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During X-ray inspection detection, a detector converts the collected X-rays from
objects into electrical signals, which are then transmitted to a computer for image
processing and analysis. From the aspect of digital image processing, detection
tasks mainly focus on data processing and transformation to identify valuable
features, which make the algorithms more effective. The consistent requirement
for speed and accuracy in X-ray prohibited item detection is still not fully satisfied,
especially in pictures obtained under special imaging conditions. For noisy X-ray
images with heavy occlusion, a direct and suitable approach of representation
learning is the optimal solution. According to our study, we realized that
heterogeneous information fusion from different extraction approaches can be
applied effectively to overcome this issue. We proposed two innovative algorithms
to extract effective features of X-ray objects to significantly improve the efficiency
of X-ray prohibited item detection. The brief model we proposed fuses the
representations learned from the noisy X-ray images and outperforms the best
model (DOAM-O) so far on OPIXray. Furthermore, the attention module we
designed to select information on deep learning and representation
strengthens the model; considering this, the model utilizes lesser time for both
training and inference, which makes it easier to be trained on a lightweight
computing device.
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1 Introduction

Security inspection equipment usually adopt an electron accelerator or a ray tube to
accelerate electrons to form a high-energy X-ray beam. X-ray security inspection is used to
understand the internal structure, density, and composition of objects by X-ray irradiation
and detection, which is helpful to identify the presence of suspicious objects. The detected
objects can vary in material, density, and composition and have different X-ray absorption,
scattering, and transmission characteristics. The detector converts the collected X-rays from
the objects into electrical signals, which are then transmitted to a computer for image
processing and analysis.

Sameer Singh summarized the applications of signal processing and pattern recognition
in image processing to detect the presence of explosives and non-material substances in
luggages. Domingo Mery et al. proposed the public dataset GDXray [6] containing
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19,407 X-ray images, including five categories of security inspection
images, castings, welds, etc.

RoomI m et al. used the fuzzy K-nearest neighbor (FKNN) [7]
algorithm to identify pistols in baggage, and the pistol is extracted by
a segmentation method. Shape context descriptor and Zernike
moment are the traditional extraction methods. In machine
learning, the support vector machine (SVM) [8] and random
forest can also be used for classification after the bag of visual
word (BOVW) [9] is built. This has already been described by
Mikolaj E and David Castro.

The aim of these representation learnings is to learn vector
representations via convolution layers, and the most existing
approaches summarized into unified two-step operators used to
extract matrix construction and dimension reduction, such as
Network Representation Learning (NRL) [1–4].

One of these methods analyzes the proximity matrix
construction step first and then uses the NRL method to build
the proximity matrix. Network Embedding Update (NEU) [5]
algorithm is used for designing as the modules are made up of
convolutional layers. During the training process, the parameters are
optimized to approximately higher order proximities to enhance the
performance of the model. It is essential to obtain high-quality
feature representations to achieve high performance and efficiency
in a vision task.

As for noisy X-ray images, somemethod was proposed [10]. The
GDXray dataset contains limited number of images from largely
facilitated relevant researches. As the images in the dataset are
completely gray-scaled and have repetitive patterns, the items in
these images can be easily checked; moreover, the single energy
security detector for taking images has been eliminated. After
GDXray, SIXray [11] was proposed which contains 19,407 X-ray
images that are taken at the actual security inspection places. The
dual energy security detector used is still the mainstream means of
cargo and baggage security inspection.

A number of detection methods based on convolutional neural
networks [12] have been proposed that have produced amazing
results in different vision tasks. Most of these models are used for
pictures taken under natural conditions; unlike these pictures, the
style and characteristics of X-ray images are different. Considering
this, we carefully compared the dataset of X-ray images with the
dataset for different tasks. In the datasets of common visual tasks
[19], objects in the real world contain rich details and generate
perspective projection in human eyes and photos. In these kinds of
tasks, there is a lack of the details of the objects and the borders take
up more importance. Therefore, it is essential to find effective
methods for feature extractions to have a balance between the
two kinds of features. SIXray aims at the real complicated site,
and the dataset still cannot meet actual needs.

According to the characteristics of X-ray images and the ability
of convolutional neural network [13–18], the edges and contours of
objects in X-ray images play a crucial role in detecting the prohibited
items we want to find. In addition, we need to realize that the regions
and the semantic information in neural networks are also quite
useful at the same time.

There are some achievements in the detection of occluded
prohibited items in X-ray images; for example, DOAM [20] has a
state-of-the-art performance with occlusion and performs better
than other models.

For better representation learning, existing network embedding
is used to get the brief and useful low-dimensional vertexes, and
most of these are applied in natural language processing (NLP), such
as word2vec [21], DeepWalk [22], and node2vec [23]. Network
embedding primarily focuses on preserving the microscopic
structure of the data but does not consider the special
distributions in the data, such as the various data distribution in
OPIXray.

We found that the traditional feature extractor contributes the
most to the result, and the embedding module can be designed as the
extraction operator to suit OPIXray. This kind of representation
learning works well and efficiently. Essentially, the CNNmodels can
be combined with the designed representation features: it is easy to
be trained, and the fine-tuning [24] is helpful to prompt the models
by learning the presentations of something new. This is task-
oriented based on the training mechanism of deep learning [25],
which is exactly what we are looking for. We proposed the network
embedding of edge-region unified architecture for occluded X-ray
images; furthermore, we designed the unity attention module of
contour and region to improve the performance of network
embedding and absorb the SSD (single shot multi-box detector)
model [26] into it. Our contributions can be listed as follows:

• We analyzed the high-quality operators and the feature
representations first, representing the expressions and
discussions for these. Based on these, we developed a high-
quality network embedding module that can enhance the
detection of prohibited items in the high-quality noisy
X-ray dataset named OPIXray.

• We designed a self-attention module based on CNN. This
module is also based on the partial supervision mechanism
when the whole detector is in the process of training. It
trains the model to place more emphasis on the key areas,
to make performance of the special task more efficient
than other structures. To the best of our knowledge, this is
the first work exploiting the partial supervision
mechanism to detect prohibited items, which might
provide a new way to solve the occlusion problem in
noisy X-ray images.

• We combined a deep learning model with the network
embedding, named ERU. The self-attention module
provides partial supervision during end-to-end training
while simultaneously providing information on the shape
and material of items. ERU helps refine feature maps of the
general detectors, enhancing the performance of the most
popular detector. The innovation module ERU outperforms
DOAM in both efficiency and mAP.

• Extensive experiments were conducted on the published
dataset OPIXray, which is the only dataset for X-ray
prohibited item detection. The results demonstrate that our
method can drastically boost detection accuracy and achieve
the new state-of-the-art performance for this task.

The paper is structured as follows: Section 2 introduces the
related work; Section 3 introduces the operators and the attention
mechanism we proposed; Section 4 describes and discusses the
proposed de-occlusion methodology and the whole training
strategy.
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2 Related work

2.1 Difference in CNNs

Considering the edge extraction of digital images, the grid
function space [27] is a set of functions defined on a given grid
point corresponding to the elements in the receptive field [28] and
forms a finite dimensional space.

Classical operators such as Robert [29] and Sobel [30] are used
to characterize the information on edge and sudden change of
context.

Pixel difference convolution (PDC) [31] is a more suitable
operator: it introduces differential operation into convolutional
neural networks efficiently. According to the sampling strategy of
candidate pixel pairs, PDC can be divided into three subforms
(shown as follows) which are used to process feature maps.

2.1.1 Pixel difference convolution based on central
differences (CPDC)

The subform CPDC [32] is similar to PDC and performs
differential operation in the neighborhood based on the center
pixel (Figure 1). As aforementioned, differences are calculated
first and then the convolution kernels process these differences.

I �
x1 − x5 x2 − x5 x3 − x5

x4 − x5 x5 − x5 x6 − x5

x7 − x5 x8 − x5 x9 − x5

⎛⎜⎝ ⎞⎟⎠, (1)

O � I*W. (2)
According to the law of multiplicative distribution [33], we can

simply crop the feature map without considering the edge region.

O �
x1 x2 x3

x4 x5 x6

x7 x8 x9

⎛⎜⎝ ⎞⎟⎠*W − x5 × W (3)

Subtracting the cropped feature maps from the convoluted
output gives the final CPDC output.

2.1.2 Pixel difference convolution based on angular
differences (APDC)

The subform APDC obtains differences in the candidate pixel
pairs in the clockwise direction (Figure 2). Just in the same manner
analysed above, we can composed it to the twice convolution. The
composed calculation cannot share the weights of kernel very well.

I �
x1 − x2 x2 − x3 x3 − x6

x4 − x1 x5 − x5 x6 − x9

x7 − x4 x8 − x7 x9 − x8

⎛⎜⎝ ⎞⎟⎠, (4)

O � I*W. (5)
The Eq. 3 essentially instead the difference operation, while

APDC is not focused on one element like x5 in the equation, which
invisibly shuffle the fixed difference templates. We can understand
this more clearly using the following formula.

O �
x1 x2 x3

x4 x5 x6

x7 x8 x9

⎛⎜⎝ ⎞⎟⎠*W −
x2 x3 x6

x1 x5 x9

x4 x7 x8

⎛⎜⎝ ⎞⎟⎠*W, (6)

As the receptive fields change with the steps and the kernel size,
it is more difficult to transform the position on the inputs. We share

the receptive fields and transform the kernel. If we define the
receptive field as

X �
x1 x2 x3

x4 x5 x6

x7 x8 x9

⎛⎜⎝ ⎞⎟⎠ (7)

and we define

W �
w1 w2 w3

w4 w5 w6

w7 w8 w9

⎛⎜⎝ ⎞⎟⎠, (8)

then the formula in Eq. 6 can be rewritten as

O � W*X −
w4 w1 w2

w7 w5 w3

w8 w9 w6

⎛⎜⎝ ⎞⎟⎠*X. (9)

The kernels cannot be shared, and we must use two kernels to let
it work. At the same time, it should be considered that the gradients
can be propagated well, which corresponds to the same original
element in the convolution kernel.

2.1.3 Pixel difference convolution based on radial
differences (RPDC)

To obtain a bigger receptive field, the subform RPDC
differentiates the candidate pixel pairs in the inner ring and
outer ring separately for the neighborhood (Figure 3). It can be
simply seen as the difference between two ouputs based on the
shared convolution kernel with various dilations.

2.2 Pooling in CNNs

2.2.1 The power-average pooling
Conventional max pooling [34] and average pooling [35]

methodsare used to obtain the description of colors and areas from
feature maps. Power average pooling is a kind of integration of max
pooling and average pooling. This kind of pooling uses parameter p to
balance the importance of max pooling and average pooling, and the
formulation can be written as follows:

~a � p
�����∑
i∈R

api
√

. (10)

It is clear that power average pooling is used to obtain the sum in
the neighborhood when p equals 1; max pooling is achieved when p
approaches infinity.

2.2.2 Soft-pooling
Soft-pooling is another kind of pooling inspired by cortical

neural simulation and early experiments with pooling of hand-
coded features [36].

Soft-pooling [37] is different from max pooling; that is, the
activation values in the neighborhood will get at least one minimum
gradient during back propagation [38].

Soft -pooling uses maximum approximation R in the activation
area. Every activation value ai corresponding to i applies weight wi,
where weight wi is defined as the ratio between the activated natural
exponent and the sum of the activated natural exponents in the
neighborhood:
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wi � eai∑j∈Re
aj
. (11)

Weights and the corresponding activation play a role in the
non-linear transformation [39]. The dominant position in
feature map is taken by the activation computation of the
formulation.

The output of soft-pooling is obtained by summing all the
weighted activation in the neighborhood:

~a � ∑
i∈R

wi*ai. (12)

2.3 Convolutional networks for
representation

Several convolutional neural network architectures for
representation learning have been proposed [40–44] in recent
years. The majority of these methods are based on graphs and do
not scale to large graphs or are designed for the whole-graph
classification [40, 41, 43, 44].

In a given network, network embedding aims to learn
representations for vertexes. Some researchers regard network
embedding as a part of dimensionality reduction techniques in
addition to the aforementioned. To expand the manifold of the
data distribution room, where the data lie, Laplacian Eigenmaps
(LE) aim to learn vertex representation, Locality Preserving
Projections (LPP) [45] learn a linear projection from the feature
space to embedding space as a variant of LE, and further develop the
model to handle heterogeneous networks [46] building on
word2vec.

Following the aforementioned, a vertex’s context is decomposed
by LINE [47] into first-order (neighbors) and second-order (two-
degree neighbors) proximity. Wang et al. preserved community
information in their vertex representations [48].

2.4 Detector for prohibited items in noisy
X-ray images

Because of the challenges and the lack of special datasets, there
are few CNNmodels aiming at solving this special problem, and the

FIGURE 1
Processing of CPDC.

FIGURE 2
Processing of APDC.

FIGURE 3
Processing of RPDC.

Frontiers in Physics frontiersin.org04

Rao et al. 10.3389/fphy.2023.1174220

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1174220


released benchmark, GDXray, is gray-scaled with simple
backgrounds. Thanks to de-occlusion attention network (DOAM)
[49], whose performance is state of the art, it contributed the first
and high-quality dataset OPIXray focusing on occluded prohibited
item detection during security inspection, which allowed for further
studies on this.

2.4.1 De-occlusion attention network
The de-occlusion attention network (DOAM) is a plug-and-play

module, which simultaneously leverages the different appearance
information (shape and material) of items. DOAM helps refine
feature maps for general detectors, promoting the performance of
most popular detectors.

1) Edge guidance (EG): For each input sample x ∈ X, the edge
guidance module first computes the edge images Eh and Ev in
horizontal and vertical directions using the convolutional neural
network with Sobel operators sh and sv, which denote the
horizontal and vertical kernels, respectively. Second, exploiting
the aforementioned two results Eh and Ev, it generates a new one;
in other words, the entire edge image E of input image x is further
generated.

2) Material Awareness (MA): In this kind of dataset, features from
regions tend to be important as they can directly represent
themselves at any position in the picture; that is, material
information is highly reflected in color and texture,
completely presenting the total appearance of items and
producing the edges due to the conjunction of different
regions. Based on the common knowledge that people identify
the material of an object according to its color and texture, this
module aggregates these two information as so-called aggregated
regional information.

3 Self-adaptive operator in network
embedding

3.1 Self-adaptive difference algorithm for
X-ray objects

Using signals measured by a detector, computers can produce
high-resolution X-ray images that show the internal structure and
composition of an object. Based on the X-ray images, security
personnel can carry out rapid and accurate identification and
judgment. Briefly, the physical principle of X-ray security
inspection is to transform the transmitted signal into an image
through X-ray irradiation and detection of the detected object, and
analyze and judge the image information; thus, the goal of
identifying and detecting suspicious objects is achieved.

X-rays have a strong ability to penetrate matter. When they
penetrate matter, they interact with atoms, especially electrons, and
lose energy. Instead of thinking about how X-rays interact with
atoms in matter, we focus on the exponential decay of the intensity
of the rays.

The intensity of the ray here is the energy passing through the
unit cross-sectional area per unit time. The equation is as follows:

I � I0e
−μx. (13)

X-ray intensity decay can be used for imaging. The intensity
of the X-rays decreases as they pass through a suitcase, and since
the contents of the suitcase are not evenly distributed, the
intensity of the X-rays that pass through the suitcase from
different locations will vary. The following equation shows the
decay twice in a row when an X-ray passes through something
different in the middle.

I � I0e
−μ x−d( )e−μ′d (14)

In the equation, I0 denotes the incident X-ray intensity, I denotes
the X-ray emission intensity after penetrating the material, x is the
distance of the X-ray traveling through the object, and μ is the linear
attenuation coefficient. This equation shows that X-rays penetrate a
material with exponential decay.

So, the information provided by gradients can be informative
about the saliency of different features [50]. The directions of
difference will also influence the abundance of extracted features.
Analysis from the comparative study [51].

In the domain of edge detection, classical traditional operators,
such as Robert and Sobel, apply the difference information to extract
the abrupt changes in gray-level information from images. Different
from the fixed difference operators, the proposed operator allows
adjusting by itself through the optimization of SGD (stochastic
gradient descent) [52], and the final parameters of the operators are
a combination of the initialization difference operator and the
increments in different directions.

Under usual conditions, the values of the parameters in trained
kernels are typically Gaussian distribution [53], which leads to
smoothening of the features in the adjacent areas.

In our model, the differences in every direction of the kernels
can be calculated. Meanwhile, the parameters of the multi-oriented
difference operators are learnable. The operation process of a self-
adaptive difference operator is as follows.

1: Require: an X-ray image x ∈ RC×H×W

2: Ensure: the edge image E of the input image x

3: GeneratethefourdifferenceedgeimageEn(n=1,2,3,4)

by the self-adaptive difference operator;

4:

5: Generate the edge image E by synthesizing En (n =

1,2,3,4);

6: return E;

Algorithm 1. The operation process of self-adaptive difference
operator

In the operation process of a self-adaptive difference operator,
for each input sample x ∈ R, the initializations of difference
operators are designed as follows:

D1 �
0 −1 0
0 0 0
0 1 0

⎛⎜⎝ ⎞⎟⎠, (15)

D2 �
0 0 1
0 0 0
−1 0 0

⎛⎜⎝ ⎞⎟⎠, (16)

D3 �
0 0 0
−1 0 1
0 0 0

⎛⎜⎝ ⎞⎟⎠, (17)
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D4 �
−1 0 0
0 0 0
0 0 1

⎛⎜⎝ ⎞⎟⎠. (18)

The initializations of the parameters for the difference operators
are done in the manner of the aforementioned designed templates.
The four templates are D1, D2, D3, D4. Note that these templates are
trainable, and the final values of these templates aremore suitable for
the difference task. We computed the edge images En (n = 1,2,3,4) in
different directions using the trained difference operators and
obtained four slightly different feature maps.

The outlines in the four feature maps of a same object were
similar, but the arrangements of the pixels were differentiated.
We synthesized these feature maps to obtain the final feature map
containing various arrangements of the pixels in the outlines. The
synthesization was accomplished using the measurement of
Euclidean distance [54].

E �

�����∑4
n�1

En

√√
(19)

Figure 4 shows the process of feature extraction. The different
differences in various directions remain the whole outlines. It is
almost the same at the first sight, but we can still find some changes
in a smaller field of view: the two small patches indicated by dotted
arrows in the picture prove that. Most importantly, these small
differences can bring about improvements in performance.

3.2 Self-adaptive pooling algorithm for X-ray
object

By detecting the intensity distribution of the transmitted X-ray
and converting it into a gray-scale image, we can get an image that
can reflect the internal structure of the detected object.

A false-color image is generated by dual-energy X-ray imaging,
in which metals, alloys, and hard plastics appear blue, and less dense
materials appear green or orange.

If the integrating area in the neighborhood is chosen as C, then I
represents the pixels of the input image or feature map. Generally,
there are three ways to integrate the feature points. In general
pooling, average pooling is better to keep the background by
averaging the feature points in the neighborhood. We define
function num (·), which represents the number of the pixels in
the input area, by the following formula:

Io �
∑ x,y( )∈CI x,y( )

num C( ) . (20)

We define function max (·), which represents the maximum
value of pixels in the chosen neighborhood. If we replace the
previous expression by the newly defined function, the formula
can be written as follows:

Io � max I x,y( )( ), x, y( ) ∈ C. (21)

We reevaluate the numerical distribution of filters mentioned
above, for each neighborhood, suppose that the area C is a square
and the side length of C is k, then it is obvious that num(C) = k × k:

Io �
∑ x,y( )∈CI x,y( )

k × k

� ∑
x,y( )∈C

1

k2
I x,y( )

. (22)

If P represents the mean filter, Equation 22 can be rewritten as

Io � ∑
x,y( )∈C

P ⊙ I x,y( ). (23)

In order to have a better balance of the input in each
neighborhood, we allow the values in P to be adjusted based on

FIGURE 4
Processing of our designed difference operator.
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the back-propagation gradients when that part is trained. For each
channel of the input image, we define mean filters [55] which
adjust separately. So, the neighborhood generates three outputs Io1,
Io2, Io3. The final output of the neighborhood is calculated as
follows:

Io �
��������������
αI2o1 + βI2o2 + γI2o3

√
. (24)

The factors α, β, γ are learnable based on the back-propagation
gradients. We call this operation self-adaptive pooling. The
algorithm flowchart is as follows:

1: Require: an X-ray image x ∈ RC×H×W

2: Ensure: the pooling image P of the input image x

3: Generate the three pooling image Pn(n = 1,2,3) by the

self-adaptive pooling operator;

4:

5: Generate the final pooling image P by synthesizing

Pn(n = 1,2,3);

6: return P;

Algorithm 2. The operation process of the self-adaptive pooling
operator

Figure 5 shows the process procedure of SAP. Different channels
are processed, and the combination is based on the adaptive algorithm
to balance the contribution. Each channel provides the information
corresponding to different materials. The pooling operations are not
simple to implement or can be used to obtain the maximum value
directly. The parameters in the operators are learnable which contribute
to the final fusion result, the final fusion result of various materials
enlarges the influence of important areas or materials.

3.3 Self-attention mask

It is well known that models focus on certain characteristics of
the extracted features, or some CNN explainer [56]. At the same

time, the initial work in pre-attentive processing identifies basic
visual features that capture a viewer’s focus of attention [57]. We
designed the self-attention module. While designing attention
mechanisms, the attention of different channels and spatial
features in a feature map are used to identify the weight of
information, which drives the model to focus on the more
important information. The attention mechanisms process
attention weights for different directions and perform better in
computer vision tasks than models lacking these mechanisms.

As is well known, the main role of attention mechanisms
[58–63] is to get the most important and useful features by
screening through lots of studies. It should be noted that there
are some differences between X-ray datasets and other common
datasets. In datasets of common visual tasks [64–67], objects in the
real world contain rich details and generate perspective projection
in the human eyes and photos, whereas in the X-ray datasets there is
a lack in details as borders take up more of the influence.

In order to train the light-weight module well and enable the
module to focus on the targets we want to detect, we proposed an
innovation training strategy (Figure 6).

FIGURE 5
Processing of our designed pooling operator.

FIGURE 6
Partial supervision for the self-attention mask.
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Suppose the input of that module is S, S′ is achieved after the
inference of the aforementioned attention module. N is defined as the
batch size of training samples, and Sn′ (n = 1,2,3/ N) is defined as the
output corresponding to each training sample Sn after the inference of the
module.When themodule is in the process of training, we use the ground
truths of the training samples as partial supervision (Table 1).

For the attention mask, Sn′, (xi
n, y

i
n) is the center coordinate

point of the ith object in Sn, and we define l(Sn′ , xi, yi) to calculate
the loss:

l Sn′, xi, yi( ) � Sn′ ⊙ F xi, yi( ) (25)

F(·) returns a map whose shape is the same as the shape of Sn′.
The elements of the map represent the weighted coefficients of the
elements of Sn′ in the corresponding position. If we use the
Euclidean distance between the coordinate of every element and
the coordinate (xi, yi) as the weighted coefficient, we can obtain the
expression of the weighted coefficient map. W is the weighted
coefficient map, and W (x,y) refers to the value of W at the
coordinate (x,y):

W x, y( ) � �����������������
x − xi( )2 + y − yi( )2√

. (26)

In reality, adapting the Euclidean distance is not the only
way; more importantly, it is not the suitable way. We will
discuss this issue in detail in the later experiments. The two
kinds of distance in experiments essentially influence the

response to the targets at the level of penalty to each pixel
except the center point of the object.

Different distances between the coordinate of each element
shows how we try to focus the targets. We can see the two kinds
of measurements as follows (Figure 7):

The Euclidean distance is sharper than the other one in a 3D
visualization zone. We will have a clear recognition that Euclidean
distance is not a good choice based on the response of our attention
layer. Similar to the other attention mechanisms we mentioned, the
study has shown that soft-attention mechanism is better not only in
value computing but also in the attention mechanism of our task.

The loss of this module will only be calculated in the process of
training, when the whole module is in the process of inference, the
loss will not be calculated and the operation of the attention module
is the all, the operation process is as follow:

1: Require: an X-ray image x ∈ RC×H×W; the result of self-

adaptive pooling operator P; the result of self-

adaptive difference operator E;

2: Ensure: the attention feature map S’ of the input

image x;

3: Generate the concatenated S by concatenating X, P,

and E;

4: Put S into the attention convolution layer and

calculate the output S’;

5: Refine S’ through fs (·) return S’;

Algorithm 3. The operation process of attention module

4 The training process of network
embedding

The aforementioned descriptions provide the strength of the
module and brief the feature extraction procedure. Our module
improves the performance of SSDs (popular detectors based on
CNN) in occluded X-ray object detection. Moreover, the module is
not only useful but also time-saving in both inference and training.
The architecture ERU-SSD is shown in Figure 8.

In the module, back propagation is time-consuming. One of
the biggest highlights of the proposed module is that SGD

TABLE 1 Architecture of the attention module.

Layer Output size Stride Kernel size Padding

conva 300 × 300 1 3 1

relub 300 × 300 7 7 0

Conv 300 × 300 1 3 1

sigmoidc 300 × 300 7 7 0

aThis represents the convolution layer of neural networks. The layer computes the result

using convolution kernels by moving on a certain stride. The number of layers filled with

0 elements at the edge of the feature map is shown in the column Padding.
bThis is a kind of non-linear transformation function mapping the origin feature map to get

a new one.
cThis is another kind of non-linear transformation function.

FIGURE 7
Comparison of self-attention masks in different distance measurements.
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optimization method is used as a role of parameters self-
adjustment mostly, the initialization of kernels already stands
for the highly effective extractor, the attention mechanism in
our module needs few extra parameters.

Our module does not need extra training and supports the end-
to-end training mode. All the steps of our algorithm are clear and
changeable, which makes the method more flexible. The training
process is shown in Algorithm 4.

1: Require: an X-ray image x ∈ RC×H×W;

2: Ensure: trained model;

3: Initialize the four difference operators Dn (·), (n =

1,2,3,4);

4: Initialize the pool operator P (·);
5: Initialize the attention module A (·);
6:

7: Define fd (D1(x),D2(x),D3(x),D4(x)) =

��������∑4
n�1

D2
n(x)

√√
;

8: Define fe(a) = relu (we·a+be);5

9: Define fs(a) = sigmoid(a);

10: Calculate the feature maps Dn(x), (n = 1,2,3,4);

11: Calculate the feature map P(x);

12: Calculate the feature map A(x);

13:

14: for N1 steps do

15: Refine the feature maps Dn(x) through fd (·), (n =

1,2,3,4);

16: Refine the feature maps P(x) and A(x) through fe (·);
17: end for

18: Generate the concatenated image P by

concatenating Dn(x) and P(x), (n = 1,2,3,4);

19: Multiply P with A(x), namely,,P=P×A(x);

20: Refine P through fs (·);
21: Put P into detection model and calculate the

network output R;

22: Calculate the results of the loss function L (R,G),

(G represent the ground-truths corresponding to

the image x);

23: Update the parameters of the network by the

optimization of SGD; return trained model;

Algorithm 4. The training process

5 Experiments

In this section, we present the extensive experiments conducted to
evaluate themodel we proposed. In ourwork, themain aim is to explore
a more concise and effective feature extraction mechanism for the
detection of occluded prohibited items in X-ray images during security
inspection. Only few datasets are open to this kind of research, and there
is a lack of concise and effective architectures based on convolutional
neural networks. First, we fully analyzed the keys in this task, proposed
more flexible and effective extractors that can adjust themselves when
they are trained, and also defined the architecture to bring these pieces
together. As these extractors complete each other, the designed module
works more effectively and efficiently. Second, we performed ablation
experiments to completely evaluate the effectiveness of our designed
module. Moreover, we verified different ways of calculating the

weighted coefficient map. Third, we verified the overall compatibility
and effectiveness of our proposed architecture.

Evaluation strategy: All experiments were performed on the
OPIXray dataset and trained on the training set in Table 2. Models
were tested using the testing set data in Table 2. As for comparing
different models and methods in terms of occlusion levels, the
models were tested on OL1, OL2, and OL3.

Baseline detail: Tomake fair comparisons between differentmodels
and architectures, we plugged each part into a SSD separately and
analyzed the results. Moreover, we fully evaluated the number
of parameters in our module and the speed of network training on
our model by comparing with the previous model, which is the state of
the art in the detection of X-ray objects at various occlusion levels. In the
ablation study, we added our module and methods into the SSD one by
one and reported the performance of the SSD and the results under
different conditions to evaluate the utility of various sub-modules.
Lastly, we evaluated the parameters of our model and compared the
time consumption of our module with that of the DOAM.

Parameter setting: All through the experiments, the models were
optimizedusing anSGDoptimizerwith an initial learning rate of 0.0001.
Thebatchsizewassetto24,andthemomentumandweightdecaywereset
to0.9and0.0005,respectively.Weutilizedmeanaverageprecision(mAP)
as the metric to evaluate the performance of the model, and the IOU

FIGURE 8
Architecture of the unified model.

TABLE 2 Performance of SSD with the designed difference operator.

Category

Method mAP FO ST SC UT MU

SSD 70.89 76.91 35.02 93.41 65.87 83.27

+Sobel 72.32 79.00 36.46 94.13 68.85 83.18

+Robert 73.60 82.08 31.94 95.73 73.00 85.25

+EG 72.75 80.26 35.54 94.81 67.96 85.19

+CPDC 72.48 80.58 34.24 94.58 70.72 82.26

+APDC 73.81 78.40 36.86 95.50 72.50 85.79

+SAD (ours) 73.81 80.14 33.44 95.28 73.29 86.88

Bold means the performance is the best in certain factor or attribute.
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thresholdwas set to 0.5.We calculated theAP of each category using the
modelwiththebestperformancetoobserve the improvement indifferent
categories. Moreover, to avoid bias in data transformation, no data
augmentation technique was used to modify the pixel value of the
original image,which led toabetter analysis of the impactof ourmethod.

5.1 Comparing with different kinds of
difference

We analyzed the difference extractor first. In this aspect, we
performed a lot of experiments and reevaluated the influence of
difference in the detection task on noisy X-ray images.

The data in Table 2 clearly show that the difference operator, Sobel,
greatly influenced the detection result, thus proving the validity and
simplicity of the difference algorithm. For a further study, we compared
different forms, other difference operators, and the effective module EG
was implemented. The results of the experiments revealed that
difference operators such as Sobel can significantly improve the
performance in this task.

In Table 2, “+Sobel”means the feature map provided for subsequent
processing is concatenated by the original input image and the feature is
extracted from it using Sobel; the other entries in the table are the same.

Note that “FO,” “ST,” “SC,” “UT,”and “MU” refer to “FoldingKnife,”
“Straight Knife,” “Scissor,” “Utility Knife,” and “Multi-tool Knife,”
respectively. In addition, in the later experiments, “DOAM-T” refers to
the model “SSD + DOAM” with traditional training strategy, and
“DOAM-O” refers to the model “SSD + DOAM” with over-sampling
training strategy. SAD means self-adaptive difference proposed by us.

5.2 Comparingwith different kinds of pooling

We compared the variants of pooling and found that
soft-pooling and our designed operator in the detector are more
flexible while extracting the features of regions. Soft-pooling is
similar to softmax, which maps values into a probability space. It
is quite suitable for the classification task and for computing the
importance when voting is needed, while our task requires more
actual region distribution information which is not transformed but
extracted or smoothed based on the operator (Table 3).

From the aforementioned experiment, we found that soft-pooling is
more flexible than normal pooling, the most obvious reason being that
soft-pooling works with more operating procedures, which increases its
representation ability when compared with normal pooling.

Similar to the SAD we proposed, SAP is characterized by a direct
and brief procedure, so it is clearly more elegant and effective than
soft-pooling and can suit this kind of task well depending on the self-
adaptive learning mechanism.

5.3 Comparing with other attention
mechanisms

We compared three variants of the attention mechanisms,
namely, SE, Non-local, and DA (Table 4). Table 2 presents the
performances of all models. Note that the attention mask we chose is
not based on the Euclidean distance measurement. In our designed

module, F (·) returns a map whose shape is the same as the input,
and F (·) refers to the attention layer we designed. The expression of
the weighted coefficient map, also regarded as the attention mask,
shows its shape in the zone of W (x,y).

In the zone of W (x,y), the shape of the following expression is
conical:

W x, y( ) � �����������������
x − xi( )2 + y − yi( )2√

. (27)

If we do not use Euclidean distance between the coordinate of
each element and the coordinate (xi, yi) as the weighted coefficient,
the equation is as follows:

W x, y( ) � x − xi( )2 + y − yi( )2. (28)
We call the mask based on the aforementioned equation

paraboloid mask and conducted it in our experiment. We will
provide a detailed representation about the comparison of different
masks or the distance measurements in the later experiments.

5.4 Comparing with other architectures

The aforementioned experiments fully proved that the
modules we proposed are effective and efficient in the same
type comparison. The architecture of the unified model ERU-
SSD contains various modules aimed at different aspects. SAP
and SAD are the main procedures used to carry out feature
extraction before following the detection module. We named the
combination of the two as SAPD.

This experiment proves that the extraction mechanism we
proposed before the detection module outperforms others;

TABLE 3 Performance of SSD with the designed pooling operator.

Category

Method mAP FO ST SC UT MU

SSD 70.89 76.91 35.02 93.41 65.87 83.27

+p 73.47 82.80 32.29 94.28 71.30 86.69

+Soft-pool 73.85 79.48 36.02 95.81 72.34 85.59

+SAP (ours) 74.40 83.55 34.96 94.25 70.49 88.76

Bold means the performance is the best in certain factor or attribute.

TABLE 4 Comparison of different attention mechanisms.

Category

Method mAP FO ST SC UT MU

SSD 70.89 76.91 35.02 93.41 65.87 83.27

+SE 71.85 77.17 38.29 92.03 66.10 85.67

+Non-local 71.41 77.55 36.38 95.26 64.86 82.98

+DA 71.96 79.68 37.69 93.38 64.14 84.90

+At (ours) 72.98 82.23 33.10 94.71 71.70 83.18

Bold means the performance is the best in certain factor or attribute.
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moreover, it can also be seen as the ablation study between the whole
model ERU-SSD and the separate module.

Table 5 presents the capability of edge guidance modules and
material awareness modules, supporting the specific role of each
improvement. “/G” means the neural network layers in the module
adopt a gated convolution layer. It is found that a gated convolution
layer will weaken the representation of the detection model; on the
contrary, the over-sampling strategy will enhance the representation
because this training strategy caters to the hard sample
requirements. Over-sampling of hard samples is logically useful
to a large extent and reasonably effective in improving the
performance of the trained model.

In addition, the four methods (SAP-s, SAD-p, s-p, and SAPD) in
bold in the table are the ablation study of the SAPD.We compared the
SAP and SAD separately. “SAP-s” refers to the module combining
SAP with average pooling, while “SAD-p” refers to the module
combining SAD with sobel. “s-p” means the edge extraction and
region extraction are based on the sobel operator and average pooling,
both of which are not adjusted when trained. Interestingly, we
discovered that unilateral adjustment to these operators will
weaken the performance, just like the performance of “SAP-s” and
“SAD-p”, is not as good as “s-p.” If we allow the back-propagation
gradients to adjust SAP and SAD as we designed, the condition will be
changed.

We do abundant comparative experiments about our proposed
self-attention mask, attention that, the total loss of the task is
designed as

L � αLcls + βLloc + γLatt. (29)
We compared the two attention masks, and the results are as

follows (Table 6):
If we choose the SSD as the detection module and use the

attention mask we proposed, the ERU-SSD can be conducted.
Note that the ratio between the loss of attentionmasks and the other

losses during trainingwas chosenas 3.Without otherdata augmentation
manners and auxiliary means, our methods outperformed others. The
detection results of our model are shown in Figure 9.

TABLE 5 Performance of SSD with the designed pooling operator.

Category

Method mAP FO ST SC UT MU

SSD 70.89 76.91 35.02 93.41 65.87 83.27

+EG + MA/G 73.12 79.94 38.58 93.39 69.40 84.28

+EG + MA 74.01 81.37 41.50 95.12 68.21 83.83

+EG + MA + O 74.27 81.06 42.45 95.37 70.31 82.16

+SAP-s (ours) 74.64 82.70 35.38 95.21 73.34 86.60

+SAD-p (ours) 74.42 82.23 36.05 94.93 70.09 88.79

+s-p (ours) 75.03 82.59 34.54 95.54 74.06 88.41

+SAPD (ours) 75.29 82.95 35.29 94.94 76.00 87.27

ERU-SSD (ours) 75.70 83.01 35.87 96.18 75.69 87.76

Bold means the performance is the best in certain factor or attribute.

TABLE 6 Influence of the two attention masks under loss function terms with
different coefficients.

Config

Factors of partial supervision A β γ mAP

W(x, y) �
�����������������
(x − xi)2 + (y − yi)2

√
1 1 3 74.09

1 1 4 74.90

1 1 5 75.00

W(x, y) � (x − xi)2 + (y − yi)2 1 1 3 75.70

1 1 4 74.84

1 1 5 74.04

FIGURE 9
Detection results.
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5.5 Comparing time consumption in training
and inference

Our method is superior to others in performance: the key is to be
able to effectively control the size of the model and also be better
than others in training and inference.

From the perspective of the work mechanisms, our feature
extractor is much simpler than the previous modules containing
enough variations. Because of the change in adaptive mechanisms in
training, the extractor is flexible and simple. Furthermore, partial
supervision exists only in the process of training; during inference,
computation exists only in the attention layer.

The training set contains 7,109 images, the set for evaluation
contains 1,776 images, and our batch size is 24. For 10 iterations in the
condition of GTX1080, the time consumption of “SSD + DOAM” is
4.1778 s, whereas the time consumption of our method is only
0.2472 s, which is significantly less than that of SSD + DOAM. In
order to be fully trained and obtain well-performing weights, we
trained every model mentioned in the experiments for 67 epochs.

6 Conclusion

In this paper, we presented the network embedding inspired by
high-quality operators, which are easily trained and more flexible
than others, mainly focusing on occluded prohibited item detection
during security inspection. In addition, we introduced abundant
analysis and discussed the mechanisms of these operators to know
how they work. We combined the deep learning model and the
network embedding we proposed and named it ERU, which
simultaneously leverages the different appearance information
(shape and material) of items. ERU helps the training process
refine feature maps for the general detectors, enhancing the
performance of the detectors. The self-attention module we
designed based on the partial supervision mechanism makes the
model learn to put more emphasis on the key areas when the whole
detector is in the process of training, which is more important for
performing this special task. The innovative ERU-SSD outperforms
DOAM-O in both efficiency and mAP on OPIXray. To the best of
our knowledge, this is the first work using representation learning
with the partial supervision mechanism for prohibited item
detection, which might provide deep learning a new way to solve
the occlusion problem in noisy X-ray images. We hope that our
contributions can promote the development of prohibited item
detection in noisy X-ray images. Moreover, the low training
expenses make it easier to be trained on a lighter computing
device. However, the pattern of the noisy X-ray images cannot be

generalized under different imaging conditions and characteristics
of objects. In practice, the algorithm needs to be designed according
to the actual situation as a targeted solution.
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