are consistent with the predicted results from the geometric
model.

FIGURE 10
Backscattering form function |f∞| (solid lines) of a pair of rigid prolate spheroids under end-on incidence (θi � 0°) versus kr0 (r0 � max(a,b)) for
separation distances (A) 2d � 2r0 and (B) 2d � 4r0. The backscattering form function |f∞| (solid lines) of a pair of rigid prolate spheroids under oblique
incidence (θi � 45°) versus kb for separation distances (C) 2d � 2r0 and (D) 2d � 4r0. The backscattering form function |f∞| of a pair of rigid prolate
spheroids under broadside incidence (θi � 90°) versus kb for separation distances (E) 2d � 2b and (F) 2d � 4b. The dashed lines represent twice the
value of the backscattering form function |f∞| of a single rigid prolate spheroid under three incident cases (θi � 0°, 45°, and 90°).
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In order to quantitatively study the scattering of a pair of rigid
spheres, the bistatic 2D directivity plots of a pair of rigid spheres
under three cases (θi � 0°, 45°, and 90°) of the plane waves for the

dimensionless frequency kb � 2 and separation distances 2d � 2b
and 4b, respectively, are shown in Figures 9A–F. It can be found that
the scattering form function |f∞| (solid line) of a pair of spheres is
mostly below the dashed line, which is twice the value of the form
function of the single sphere. The maximum values of the scattering
form function |f∞| in the 2D far-field directivity plots are in the
forward scattering direction under three cases. The 2D far-field
directivity plots under the oblique incidence are asymmetric in
Figures 9C, D because the obstacles are asymmetric along the
wave axis in the oblique incidence case. It is clearly shown that
the number of petals increased as the separation distance increases at
the same incident angles.

3.3 Far-field acoustic scattering properties
of a pair of rigid spheroids

In this section, the far-field scattering properties of a pair of rigid
spheroids under arbitrary incident angles of the plane wave are
studied by the T-matrix method. The results of the backscattering
form function |f∞| (solid lines) of a pair of rigid prolate (b/a � 2)
spheroids at three incidence cases (θi � 0°, 45° and 90°) versus the
non-dimensional frequency kr0 (r0 � max(a, b)) for the separation
distance 2d � 2r0 and 4r0, respectively, are shown in Figures 10A–F.
The dashed lines represent twice the value of the backscattering form
function |f∞| of a single rigid sphere at broadside incidence. As
shown in Figures 10A–D, the backscattering form function curves
oscillate faster as the separation distance increases in the end-on
incidence and oblique incidence cases. This phenomenon is
consistent with the results of a pair of rigid sphere scattering in
Section 3.2. Those oscillations in backscattering form function
curves are caused by the interference between the specular
reflection wave components and Franz wave components in the
backscattering response wave. The peaks in the backscattering form
function curves occur when the wave path difference Δs between the
Franz wave and specular reflection wave, which is related to the
separation distance 2d, is an integral multiple of the wavelength λ.
The peak-to-peak interval Δ(kr0) in the backscattering form
function curves can be expressed as Δ(kr0) � 2πa

Δs . Obviously,
Δ(kr0) decreases as the separation distance increases, making the
backscattering form function curves oscillate faster. In the broadside
incidence case, the solid line and dashed line overlap at low
frequencies in Panel (e) of Figure 10, implying that there is no
interaction between these two spheroids in this frequency band. As
the separation distance grows, the solid line and dashed line still
overlap at higher frequencies in Panel (f) of Figure 10. This is
because the two spheroids do not block each other in the direction of
the incident wave, and the interactions between these two spheroids
decrease as the separation distance grows.

Figure 11 displays the backscattering form function |f∞| of a
pair of rigid spheroids with different aspect ratios (b/a � 1/2, 1, 2,
and 4) versus kr0 (r0 � max(a, b)) for the separation distance 2d �
4r0 at three incidence cases (θi � 0°, 45°, and 90°). As shown in
Figure 11A, the values of the backscattering form function |f∞| of a
pair of rigid spheroids in the end-on incidence case decrease as the
aspect ratios grow. This is because the backscattering response wave
of a pair of rigid spheroids under plane wave end-on incidence is
mainly composed of the specular reflection wave at the front point of

FIGURE 11
Backscattering form function |f∞| of a pair of rigid spheroids with
different aspect ratios (b/a � 1/2, 1, 2, and 4) versus kr0 for the
separation distance 2d � 4r0 under the plane wave. (A) End-on
incidence (θi � 0°), (B) oblique incidence (θi � 45°), and (C)
broadside incidence (θi � 90°).
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the spheroids, and the intensity of the specular reflection wave
increases as the radius of curvature at the front point of the
spheroids increases [34]. It can be seen from Figure 11 that the
number of peaks in the backscattering form function curves for a
pair of rigid prolate (b> a) spheroids decreases with the increase in
the incidence angle. In order to quantitatively study the scattering of

a pair of rigid spheroids under the plane wave, the bistatic 2D
directivity plots for a pair of rigid spheroids with different aspect
ratios (b/a � 1/2, 1, 2, and 4) at three incidence cases
(θi � 0°, 45°, and 90°) of the plane waves for the non-dimensional
frequency kb � 2 and separation distances 2d � 2r0 and 4r0,
respectively, are shown in Figures 12A–F. The zoomed-in plots

FIGURE 12
Bistatic 2D directivity pattern of a pair of rigid spheroids with different aspect ratios (b/a � 1/2, 1, 2, and 4) at end-on incidence (θi � 0°) with kr0 � 2 for
separation distances. (A) 2d � 2r0 and (B) 2d � 4r0. The bistatic 2D directivity pattern of a pair of rigid spheroids with different aspect ratios (b/a � 1/2, 1, 2,
and 4) at oblique incidence (θi � 45°) with kr0 � 2 for separation distances (C) 2d � 2r0 and (D) 2d � 4r0. The bistatic 2D directivity pattern of a pair of rigid
spheroids with different aspect ratios (b/a � 1/2, 1, 2, and 4) at broadside incidence (θi � 90°) with kr0 � 2 for separation distances (E) 2d � 2r0 and (F)
2d � 4r0.
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regarding the results of the 2D directivity diagrams of a pair of rigid
prolate spheroids (b/a � 4) are also given in these panels. It is clearly
seen that the number of petals in the 2D directivity plots is mainly
influenced by the separation distance, and the number of petals
increased as the separation distance increased. The 2D directivity
plots are asymmetric in Figures 12C, D because the scatterers are
asymmetric along the wave axis in the oblique incidence case, which
is different from the end-on incidence and broadside incidence case.
In the end-on incidence case (see Figures 12A, B), the 2D directivity
plots of a pair of rigid spheroids change from the forward scattering
dominant to the sideward scattering dominant, with the increase in
the aspect ratio. The maximum values in the 2D far-field directivity
plots of a pair of rigid spheroids decrease as the aspect ratio increases
in the end-on incidence and oblique incidence cases. In the
broadside incidence case (Figures 12E, F), the 2D directivity plots
of a pair of oblate spheroids and prolate spheroids are sideward
scattering dominant and backward scattering dominant,
respectively. It can be found that the 2D far-field directivity plots
of a pair of rigid prolate spheroids with different aspect ratios at the
same incident angle and separation distance are very similar, and the
values of the scattering form function |f∞| decreases as the aspect
ratio increases.

4 Conclusion

In this work, the T-matrix method combined with the addition
theorems of spherical basis functions is applied to semi-analytically
compute the far-field acoustic scattering of a pair of rigid spheroids
under the planewave at an arbitrary incidence angle. It is verified that the
T-matrix method can accurately solve the far-field acoustic scattering
problem of a pair of rigid spheres with different separation distances
under the plane wave of any angle. In addition, some numerical
experiments on a pair of rigid (oblate or prolate) spheroids are
carried out by the T-matrix method with the following conclusions:

1) The acoustic scattering by a pair of rigid spheroids is more
complicated than that of a single rigid spheroid, and the values of
the scattering form function of a pair of rigid spheroids are not
equal to twice the far-field scattering form function modulus of a
single rigid spheroid.

2) The peak-to-peak interval of the backscattering response curve
obtained by the IFFT in the time domain is consistent with the
geometric prediction results, which makes it possible to estimate
the geometrical dimension and separation distance of multiple
scatterers from the scattering response wave.

3) The parameters affecting the far-field scattering form function
modulus of a pair of rigid spheroids are aspect ratio b/a,
separation distance 2d, dimensionless frequency kr0
(r0 � max(a, b)), and incident angle θi.
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