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Multimodal aspect-based sentiment classification (MABSC) aims to determine the
sentiment polarity of a given aspect in a sentence by combining text and image
information. Although the text and the corresponding image in a sample are
associated with aspect information, their features are represented in distinct
semantic spaces, creating a substantial semantic gap. Previous research
focused primarily on identifying and fusing aspect-level sentiment expressions
of differentmodalities while ignoring their semantic gap. To this end, we propose a
novel aspect-based sentiment analysis model named modality smoothing fusion
network (MSFNet). In this model, we process the unimodal aspect-aware features
via the feature smoothing strategy to partially bridge modality gap. Then we fuse
the smoothed features deeply using the multi-channel attention mechanism, to
obtain aspect-level sentiment representation with comprehensive representing
capability, thereby improving the performance of sentiment classification.
Experiments on two benchmark datasets, Twitter2015 and Twitter2017,
demonstrate that our model outperforms the second-best model by 1.96%
and 0.19% in terms of Macro-F1, respectively. Additionally, ablation studies
provide evidence supporting the efficacy of each of our proposed modules.
We release the code at: https://github.com/YunjiaCai/MSFNet.
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1 Introduction

In recent years, there has been a significant increase in the amount of multimodal data
from various social, shopping, and news platforms. These data consist primarily of a piece of
text and an associated image, and are often accompanied by a personal sentiment tendency.
Analyzing the sentiment towards specific aspects in this type of data can provide valuable
insights into people’s personalized preferences or predict public opinion trends. Therefore,
multimodal aspect-based sentiment classification (MABSC) has received extensive attention.
The objective of this task is to combine a piece of text, its associated image and a given aspect
from the text to determine the sentiment polarity of the given aspect. As shown in Figure 1,
the sentiment polarity of the aspect {Rocky} could be determined as {Neutral}, according to
the text alone. However, by combining image information, it can be determined that the
aspect term has a {Positive} sentiment polarity. Therefore, the key to this task lies in
effectively extracting and combining the sentiment features from both images and texts.

From the feature learning perspective, images and texts are commonly represented in distinct
feature spaces, which creating a semantic gap between the two modalities and posing substantial
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challenges for subsequent inter-modal interactions [1, 2]. As a result, the
major difficulty of MABSC is to bridge the gap between modalities and
model the deep interactions of them. Early MABSC research primarily
relied on directly modeling the interaction between modalities to
achieve multimodal fusion. Xu et al. [3]proposed a memory-based
model which extracted text and image features using pre-trained Bert
and ResNet models respectively, and stacked interactive attention
mechanism with several memory hops to learn the deep abstraction
of multimodal data. Similarly, Zhang et al. [4] sent features of two
different modalities into a fusion discriminant matrix to learn the
interaction of different modalities and a similarity matrix is used to
capture modal invariant features, based on which the consistency and
redundancy of different modalities can be identified. However, the
deficiency of these methods was that they did not consider the semantic
gaps on subsequent interactions. Khan et al. [1] recognized the influence
of semantic gaps on multimodal fusion and used a cross-modal
Transformer to map image content to the text space. They then
utilized a pre-trained Bert structure to model the interactions
between image, text, and aspect. However, the performance is
limited due to the lack of in-depth exploration of inter-modal
interactions.

To tackle the problem of insufficient fusion, we propose a novel
MABSC model called “modality smoothing fusion network
(MSFNet)”. The main contribution can be summarized as follows.

• Unlike existing works ofMABSC thatmainly study extracting and
fusing aspect-level sentiment expressions, we focus on the problem
that modality discrepancy influnce their subsequent fusions.

• The proposed MSFNet adopts the feature smoothing strategy
and the multi-channel attention to effectively bridge the
semantic gap and achieve better fusion of text-image
modalities.

• Experimental results on two benchmark datasets verify that
MSFNet achieve effective interaction of multimodalities and
obtains state-of-the-art performance in MABSC.

2 Related work

Aspect-based sentiment classification (ABSC) was first proposed
on text datasets. With the increase of multimodal data, multimodal

sentiment analysis (MSA) gained great attention, and MABSC is the
research combining ABSC and MSA.

2.1 Aspect-based sentiment classification
(ABSC)

Aspect-Based Sentiment Classification (ABSC) is a task that
involved predicting the sentiment polarity of a target entity within a
given sentence. Traditional methods for ABSC relied on manually
annotated features, such as language rules [5] and feature
engineering [6]. In recent years, neural networks have shown
great promise in this area and have led to significant
performance improvements. Early neural network approaches
typically used Long Short-Term Memory to model the
interaction between the aspect and its context [7]. More recent
works have incorporated attention mechanisms to select aspect-
related sentiment features [8], with some studies introducing more
complex interactive attention methods to learn aspect-specific
representations [9, 10]. These methods demonstrate the
significance of contextual information in the task of aspect
sentiment analysis. Pre-trained language models, such as BERT
[11], have also been utilized to improve the ABSC performance [12].

2.2 Multimodal sentiment Analysis (MSA)

MSA aims to combine multimodal information such as text,
visual, and audio to understand human emotions [13]. Previous
researchers have primarily focused on unimodal representation
learning and multimodal fusion.

Unimodal representation learning: Wang et al. [14] constructed
a recurrent variational embedding network that projects text
representations into a common space by calculating offset vectors
between linguistic and non-linguistic information. Hazarika et al.
[15] proposed modality-invariant and modality-specific
representations to learn complementary information between
modalities, reducing redundancy and merging a set of diverse
information. Yu et al. [16] designed a label generation module
based on a self-supervised learning strategy to capture
consistency and differences between three modalities by jointly

FIGURE 1
Example of MABSC tasks.
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learning unimodal and multimodal tasks. Effective unimodal
representations can mitigate the impact of the semantic gap.

Multimodal fusion: For multimodal fusion, Zadeh et al. [17]
proposed a tensor fusion network that obtains multimodal fusion
representation by calculating outer products between all unimodal
representations. Liu et al. [18] proposed an improved low-rank
multimodal fusion network based on tensor fusion network, which
uses low-rank tensors to reduce the computational complexity of
tensor-based methods and achieve better performance. Zadeh et al.
[19] proposed a memory fusion network that first models unimodal
representations using LSTM, and then models intermodal
interactions using Delta-memory Attention Network and Multi-
view Gated Memory. Transformer structures are widely used to
model interactions between modalities due to the success of
Transformer-based models. Tsai et al. [20] used Directional
Cross-Modal Attention modules to extend the standard
Transformer network [21] for modeling unaligned multimodal
language sequences. Wang et al. [22] used forward and backward
translation from one modality to another and back to better fuse
multimodal features. Modeling efficient interactions between
different modalities can fully utilize information between
modalities for multimodal emotional expression.

2.3 Multimodal aspect-based sentiment
Classification (MABSC)

MABSC is the research combining ABSC and MSA. Similar to
text aspect-based sentiment classification, different parts of the
sentence and image play different roles in specific aspects, and

attention mechanisms are widely used to obtain aspect-specific
representations. Xu et al. [3] first used interactive attention to
obtain aspect-specific unimodal representations, and then
stacked several interactive attention mechanisms and memory
hops to learn deep abstractions for multimodal data. Zhang et al.
[4] used an aspect-sensitive memory network to capture intra-
modal features, then designed a fusion discriminative matrix to
learn interactions between different modalities. Inspired by the
success of BERT-based models, Yu et al. [23] proposed a target-
oriented multimodal BERT (TomBERT), which constructs a
BERT-based structure to match the target text and target
image and capture dynamics within and between modalities.
Khan et al. [1] used a pre-trained transformer-based image
captioning model to convert images into textual image
captions, then fused information from both modalities by
constructing sentence pairs and inputting the image caption,
aspect, and original sentence into a BERT language model. Yu
et al. [2] modeled pairwise interactions between inputs using an
interactive transformer, and bridged the semantic gap between
the two modalities by calculating the loss between the
representations of the two modalities and the original context.
Additionally, Huang et al. [24] constructed sequential cross-
modal semantic graphs to fully extract the information
contained in the image, and used an encoder-decoder model
with a target prompt template to achieve MABSC task.

The importance of integrating image information into text
information has been repeatedly proved in the research of
MABSC. However, this integration invariably encounters the
issue of semantic gaps between two modalities. Therefore, we
focus on easing the semantic gap before integration.

FIGURE 2
Overall framework.
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3 Methodology

In this section, we first give the definition of multimodal aspect-
based sentiment analysis task, and introduce the overall framework
of the proposed model. Then, we present the details of each module
of the proposed model.

3.1 Task definition

Given a set of multimodal dataset D, each sample d ∈ D includes
a context sentence t, an associated image i, a given aspect a, and a
golden label y. Specifically, the sentence t = (w1, w2, w3, . . ., wm),
where m is the length of the sentence. The given aspect is a sub-
sequence of sentence t and is represented as a = (wx, wx+1, . . ., wx+n),
where n is the length of the given aspect. As shown in Figure 2, this
task is to take t, i and a as inputs to determine the sentiment polarity
y ∈ {Positive, Neutral, Negative} associated with the given aspect a.

3.2 Overview of the proposed model

The overall architecture of the model is shown in Figure 2, which
consists of a feature extraction layer, an aspect-aware representation
layer, a multimodal fusion layer with feature smoothing, and an
output layer. We extract separate representations of the image, text
and aspect in the feature extraction layer. In the aspect-aware
representation layer, we mine the aspect-related representations
of each modality with the guidance of the aspect. In the
multimodal fusion layer, we use feature smoothing strategy and
multi-channel attention to model the deep interaction between the
two modalities. Finally, we obtain the sentiment polarities in the
output layer.

3.3 Feature extraction layer

We utilize two different unimodal feature encoders to extract
original representations of the text and image inputs.

3.3.1 Text encoder
The pre-training language model BERT [11] can capture

advanced text representations. To distinguish sentence and aspect
representations, we fine-tune two different pre-trained BERTs to
encode sentence and aspect respectively. Specifically, for the input
sentence, we add a special token [CLS] in front of the original
sentence and a special token [SEP] in the back to form new tokens
Is ∈ Rl, and then input Is to a pre-trained BERT to obtain the
encoded sentence representation hs, as follows:

hs � BERT Is( ) (1)
where hs ∈ Rl*dt is the obtained sentence representation, dt is the
hidden dimension.

Similarly, for a given aspect, we add the special tokens [CLS] and
[SEP] to form tokens Ia ∈ Rk, and then input Ia into another pre-
trained BERT to obtain the encoded aspect representation ha, as follows:

ha � BERT Ia( ) (2)

where ha ∈ Rk*dt is the obtained aspect representation.
After obtaining the sentence and aspect representation, we use

the linear layer to map their hidden dimension to the same
dimension dh for the subsequent interaction:

Hs � W1hs + b1 (3)
Ha � W2ha + b2 (4)

where Hs ∈ Rl*dh and Ha ∈ Rk*dh .

3.3.2 Image encoder
Different from coarse grained sentiment analysis tasks, MABSC

should focus on aspect-related information to determine the
sentiment polarity. We use the object detection model Faster
R-CNN [25] to extract aspect-level features of images.
Specifically, we input the image i into a pre-trained Faster
R-CNN model to obtain the candidate regions in the image, and
retain the features with the highest confidence as image features:

hi � FasterR − CNN i( ) (5)
where hi ∈ Rc*dv is the obtained image representation, c denotes the
number of image regions retained, and dv is the hidden dimension of
Faster R-CNN.

Then we use a linear layer to map the hidden dimension of
image representation to dh:

Hi � W3hi + b3 (6)
where Hi ∈ Rc*dh .

We obtain the final image representation by a multi-head self
attention (MHSA) [21] to pay more attention to the important
image regions:

Hv � MHSA Hi( ) (7)
where Hv ∈ Rc*dh .

3.4 Aspect-aware representation layer

After obtaining the initial sentence representation and image
representation, we need to further interact them with the aspect
representation to focus on aspect-related information. We adopt an
interactive attention mechanism to enable interaction between the
aspect representation and unimodal representation, and retain more
aspect representations through residual connections. Specifically, we use
the aspect representation as the query, and the sentence representation
as the key-value in the multi-head cross attention (MHCA) [21], to
generate the aspect-sentence representation, as follows:

Rs � MHCA Ha,Hs( ) (8)
where Rs ∈ Rk*dh .

Then we add the aspect-sentence representation and the aspect
representation, and perform one layer normalization (LN) to obtain
the one-layer aspect-aware text representation:

As � LN Rs + Ha( ) (9)
where As ∈ Rk*dh .

Finally, we stack l layers of the aspect-aware layer to learn the
deep interaction of aspect and text, as follows:
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As l( ) � LN MHCA Ha,As l−1( )( ) + Ha( ) (10)
where As(l) ∈ Rk*dh is the final aspect-aware text representation, and
l is the number of stacked layers.

For the image representation, we input it together with the
aspect representation into the similar aspect-aware layer to obtain
the aspect-aware image representation, as follows:

Av l( ) � LN MHCA Ha,Av l−1( )( ) + Ha( ) (11)
where Av(l) ∈ Rk*dh .

3.5 Multimodal fusion layer with feature
smoothing

After obtaining the aspect-aware representations of two
modalities, we propose a multimodal fusion layer with feature
smoothing to combine information from different modalities.
Firstly, to relieve the semantic gap between the two modalities, a
feature smoothing strategy is used to smooth the aspect-aware
representations of the two modalities. Then we use a multi-
channel attention interaction network to achieve deep interaction
between the two modal representations.

3.5.1 Feature smoothing
We integrate the partial representation of one modality into the

representation of another modality via a feature-level mixing
approach, and obtain two smoothed unimodal representations, as
follows:

Ms � Wmix*As l( ) + 1 −Wmix( )*Av l( ) (12)
Mv � Wmix*Av l( ) + 1 −Wmix( )*As l( ) (13)

where Wmix is a hyperparameter. The obtained Ms and Mv are the
smoothed text and image representations, respectively. We will use
these smoothed representations for further interaction.

In addition, we use the average representation of the two
modalities as an anchor, to bridge the semantic gap between the
two modalities via the constraint of the mean square error Tri-loss:

Al � MEAN As l( ),Av l( )( ) (14)

Ltri � α1*MSE As l( ), Al( ) + α2*MSE Av l( ),Al( )
+ α3*MSE As l( ), Av l( )( ) (15)

where the MEAN operator refers to averaging values of each
dimension in the two tensors. MSE is mean square error loss,
and (α1, α2, α3) are hyperparameters. The above loss will be
added to the main loss to guide the training of the model parameters.

3.5.2 Multi-channel attention-based interaction
In order to effectively utilize the complementary information

between modalities to enhance the expression of sentiment, we
propose a multi-channel attention interaction network (MCA)
including four channels, named text self-attention, text-led
multimodal attention, image self-attention and image-led
multimodal attention channels respectively.

In the text self-attention channel, we use a multi-head self
attention to process the smoothed text representation acquired in
the preceding stage and obtain the text inner-interaction
representation, denoted as CSs ∈ Rk*dh :

CSs � MHSA Ms( ) (16)
In the text-led multimodal attention channel, we take the

smoothed text representation as the query and the smoothed
image representation as the key-value, and sent them to a multi-
head interactive attention network, to obtain the text-led inter-
interaction representation, denoted as CCs ∈ Rk*dh :

CCs � MHCA Ms,Mv( ) (17)
Final, we add up the representations of the two channels and

normalize it to obtain the text-led multimodal
representation Fs ∈ Rk*dh :

Fs � LN CSs + CCs( ) (18)
Similarly, following the same procedure as the two text channels

above, we feed the smoothed image representation into the two
image channels to obtain the image inner-interaction representation
and the image-led inter-interaction representation.We then add and
normalize them to obtain the image-led multimodal representation
Fv ∈ Rk*dh .

TABLE 1 Dataset statistics.

Twitter2015 Twitter2017

Train Dev Test Train Dev Test

Positive 928 303 317 1508 515 493

Neutral 1883 670 607 1638 417 573

Negative 368 149 113 416 144 168

Total Samples 3179 1122 1037 3562 1176 1234

Avg Aspect 1.348 1.336 1.354 1.410 1.439 1.450

Avg Length 16.72 16.74 17.05 16.21 16.37 16.38

Max Length 35 40 36 39 31 38

Total Sentence 2101 727 674 1746 577 587

TABLE 2 The hyperparameter Setting.

Twitter2015 Twitter2017

Learning rate 2e-5 4e-5

Warm up step 37 35

l 2 1

Wmix 0.85 0.85

(α1, α2, α3) (1,1,0.5) (1,1,0.5)

λ 4e-3 4e-3

Batch size 32 32

Attension heads 8 8

Attention dimension 512 512
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After obtaining the two representations Fs and Fv, we concatenate
them and send it to a transformer and a average pooling, to get the final
multimodal sentiment representation Hm ∈ Rdh :

Fm � Fs: Fv[ ] (19)
Hm � averagepooling Transformer Fm( )( ) (20)

3.6 Output layer

We send the multimodal sentiment representation Hm to a fully
connected layer and a softmax layer to obtain the classification result:

p y|Hm( ) � softmax WcHm + bc( ) (21)
whereWc ∈ Rr*dh and bc ∈ Rr are learnable parameters, y ∈ Rr is the
probability distribution of sentiment polarity, r is number of classes.

The loss function of the model is as follows:

L � − 1
N

∑N
i

∑r
j

gij logp yij|Hm( ) − λLtri
i

⎛⎝ ⎞⎠ (22)

where gij is the golden label, λ is a hyperparameter.

4 Experimental

In this section, we conducted comprehensive experiments on the
proposed overall model and its individual modules.

4.1 Experiment setting

Datasets: We adopt two standard datasets Twitter15 and
Twitter17 to evaluate the performance of our model.
Twitter15 and Twitter17 datasets contain multimodal tweets

published on Twitter between 2014–2015 and
2016–2017 respectively. These datasets were originally annotated
the given aspect by Zhang et al. [26] for the Multimodal Named
Entity Recognition (MNER) task, and then Yu et al. [23] annotated
the sentiment polarity of each given aspect for the MABSA task. The
datasets provide tweet text, tweet image, aspect and the sentiment
polarity of the given aspect. The specific data statistics are shown in
Table 1.

Evaluation Metrics: To measure the performance of different
approaches, we use Macro-F1 as evaluation metrics, as follows:

Macro − F1 � 1
r
∑r
i�1

F1i (23)

F1i � 2*Pi*Ri

Pi + Ri
(24)

where F1i is the f1-score of class i, Pi and Ri are the precision and
recall of class i, and r is the number of classes.

Implement Details: For text input, we leverage the pre-trained
BERT [11] model to encode the text. For image input, we utilized the
Faster R-CNN structure proposed by Anderson et al. [25] and used a
pre-trained Faster R-CNN model to extract region features of the
image. We fix all the hyper-parameters after tuning them on the
development set. The specific hyperparameter settings are shown in
Table 2. We implemented all models in the PyTorch framework and
ran experiments on RTX3090 GPU.

4.2 Baseline

In this section, we use the following methods as baselines to
compare with our model.

TABLE 3 Comparison of our method and baseline Macro-F1.

Modality Method Twitter2015 Twitter2017

Visual Res-Aspect 46.58 54.01

FasterRCNN-Aspect 37.71 54.71

Text IAN [9] 63.32 63.32

MGAN [10] 64.21 61.46

BERT [11] 70.01 66.15

Text + Visual Res-BERT 71.46 66.89

Faster R-CNN-BERT 70.85 66.21

TomBERT (ResNet) [23] 71.75 68.04

TomBERT (FasterR-
CNN) [2]

72.95 68.49

ModalNet [4] 72.50 69.19

IFNRA [27] 71.79 69.48

MSFNet (Ours) 74.46 69.67

TABLE 4 Ablation study of feature-level mixing (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

w/o feature mixing 72.83 68.23

w/o Text mixing 73.88 68.91

w/o Image mixing 73.86 68.92

FIGURE 3
Performance of different weight parameter Wmix.
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• Res-Aspect: ResNet and BERT are used to extract image and
aspect features respectively, and an attention layer is used to
obtain multimodal representation.

• Faster R-CNN-Aspect: Another baseline is similar to Res-
Aspect, but image features are extracted by Faster R-CNN.

• IAN [9]: Capturing the interaction between aspect and context
with bidirectional interactive attention.

• MGAN [10]: Based on IAN, a fine-grained attention is further
proposed for interaction.

• BERT [11]: Sentence pairs constructed by context and aspect
are fed into pre-trained BERT for sentiment classification.

• Res-BERT: The context and aspect are input as sentence pairs
into a pre-trained BERT model to obtain text features. The
image features are extracted by ResNet. And then modeling
multimodal interaction using attention.

• FasterR-CNN-BERT: Another baseline is similar to Res-
BERT, but image features are extracted by Faster R-CNN.

• TomBERT (ResNet) [23]: A target-oriented multimodal BERT
architecture that utilizes ResNet for image representation, and
leverages multiple BERT structures for text feature extraction,
image aspect interaction, and multimodal interaction.

• TomBERT (Faster R-CNN) [2]: Same structure as TomBERT
(ResNet), but the image representation is obtained by Faster
R-CNN.

• ModalNet [4]: Use aspect-sensitive memory network to
perform aspect-sensitive fusion of two modalities, and
construct a fusion discriminant matrix to obtain
multimodal sentiment representation.

• IFNRA [27]: Use GRU to achieve image denoising and
multimodal fusion. And a decoder with recurrent attention
is designed to gradually learn aspect-specific sentiment
features.

4.3 Main result

Table 3 shows the performance of different methods on the
twitter2015 and twitter2017 datasets. The following observations
can be drawn: (1) Our model has achieved the best performance on

the two datasets, which are respectively improved by 1.96% and
0.19% compared with the second best model. This illustrates that our
proposed multimodal fusion method is effective and has obvious
advantages. (2) Sufficient multimodal fusion can effectively improve
classification performance. For example, both TomBERT (Faster
R-CNN) and Faster R-CNN-BERT use Faster R-CNN to extract
regional features, but the latter performs much worse than the
former because it only performs simple multimodal fusion.
Similarly, for the models that use ResNet to extract image
features, TomBERT (ResNet) shows better performance than
Res-BERT, but it is still not as good as ModalNet. Our proposed
method has signifificant advantages when compared to ModalNet.
The latter focuses on multimodal fusion without considering the
semantic gap of multimodal features. Our proposed model performs
feature smoothing before multimodal fusion, which enables deeper
interactions and achieves better performance. (3) Using the regional
features extracted by FasterR-CNN can help the model focus on the
object-level information in images. However, if the model cannot
obtain information enabling to expressing sentiments from the
image representation via a good image-text interaction method,
using FasterR-CNN may result in performance degradation. This
conclusion can be drawn from comparing Res-BERT and Faster
R-CNN-BERT, as well as Res-Aspect and Faster R-CNN-Aspect. (4)
The performance of image-based methods is much lower than that
of text-based methods among the unimodal-based methods. This is
mainly because the given aspect is a subsequence in the initial
sentence. If image information is considered alone, it may introduce
some noises that have nothing to do with the given aspect, resulting
in wrong classification.

4.4 Ablation study ofmultimodal fusion layer

In this section, we conduct ablation studies to verify the
effectiveness of multimodal fusion layer with feature smoothing.

4.4.1 Feature-level mixing
To test the effect of feature-level mixing, we feed the

unprocessed aspect-aware representations into the multi-
channel attention interaction network instead of smoothed
representations. The results are shown in Table 4.

TABLE 5 Ablation study of Tri-loss (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

Rep anchor of Tri-loss 73.71 69.02

w/o Tri-loss 73.08 68.36

TABLE 6 Ablation study of MCA (Macro-F1).

Method Twitter2015 Twitter2017

MSFNet (Ours) 74.46 69.67

w/o MCA 71.21 67.47

Rep MCA to CMT 70.73 67.24

FIGURE 4
Performance of different weight parameter λ.
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It can be seen that if the unprocessed aspect-aware features of
one modality are used to interact with the smooth features of
another modality, the Macro-F1 of the twitter15 and
twitter17 datasets drop by about 0.5% and 0.7%, respectively,
compared to the full model. If all four interaction channels use
unmixed features, the Macro-F1 drops by more than 1.44%
on the two datasets. The above results further shows that feature
smoothing before image-text interaction can better achieve
multimodal fusion and improve classification performance.

In feature-level mixing, we set a hyperparameter to control the
smoothing weight. Figure 3 shows the impact of different weight on
the model performance of the twitter15 dataset. Setting the
hyperparameter to 1 means that the two modalities do not
perform feature smoothing, while setting to 0.8–0.95 means that
we take one modality as the dominant information and incorporate
a little information from another modality. It can be seen that when
the hyperparameter is set to 0.8–0.95, the model can obtain better
results than 1 or less than 0.75. This may be because, when feature
smoothing is not performed, the semantic gap between modalities
will make subsequent interactions insufficient. In addition, if we
incorporate too much information from another modality, the
dominant modal will lose its own representational ability. The
best performance is achieved when the dominant modal feature
introduces around 15% of the other modal feature.

4.4.2 Tri-loss
In Table 5 we report the ablation study of the Tri-loss. It can be

seen that the performance drops sharply after the removal of Tri-
loss, which illustrates the effectiveness of reducing the semantic

distance between the two modalities via the constraint of Tri-loss.
What’s more, if we use the initial aspect representation instead of the
average representation of the two modals as the anchor in the Tri-
loss, the performance decreases too. The reason may be that the
model would learn from the lower-level aspect representation if
using the initial aspect representation as the anchor after aspect-
aware fusion, which is ineffective.

We adjusted the weight parameter λ of Tri-loss in the total loss to
observe its effection. It can be seen from Figure 4 that themodel achieves
the best performance when λ is 4e-3, while assigning too large or small
weight leads to a decrease in the final performance. This illustrates that
using appropriate constraints of Tri-loss can benefit the model.

4.4.3 Multi-channel attention
We verified the effectiveness of the multi-channel attention-

based interaction (MCA) by deleting it or replacing it with the
Cross-Modal Transformer (CMT) [20]. As can be seen in Table 6,
the performance decreases by 3.25% and 2.23% on the two datasets
respectively after removing the module, which illustrates the
necessity of performing deep image-text fusion. Furthermore, the
performance decreases by 3.73% and 2.43% on the two datasets after
replacing MCAwith CMT, which fully illustrates the effectiveness of
our proposed MCA module.

4.5 Case study

In this section, we choose two representative samples to
compare the prediction results of our model with the two

TABLE 7 Comparison between predicted results and golden labels for several representative samples on Bert, Faster R-CNN-BERT and MSFNet (Ours), respectively.

Image

Text (a) Charlie is decidedly not excited about @ ussoccer_ynt at 4 am.
#U20WC

(b) The final chapter of the fairytale—Leicester gear up for historic Premier
League title

Golden Label (Charlie, Negative) (Leicester, Positive)

(ussoccer_ynt, Neutral) (Premier League, Neutral)

Bert (Charlie, Neutral) 7 (Leicester, Neutral) 7

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓

FasterR-CNN-
BERT

(Charlie, Negative) ✓ (Leicester, Neutral) 7

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓

MSFNet (Ours) (Charlie, Negative) ✓ (Leicester, Positive) ✓

(ussoccer_ynt, Neutral) ✓ (Premier League, Neutral) ✓
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baselines. Firstly, in Table 7, BERT predicted the sentiment polarity
of the aspect {Charlie} incorrectly, which could be due to BERT only
predicts based on text content and cannot recognize the negative
sentiment expressed by the corresponding aspect in the image. In
addition, the model Faster R-CNN-BERT, which also uses Faster
R-CNN to capture image object-level features, made wrong
predictions for the aspect Leicester in Table 7, while our model
made correct predictions. It may be due to our excellent fusion
network that enables our model to accurately capture the positive
emotions expressed by waving flag in the image.

5 Conclusion

In this paper, we propose a MABSC model based on a multimodal
feature smoothing fusion network. We extracts aspect-aware
representations of text and image modals at first. Then, we introduce
a feature smoothing strategy to get smoothed representations, which are
sent to the proposed multi-channel attention-based network for image-
text information interaction. By this process, the comprehensive aspect-
level sentiment representation is obtained for better classification.
Experiments demonstrate that the model achieves better performance
than the other baselines on the two datasets. The ablation experiments
further demonstrate the effectiveness of the various modules of the
model. In the future work, we will further consider how to align aspect-
related information in image and text content, given that MABSC task
requires to focus on fine-grained information in image and text.
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