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Mapping magneto-thermoelectric effects, such as the anomalous Nernst effect,
are crucial to optimize devices that convert thermal energy to electric energy. In
this article, we show the methodology to realize this based on a technique we
recently established using atomic force microscopy, in which a tip contact on the
surface locally creates the temperature gradient. We can map the non-magnetic
Seebeck and anomalous Nernst effects separately by investigating the magnetic
field dependence. The simulation based on a simple heat transfer model between
the tip and sample quantitatively explains our results. We estimated themagnitude
of the anomalous Nernst effect in permalloy from the experiment and simulation
to be ~0.10 μV/K.
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Introduction

Magneto-thermoelectric effects, such as the anomalous Nernst effect (ANE) and the
longitudinal spin Seebeck effect, have recently attracted wide attention due to their ability to
convert a temperature gradient into an electric or spin current. Thermopile devices based on
magneto-thermoelectric effects are proposed for efficient energy harvesting. Mapping these
effects with high spatial resolution is crucial for optimizing the device structures [1]. Previous
attempts still suffer from a limited spatial resolution and complicated experimental
setup. Recently, we have developed a technique for imaging the magneto-thermoelectric
effects by inducing a local temperature gradient into the sample using an atomic force
microscope (AFM) tip [2]. In this article, we quantitatively evaluate the temperature gradient
generated by this method and introduce a methodology for mapping local magneto-
thermoelectric effects in these devices.

Methods

There have been several approaches to map magneto-thermoelectric effects in films and
microwires, as shown in Figures 1A–C. One technique is to create a local thermal gradient in the
sample using a focused laser beam [3–7], which causes a measurable electric field at both ends of
the wire due to the ANE and longitudinal spin Seebeck effect (with inverse spin Hall effect)
(Figure 1A). This approach has a drawback in spatial resolution due to the optical diffraction
limit. For higher resolution, researchers have been attempting to use an AFM tip as an antenna
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for the laser beam to utilize the near-field effect as the source of the
temperature gradient (SNOM, Figure 1B) [8–10]. Another possibility is
the activemode of conventional Scanning ThermalMicroscopy [11, 12]
(SThM, Figure 1C). While this technique has mainly been used to
measure thermoelectric effects in non-magneticmaterials, itmay also be
useful for magneto-thermoelectric effects. However, an AFM tip with a
built-in heater or a laser is required for these experiments, which can be
complex and expensive.

We have developed a simple method to map the magneto-
thermoelectric effects with a high spatial resolution that only
requires an AFM with a standard tip and basic instruments such
as a lock-in amplifier [2]. Instead of using a built-in heater on the
SThM tip, we use a heating wire structured next to the sample wire
on a substrate. These wires can be fabricated from a thin film at the
same time of the sample fabrication. In conventional SThM,
improving spatial resolution is difficult because the typical tip
apex radius (rtip ~ 50–100 nm) is much larger than a standard
tip [13, 14]. Our method allows using a standard tip with rtip <
10 nm, which is expected to improve the spatial resolution
significantly. The principle of our method is illustrated in
Figure 1D. An AC current of the frequency f is applied to the
heating wire, leading to a temperature increase of the sample due to
Joule heating. The temperature modulation is typically a few K. We
bring the AFM tip in contact with the sample surface, which creates
a local out-of-plane temperature gradient at the contact point that
oscillates at the 2f frequency due to the heat flow from the sample to
the tip. When the sample wire exhibits the ANE, a 2f voltage can be
detected between both ends, proportional to the magnetization
projected onto the wire width axis. It should, however, be noted
that an in-plane temperature gradient is also induced, having two
order of magnitude smaller than that of out-of-plane temperature
gradient, which does not contribute to the signal when we consider
the magnetization in-plane. This enables the mapping of the ANE
using the contact mode of the AFM. We applied this method to the

Weyl ferromagnet Co2MnGa (CMG) [15, 16] for magnetic imaging
with a spatial resolution of ~80 nm [2].

We respectively show the ANE and Seebeck effect (SE)mapping on
a Ni80Fe20 (Py) wire and at the Py/Cu junction in Figure 2. While some

FIGURE 1
Conceptual drawings of the techniques to map thermoelectric effects. (A) Scanning anomalous Nernst effect microscopy by laser. (B). Scanning
near-field optical microscopy (SNOM) (C) Scanning thermal microscopy (SThM). (D) Tip contact method [2].

FIGURE 2
Mapping of the thermoelectric effects of a permalloy (Py:
Ni80Fe20) device. (A) Topographic image of the Py device, on which
the electrical measurement configuration is indicated. The white
dotted lines indicate the position of the sample. (B) The
difference between (C) and (D), that eliminate the Seebeck effect and
extracts the anomalous Nernst effect of the Py wire. (C), (D) The raw
data of V2f mappings with an external magnetic fields of
+134 and −134 mT along the wire width direction, respectively.

Frontiers in Physics frontiersin.org02

Isshiki et al. 10.3389/fphy.2023.1205556

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1205556


of the results have already been shown in the supplemental materials of
our previous work [2], we demonstrate here that theANE and SE can be
distinguished by examining their magnetic field dependence. Our
device consists of 80-nm-thick Py wires fabricated through a lift-off
procedure using electron beam evaporation on a SiO2(300 nm)/Si
substrate, including 100-nm-thick Cu electrodes and Py/Cu
junctions. The widths of the sample and heater are 200 nm and
2 μm, respectively. An edge-to-edge distance of 200 nm separates
these two wires. We use an atomic force microscope CoreAFM
from Nanosurf [17]. In Figure 2A, we show the AFM topography of
the device and the electrical measurement configuration. An alternating
current of 17 mA at 1.043 kHz is applied through the heater, and the
resulting tip induced signals V2f are mapped during the AFM scanning
in contact mode with the loading force of 50 nN using a silicon
cantilever (BudgetSensors, Tap190Al-G, spring constant = 48 N/m).
The experiment is conducted in atmosphere at room temperature.

Results and discussion

Figures 2C, D shows the raw data of V2f mappings acquired under
a magnetic field of ±134 mT in the direction of the wire width. The
results of the mapping are reproducible and stable over hours. This
implies that the system reaches thermal steady state quickly after the tip
contact. Significant signals of ~ ±700 nV independent of the magnetic
field are observed in the upper and lower parts in Figures 2C, D. The SE
can explain these signals at the Py/Cu and Cu/Py junctions. According
to the simulation shown later, the temperature change ΔT at the
junction due to the tip contact is ~30 mK. Using Py and Cu
Seebeck coefficients of SCu ~ 1.8 μV/K [18] and SPy ~ −20 μV/K
[19], respectively, the Seebeck voltage is expected to be VSE =
(SCu–SPy)·ΔT ~ 700 nV, which agrees well with experimental values.
However, the anisotropic signal in the ANE is barely visible in the
magnetic field direction dependence. We can extract the signal which
depends on the magnetic field from the difference between Figures 2C,
D, as shown in Figure 2B. As a result, every non-magnetic component
can be eliminated, and the magnetic components are added up due to
their sign change upon magnetization reversal. A signal inside the Py
wire is visible that is attributable to theANE. Themagnitude of theANE
signal in Figure 2B is 2V2f = 120 nV.

This section provides a quantitative discussion of the
temperature gradient locally induced by the tip contact. First, we
compare the vertical temperature gradient induced by the tip contact
method on a CMG device [2] and the laser method on Co2FeAl
described in Ref. [3], in which the magnitude of the ANE SANE of
these materials have been known. We assume that the locally
induced out-of-plane temperature gradient ∇zTL is uniform in a
cylindrical region with a bottom surface ofA = πrres2, where rres is the
spatial resolution [13] (The temperature gradient has a spatial
distribution in reality, but using the average value (∇zTL) is
convenient to discuss the magnitude). When the magnetization
points to the wire width direction, and rres is smaller than the
width of the sample, w, the locally induced ANE voltage VL

ANE is
given by the following equation:

VL
ANE � SANE

A

w
∇zT

L (1)
By substituting the experimental values of VL

ANE, SANE and rres
into Eq. 1, we obtain ∇zTL. The results are shown in Table 1. The tip

contact method can induce a larger vertical temperature gradient in
a much smaller local area than the laser method. However, reducing
the sample wire width to ~1 μm or less in the tip contact method
might be necessary to obtain a sufficiently large signal since area A is
very small. Measuring samples with a width greater than 10 μm is
considered almost impossible.

To estimate an unknownmagnitude of the ANE SANE, themagnitude
of the vertical temperature gradient ∇zTL is required. Here, we attempt to
simulate ∇zTL using COMSOL Multiphysics [20]. The heat transfer
mechanisms [21] between the tip and sample in contact condition
consist of 1) air conduction, 2) water meniscus, 3) solid-solid
conduction, and 4) radiation. The contribution of 1) and 2) is known
tobe significant, while that of 3) is small, and that of 4) is negligible [22].We
introduce the contact thermal conductance Gc and the contact thermal
radius rc as phenomenological parameters representing the total effects of
(1)–(3), avoiding separating these mechanisms. Our model is shown in
Figure 3A, where the tip apex and the sample are thermally connected by a
thin disc-shaped region with Gc and rc. The Heat Transfer in Solids
interface in COMSOL Multiphysics is used for the simulation. We set a
geometry similar to the real CMGdevice [2], as shown in Figure 3B, which
is a cross-section enclosed by dotted lines in Figure 1D. To focus on the
ANE, the Cu electrodes are omitted. The temperatures of the substrate
boundary and the bottom base of the tip are fixed to 293 K. The thermal
conductivities of Si (tip and substrate) and SiO2 are set to 130W/mK and
1.4W/mK, respectively. The resistivity of Py is set to 20 μΩ·cm. The disc
with the parameters Gc and rc is inserted in between the tip apex and the
sample surface.Wealso set a referencewirewithout tip contact on the right-
hand side of the heater. The applied current to the heater is 4mA, which
results in a temperature increase of 1.3 K from the initial value of 293 K. By
puttingGc = 20 μW/K and rex = 30 nm, the simulation gives value of∇zTL

(~7.2 K/μm: the averaged value in the cylinder) that is locally induced below
the tip. On the other hand, there is almost no temperature gradient in the
reference wire without tip contact. These parameters (Gc and rc) are
reasonable considering that the heat transfer due to 1) and 2) are the
main contribution [22], and that rc should be larger than rtip (~10 nm) but
smaller than rres (= 80 nm). Therefore, the experimental results can be well
explained by a simulation using appropriate parameters.

We estimate the magnitude of the ANE SANE in the Py from the
experimental results shown in Figure 2B and the simulation.
Interestingly, the reported values of SANE for Py vary significantly
between 0.005–2.6 μV/K in the literature [7, 23–27]. Figure 3C shows
the spatial distribution of the simulated vertical temperature gradient
using the parameters Gc = 20 μW/K, rc = 30 nm. The heater current of
17 mA increases the sample temperature by approximately 3.0 K.
Similar to the CMG device, a large vertical temperature gradient
appears in the local region under the tip. The magnitude of ∇zTL is
~6.1 K/μm. Using Eq. 1, SANE in the Py is estimated to be ~0.10 μV/K.
Although this value changes depending on the composition of Ni and
Fe, the reported giant value ~2 μV/K can be the result from
underestimation of the temperature gradient.

Our technique enables us to map the ANE even in materials with
small SANE. However, the signal can be hard to detect for materials with
SANE < 0.10 μV/K (<120 nV). To obtain a more significant signal for a
better signal-to-noise ratio, another device geometry has to be
considered, such as a device with a heater embedded beneath the
sample. Figure 3D shows the simulation result of a device where the
heater (Py) is placed under a 50 nm-thick SiO2 layer. An applied current
of 17 mA increases the sample temperature by approximately 16 K
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from the initial temperature. In this geometry, we obtain∇zTL is ~33 K/
μm, resulting in a five times larger signal than the previous devices.
Additionally, Figure 3D indicates that the tip contact induces sizeable
local temperature gradients in the sample wire and the insulator below
the Py. Therefore, measuring the longitudinal spin Seebeck effect [27] in
the same geometry would be possible by replacing Py and SiO2 with a
spin Hall material, such as Pt, and a magnetic insulator, respectively.

Conclusion

We demonstrated that inducing a local temperature gradient by
tip contact can enable the mapping of thermoelectric effects such as
the anomalous Nernst effect, Seebeck effect, and longitudinal spin
Seebeck effect with high spatial resolution. The advantage of this
technique is that it requires only a conventional atomic force
microscope. We have shown that quantitative discussions on the
thermoelectric coefficient are possible by introducing
phenomenological parameters representing the thermal exchange
between the tip and sample. This method enables us to map
thermoelectric effects in nanoscale devices and provide

information on the uniformity of anomalous Nernst effect and
the direction of magnetization at zero external magnetic field,
which are the essential information and will play a crucial role
for evaluating and optimizing magneto-thermoelectric devices
consisting of nanowires. Moreover, this technique can be used
for magnetic imaging of materials that exhibit the anomalous
Nernst effect. The antiferromagnetic Weyl semimetals Mn3X
(X = Sn, Ge) [28] are promising candidates for use in
antiferromagnetic spintronics, but the magnetic domain
structures have not been clarified yet. Our technique provides
magnetic imaging of these materials.
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TABLE 1 The values in Eq. 1 and estimated temperature gradient for each experiment (*In our experiments on Co2MnGa wires using Si tip (cantilever 190-Al) with a
current of 4 mA for the heater, a signal of VL

ANE = 1,200 nV was observed.).

VL
ANE (nV) SANE (μV/K) rres (nm) w (μm) ∇zTL (K/μm) Ref

Laser (Co2FeAl) 150 0.13 5,000 80 1.2 [3]

Tip contact (Co2MnGa) 1,200* 5 80 0.6 7.3 [2]

Tip contact (Py) 60 0.10 80 0.2 6.1 Figure 2B

FIGURE 3
Simulation of locally induced out-of-plane temperature
gradient. (A) The heat transport model between the tip and sample.
(B), (C) The simulated distribution of the out-of-plane temperature
gradient in CMG [2] and Py devices, respectively. (D) Same, but
for a device with a heater (Py) embedded beneath the sample.
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