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Microseismic monitoring data may be seriously contaminated by complex and
nonstationary interference noises produced by mechanical vibration, which
significantly impact the data quality and subsequent data-processing
procedure. One challenge in microseismic data processing is separating weak
seismic signals from varying noisy data. To address this issue, we proposed an
ambient-noise-assisted multivariate empirical mode decomposition (ANA-
MEMD) method for adaptively suppressing noise in low signal-to-noise (S/N)
microseismic data. In the proposed method, a new multi-channel record is
produced by combining the noisy microseismic signal with preceding ambient
noises. Themulti-channel record is then decomposed usingmultivariate empirical
mode decomposition (MEMD) into multivariate intrinsic mode functions (MIMFs).
Then, the MIMFs corresponding to the main ambient noises can be identified by
calculating and sorting energy percentage in descending order. Finally, the IMFs
associated with strong interference noise, high-frequency and low-frequency
noise are filtered out and suppressed by the energy percentage and frequency
range. We investigate the feasibility and reliability of the proposed method using
both synthetic data and field data. The results demonstrate that the proposed
method can mitigate the mode mixing problem and clarify the main noise
contributors by adding additional ambient-noise-assisted channels, hence
separating the microseismic signal and ambient noise effectively and
enhancing the S/Ns of microseismic signals.
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1 Introduction

Microseismic monitoring technology is a useful tool for characterizing the structures,
physical properties, and dynamic processes in the subsurface within a target region. This
technique has been widely used in the monitoring of hydraulic fracturing in hydro-carbon
reservoirs [1–3], coal mining [4, 5], geothermal exploration [6, 7], and CO2 capture and
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storage (CCS) [8]. Single-component (1-C) or three-component (3-
C) receivers installed at the surface and/or in the borehole are
anticipated to record not only the seismic event signals but also
high-energy interference noises and random noises generated by
motions such as mechanical vibrations [9–11]. Various excitations
and strong noises could significantly reduce the detectability of weak
but useful seismic signals in the monitoring data, thereby
compromising the reliability of data processing and
interpretation [12–14]. Therefore, it is essential to develop an
effective method to suppressing interference noise in
microseismic monitoring data.

Low signal-to-noise (S/N) microseismic recordings are usually
abandoned without applying adequate denoising methods due to the
small magnitudes of microseismic events obscured by noisy
recording environments. Frequency-domain band-pass filtering is
the most commonly used method in seismic monitoring processing
for attenuating background noises and extracting microseismic
signals, but the effect of this method may not be very satisfying
if the background noises and microseismic signals are in the same
frequency range. Researchers have made a great effort to develop
novel methods for noise suppression and microseismic signal
enhancement, such as polarization filtering [15], median filtering
[16], mathematical morphology filtering [17], the singular value
decomposition-based method [18, 19], and the time-frequency
transform-based method [20–24]. In addition to high-frequency
noise, the background interference noises are also of concern [13, 17,
21, 22]. Because the characteristics of microseismic signals in the
noisy monitoring data are usually unclear, conventional denoising
methods struggle to suppress the strong-energy, long-duration
interference noises and retain the energy of microseismic signals.
Thus, the improvement in the S/N of microseismic data is often
limited.

Mode decomposition algorithms can adaptively decompose the
nonlinear and nonstationary signals to analyze the local
characteristic time scale and have been widely applied in seismic/
microseismic signal processing, mechanical fault detection,
structural health monitoring, and biomedical signal analysis [19,

25–31]. To overcome the problems of mode mixing, end effect, and
lack of adaptability, mode-decomposition algorithms have
progressed from empirical mode decomposition (EMD) [25] to
ensemble empirical mode decomposition (EEMD) [27],
complementary ensemble empirical mode decomposition
(CEEMD) [28, 29], and variational mode decomposition (VMD)
[30, 31]. By iteratively extracting the high-frequency components
and their associated envelopes, the complex signal is decomposed
into a set of intrinsic mode functions (IMFs) in the empirical mode
decomposition based algorithms. Similarly, the VMD methods
employ an optimization framework to separate the complex
signal into multiple modes. To deal with multivariate data, the
multivariate extension of EMD (i.e., multivariate EMD, or MEMD
for short) and VMD (i.e., multivariate VMD, or MVMD for short)
are proposed for processing multivariate data to obtain the IMFs
with aligned frequency ranges [32–35]. Noise-assisted MEMD (NA-
MEMD) [33], partial noise-assisted MEMD (PNA-MEMD) [36],
and sinusoidal signal-assisted MEMD (SA-MEMD) [37] and
harmonic-assisted MEMD (HA-MEMD) [38] are subsequently
proposed to improve the performance of the MEMD method by
adding additional channels with independent white noise, high-
frequency band-limited noise, and a sinusoidal assisted signal,
respectively.

These mode-decomposition algorithms have been widely
employed in seismic/microseismic data denoising and arrival
picking [19, 39–44]. The separation or reconstruction of
signals is often accomplished in the mode decomposition
based methods and their improvement approaches by the
selection of IMF components. When reconstructing the signal,
metrics like as correlation coefficient, kurtosis, mutual
information entropy, and other parameters that characterize
the signals of each IMF are calculated to provide various
weight coefficients that emphasize the target signal. However,
the study of low signal-to-noise ratio microseismic signals are
hampered by noise because real-world signals are typically
nonlinear and accompanied by strong ambient noise, and the
features extracted directly from these signals usually contain a
large amount of useless as well as noisy information that cannot
effectively distinguish seismic signals from noise. Compared to
the interference noises with long durations and high energies, the
microseismic signals show very short duration (<1s) and
unpredictable energies in the field data. The Low-S/N
microseismic event may be identified from continuous
recordings using rigorous detection thresholds, thus, the
adaptive and effective separation of background noise and
weak microseismic signal is critical for subsequent data
processing. In this paper, we develop an adaptive noise
suppressing method for microseismic data processing based on
ambient-noise-assisted multivariate empirical mode
decomposition (ANA-MEMD). In the proposed method, a
new multichannel record that combines the noisy
microseismic recording with preceding ambient noises is
decomposed by the MEMD method into multivariate intrinsic
mode functions (MIMFs). Then, the ambient records are utilized
to assist in decomposing microseismic data and identifying main
noise contributors. In this study, we first introduce the theory of
EMD and MEMD, then elaborate on the ANA-MEMD method
for noise suppression in microseismic data. Finally, we evaluate

FIGURE 1
The flowchart of the proposed method.
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the performance of the proposed method by using synthetic and
field data.

2 Methods

2.1 Empirical mode decomposition

As a data-driven approach, empirical mode decomposition
(EMD) decomposes a signal adaptively into a finite set of
oscillatory components known as intrinsic mode functions
(IMFs) [25]. The original signal can be recovered by
reconstructing all IMFs, which represent different vibrations
whose instantaneous frequency reflects the local characteristics of
the input signal. Two conditions are essential for calculating an IMF:
1) the number of extrema and the number of zero crossings should
be different only by one; 2) the mean value of the upper and lower
envelopes should be roughly zero [25]. In the EMD method, the
decomposition is accomplished by removing the slowly oscillatory
modes and separating the rapidly oscillating modes from the data.
For a real-valued signal x(t), it can be decomposed into

x t( ) � ∑M

m�1dm t( ) + r t( ), (1)

where dm(t) represents the mth IMF and r(t) is the residual
component.

Although a complex signal can be decomposed into several IMFs
by EMD, the application of real data may be restricted by the mode-
mixing problem due to the intermittency of a signal component or
closely spaced spectral tones. To address the limitation of mode
mixings, ensemble empirical mode decomposition (EEMD) [27, 40]
and complementary ensemble empirical mode decomposition
(CEEMD) [28, 29] are proposed successively by taking the noises
into consideration. The purpose of incorporating white noise is to

perturb the signal in its true solution neighborhood and ensure the
extreme value points are distributed uniformly during the sifting
process, therefore restraining mode-mixing.

2.2 Multivariate empirical mode
decomposition

Signal acquisition using multicomponent receivers or multiple
receivers is prevalent in engineering applications. The characteristic
analysis of the system may be impacted by a scale arrangement
uncertainty problemwhen each signal is decomposed independently
using the EMD approach. Multivariate empirical mode
decomposition has been introduced to overcome this issue by
performing the same mode analysis on multivariate signals in
various frequency scales and ensuring that each signal’s IMF
number after decomposition is identical [32]. In the MEMD
approach, a uniform sampling scheme based on the Hammersley
sequence is used to calculate direction vectors. The n-dimensional
signal envelops are obtained by taking a sequence of projection
vectors along different directions in the n-dimensional space. After
interpolating their extrema, the envelopes are averaged to generate
the local mean of signals. One multivariate intrinsic mode function
(MIMF) is produced by calculating the difference of the mean of all
envelopes with respect to the original signals. This process is
repeated until a sufficient number of MIMFs has been obtained
or the stopping criterion is met. The MEMD decomposes a
multivariate signal X(t) as

X t( ) � ∑M

m�1dm t( ) + r t( ), (2)

where dm(t) represents them-thMIMF and the residual component
r(t) represents the final trend. The detail procedures of the MEMD
algorithm can be described as follows.

FIGURE 2
Single-component synthetic noisy microseismic recording.

Frontiers in Physics frontiersin.org03

Yu et al. 10.3389/fphy.2023.1205935

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1205935


(1) Create a uniform sampling point set on an (n-1)-dimensional
sphere using the Hammersly sequence, and establish an
n-dimensional spatial direction vector.

(2) Obtain the project sets Pθk(t) of the input signal X(t) along all
direction vector Vθk for a set of K direction vectors.

(3) Find the time instants tiθk corresponding to the maxima of the
set of projected signals Pθk(t), and obtain multivariate envelop
curves eθk(t) using the spline interpolation function.

(4) Calculate the mean value using m(t) � ∑K

k�1e
θk(t)/K.

(5) Extract the detail d(t) by calculating d(t) � x(t) −m(t), and
check whether d(t) satisfies the stopping criterion for a
multivariate IMF. If d(t) satisfies the stopping criterion, apply
the above procedure to X(t) − d(t); otherwise, apply it to d(t).

As a multivariate extension of EMD, the MEMD is a significant
improvement in multichannel signal processing, allowing for adequate
alignment between the same index IMFs and facilitating inherent

multiscale analysis. Similar to the standard EMD method, the mode
mixing problem still exists in the MEMD method. To solve this issue,
additional channels containing auxiliary signals are used to help the
decomposition of the original multivariate signal, such as noise-assisted
MEMD (NA-MEMD) [33], partial noise-assisted multivariate EMD
(PNA-MEMD) [36], a sinusoidal signal-assisted MEMD (SA-MEMD)
[37], and high-frequency harmonic-assisted MEMD (HA-MEMD)
[38]. For the original n-dimensional multivariate signal,
l-dimensional extra channels are added and then processed using
the MEMD method as an (n + l)-dimensional signal. These
methods can be summarized as follows.

(1) Generate l-dimensional assisted channels that are of the same
length as the original multivariate signal;

(2) Combine the n-dimensional input multivariate signal with the
assisted channels created in Step 1) to construct an (n + l)-
dimensional signal;

FIGURE 3
(A) Decomposition results of noisy microseismic waveform by the EMDmethod. (B) Decomposition results of the noisy microseismic waveform by
the ANA-MEMD method. (C) The energy percentages of the IMFs in assisted channel and the peak frequencies of the IMFs in noisy microseismic record
channel. (D) Comparison of the waveforms before (grey line) and after (black line) noise suppression by the proposed method. (E) Comparison of the
waveforms before (grey line) and after (black line) noise suppression by the EMD method.
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FIGURE 4
Three-component synthetic noisy microseismic recording.

FIGURE 5
(A)Decomposition results of the 3-C noisymicroseismic waveform by the ANA-MEMDmethod. (B) The energy percentages of theMIMFs in assisted
channels and the peak frequencies of the MIMFs in noisy microseismic record channels. (C) Comparison of the waveforms before (grey lines) and after
(black lines) noise suppression by the proposed method. (D) Comparison of the three-component seismic signal before (grey lines) and after (red lines)
noise suppression by the proposed method.
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(3) Decompose the new multivariate signal using the MEMD
algorithm to extract the multivariate IMFs;

(4) Remove the l-dimensional IMFs related to the assisted signals
from the multivariate IMFs in Step 3) and retain the
n-dimensional IMFs related to the original signal.

It is worth noting that, except from differences in additional
channels, these improved methods maintain the same processing
flow as standard MEMD method.

2.3 Adaptive noise suppression based on
ambient-noise-assisted MEMD (ANA-
MEMD)

Microseismic monitoring data can be expressed as

X � AS. (3)
where S � [s1, s2, . . . , sK]T represent K source signals, X �
[x1, x2, . . . , xM]T represent M observation signals, and A is the
relation matrix between source signals and observation signals. The
source signal could be seismic signal or noise. The observation signal
can represent recordings at different locations, time windows, and
components. In continuous recordings, the duration of ambient
noise (e.g., interference noises produced by pumps or industries in
continuous operation, >>1 min) is substantially longer than that of
seismic events (<1 s). The interference noises in the ambient
recording persist throughout successive time windows.

In this study, we present ambient-noise-assisted multivariate
empirical mode decomposition (ANA-MEMD) for decomposing
noisy microseismic data and remove non-effective components for

S/N enhancement of microseismic data. The auxiliary channels
containing ambient noise are introduced in the decomposition
process, which differs from the standard MEMD technique. To
determine whether one MIMF (or IMF for single-component
microseismic data) contains ambient noise, we calculate the
energy percentage of the assisted ambient noise in each
decomposed MIMF (or IMF for single-component microseismic
data). In our method, strong interference noise is considered to
persist and constitute the predominant portion of the ambient
record. Finally, the MIMFs (or IMFs) components associated
with ambient noise and outside the desired signal band are
eliminated during the reconstruction process. Our method is
organized as follows.

(1) For a low-S/N microseismic signal recording with a time
window length of Nwin, we select ambient recordings with
the same time window length preceding the microseismic data
as additional assisted channels. In general, two window for
single-component microseismic data, and one window for 3-C
microseismic data. Strong random signals (including coherent
seismic signals) must not be present in the additional assisted
channels.

(2) After constructing a newmultivariate signal by adding the noisy
microseismic data with the above-assisted channels, we obtain
the multivariate IMFs dm(t) and cm(t) using the MEMD
algorithm. dm(t) and cm(t) are the m-th MIMFs
corresponding to noisy microseismic data and assisted
ambient noise, respectively.

(3) We calculate and sort the energy percentage of each MIMF
cm(t) in descending order, and obtain the peak frequency of
each MIMF dm(t) .

FIGURE 6
Comparisonof S/Ns (A) and the linearities (B)of the three-component seismic signals before and after noise suppression by the proposedmethod in different tests.
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(4) Pre-set the band range [fl, fh] determine high frequency and
low frequency noise, and find the dominant noise according to a
threshold value of the energy percentage. The IMFs with a large
energy percentage are potential interference noise. The
microseismic data after noise suppression can be
reconstructed by X′(t) � X(t) −∑ dM1(t), where M1 is the
index of qualified MIMFs.

The above procedure is applicable to both single-component
data and three-component microseismic data. The flowchart of the
proposed method is shown in Figure 1.

3 Numerical examples

In this section, we demonstrate the performance of the proposed
method using both single-component and three-component synthetic
microseismic data. The synthetic signal is composed of two time-
varying oscillation signals (regarded as persistent interference noises)
with dominant frequencies of 20 Hz and 60 Hz, and an attenuated sine
wave (regarded as seismic signal), which has the peak frequency of
100 Hz. Its composed components are expressed as the following
equations.

s1 � sin 2π20t + 0.5 cos 2π5t( )
s2 � sin 2π60t + 0.8 cos 2π6t( )
s3 � sin 2π100 t − t0( )( )*e−0.02 t−t0( )

⎧⎪⎨⎪⎩ (4)

Where t0 is the arrival time of seismic signal.
First, the above three source signals with the maximum

amplitude ratio of 2:1:2 and Gaussian noise with the amplitude
variance of 0.1 were applied to generate one single-component
synthetic microseismic recording. The arrival time of seismic
signal is 2.2 s and the sampling frequency is 1000 Hz. Figure 2
shows the waveforms of the synthetic microseismic data, it can be

seen that the seismic signal becomes blurred due to the strong
interference noise.

We compared the decomposition results of the synthetic
microseismic record using the EMD method and the proposed
ANA-MEMD method. Two 1-s long background noise
recordings (0~1 s and 1~2 s) before the seismic signals were
employed as extra assisted channels. Figures 3A, B illustrate
the six IMFs that decomposed by above two methods,
respectively. Channel 1, 2, and 3 in Figure 3B represent the
IMFs corresponding to two background noise recordings and
noisy microseismic signal, respectively. There is no doubt that the
phenomenon of mode mixing has been alleviated by the addition
of auxiliary noise channels. We demonstrated the viability of the
proposed method in noise suppression using the aforementioned
decomposition results. We calculated the energy percentage of
each IMF in the ambient noise assisted channels (channel 1–2 in
Figure 3B) and the peak frequency of each IMF in the noisy
microseismic signal channel (channel 3 in Figure 3B), as shown
in Figure 3C. By determining IMF related to the top two energy
percentage (IMF 4 and 5, cumulative percentage greater than
80%), the high frequency noise (IMF1, the peak
frequency >200 Hz), and the low frequency noise (IMF 6, the
peak frequency <10 Hz), the IMF that contains the ambient noise
can be identified. The denoised microseismic records by the
proposed method and EMD method can be obtained by
reconstructing the remaining IMFs, as shown in Figures 3D,
E. Compared to the result of EMD method (black line in
Figure 3E), the arrival of the seismic signal is clearly visible in
the denoised waveform (black line in Figure 3D), while
preserving as much the microseismic signal as possible.

Three-component synthetic microseismic recording was
constructed by the above three source signals and a mixing
matrix and Gaussian noise with the amplitude variance of 0.2.
The mixing matrix is given as

FIGURE 7
The waveforms of one low-S/N microseismic event. Red and blue dashed line represent the arrival times of P-wave and S-waves, respectively.
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A �
2 1 3
1.5 2 1
3 1 2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (5)

The arrival time of seismic signal is 1.2s and the sampling frequency is
1000 Hz. Figure 4 shows the waveforms of the syntheticmicroseismic data.

In the process of three-component microseismic data, one 1-s
long background noise recordings (0~1 s) before the seismic signals
(1~2 s) were employed as extra assisted channels. Figure 5A
illustrates the six MIMFs that decomposed by the ANA-MEMD
method. Channels (az, ax, and ay) and (z, x, and y) in Figure 5B
represent the MIMFs corresponding to the background noise
recordings and noisy microseismic signals, respectively. Similar to
the processing flow for the above single-component data. We
calculated the energy percentage of each MIMF in the ambient
noise assisted channels and the peak frequency of each MIMF in the
noisy microseismic signal channels, as shown in Figure 5B. By
determining MIMF related to the top two energy percentage
(MIMF 4 and 5, cumulative percentage greater than 80%), the
high frequency noise (MIMF1, the peak frequency >200 Hz), and
the low frequency noise (MIMF 6, the peak frequency <10 Hz), the
MIMFs that contains the ambient noise can be identified. The

denoised microseismic record can be obtained by reconstructing
the remaining MIMFs, as shown in Figure 5C. The arrivals of the
seismic signals are obvious in the denoised waveform (black line in
Figure 5C), and the linearity of the three-component seismic signal
is significantly enhanced (as shown in red lines in Figure 5D).

Without loss of generality, the above test is repeated 50 times
using synthetic three-component data with different S/Ns
(1.9–5.5 dB) to verify the stability of the proposed method. To
simulate varying S/Ns, we kept the amplitude of the background
noise recordings and changed the amplitudes of the noise-free
seismic signal. In addition, we also calculated the S/Ns and the
linearities of the seismic signal before and after processing to
quantitatively assess the method’s performance. The S/N is
calculated using the following equation [12]:

S/N � 20log10
Asignal

Anoise
( ) (6)

where Anoise and Asignal are the root-mean-square amplitudes of the
signals before and after seismic arrivals, respectively. The linearity L
for three component seismic data can calculated using the following
quation,

FIGURE 8
(A) Decomposition results of the recordings in Receiver No.1 by the ANA-MEMD method. (B) The energy percentages of the MIMFs in assisted
channels and the peak frequencies of the MIMFs in noisy microseismic record channels. (C). Comparison of the waveforms before (grey lines) and after
(black lines) noise suppression by the proposed method. The P-wave and S-wave arrivals are denoted by the red box and blue box, respectively. (D)
Comparison of P-wave and S-wave before and after noise suppression by the proposed method. Grey lines represent the raw waveforms. Red and
blue lines represent P-wave and S-wave after noise suppression, respectively.
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L � λ1 − λ2( )2 + λ2 − λ3( )2 + λ1 − λ3( )2
2 λ1 + λ2 + λ3( )2 . (7)

Where λ1, λ2, λ3(λ1 > λ2 > λ3) are the eigenvalues of the
convariance matrix for the three-component seismic signal. The
S/Ns and the linearities of the microseismic signals before and after
processing are shown in Figure 6. The S/Ns and the linearities of
seismic signals in all tests increase using the proposed method
demonstrate the effectiveness of this method for noise
suppression reliability.

4 Field data application

In this section, we evaluated the performance of the proposed
method using field microseismic data. The field data in this study come
from a hydraulic fracturing surveillance job in a shale play in the Fulin
gas field of China. A temporary array comprising 12 levels of triaxle
15 Hz geophones was placed in the inclined section (the inclination is

about 40°) of a horizontal well adjacent to the treatment well and used
for monitoring the stimulation. A total of 63 microseismic events were
detected during a hydraulic fracturing stage. Figure 7 shows the 3-C
waveforms of one Low-S/N microseismic event, in which the red and
blue line represent the arrival times of P- and S-waves, respectively. It is
evident that significant background noises obscure the microseismic
signal, and the arrivals of direct P- and S-waves are masked by strong
interference noise. Observed interferences are most likely due to
pumping operations or pumping-fluid-wellbore interactions.

In this field data processing, we intercepted ambient noise
recording with 1-s long time window (0~1s in Figure 7) before
the microseismic signal (1~2s in Figure 7). The recordings in the
shallowest receiver (Receiver No.1) were analyzed as an example.
The multi-channel recordings are decomposed into 14 MIMFs, and
their first ten MIMFs are shown in Figure 8A, with their frequencies
decreasing sequentially. The seismic signal is divided into multiple
MIMFs due to its wide frequency range. We calculated the energy
proportion of each MIMF in the ambient noise assisted channels and
the peak frequency of each MIMF in the noisy microseismic signal

FIGURE 9
The microseismic signals after noise suppression using different methods. (A) The proposed method. (B) Band-pass filter method. (C) MEMD
methodwith kurtosis criteria. (D)Multivariatewavelet denoising (MWD)method. The amplitude ranges of fourmicroseismicwaveforms subgraphs are the
same.
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channels, as shown in Figure 8B. The energy percentages of eachMIMF
shows that the energy of background noise accounts for about 60% of
the total energy, demonstrating the necessity of removing these strong
noises. By determining MIMF related to the top energy proportion
(MIMF 7), the high frequency noise (MIMF1 and MIMF2, the peak
frequencies >300 Hz), and the low frequency noise (MIMF 9–14, the
peak frequencies <10 Hz), the MIMFs that contains the ambient noise
can be identified. The denoised microseismic record can be obtained by
reconstructing the remaining MIMFs, as shown in Figure 8C. The
P-wave (denoted by the red box) and S-wave (denoted by the blue box)
arrivals of the seismic signals are clearly visible in the denoised
waveforms (black line in Figure 8C), and the linearities of the three-
component microseismic signal are greatly improved, particularly in
P-wave.

We have processed the microseismic recordings of all 12 receivers
in Figure 7. Band-pass filter (10,300 Hz), traditional MEMD based
method, and multivariate wavelet denoising (MWD) method were
also used to process the field data for comparison. In the traditional
MEMDmethod, we calculated the kurtosis value of eachMIMFs, and
the microseismic signal is regarded as existing if the threshold of the
kurtosis value is surpassed (the threshold is set to 3). Figure 9 shows
the results using these methods. The S/Ns and the linearities of the
microseismic signals before and after processing are shown in

Figure 10. Band-pass filter only removes high-frequency and
partial low-frequency noise. There remain strong interferences in
the denoised microseismic data. Part of the arrivals of P- wave and S-
wave afterMEMDmethod with kurtosis criteria are highlighted, there
remain strong interferences in the several receiver recordings. It
demonstrates that uniform kurtosis criteria are incapable of
dealing with complicated and variable noise. The noise reduction
effect on S-wave of MWD method is not obvious, which is also
reflected in the S/Ns after denoising. Although the traditional MEMD
method and MWD method can increase the S/Ns, they decrease the
linearities of P-wave and S-wave, showing that the denoising result
cannot effectively preserve the amplitude of the seismic signals. It can
be seen that the proposed method performs better with the
consideration of increasing the S/N and maintaining the
microseismic signal adaptively.

We processed all 63 microseismic events using our method and
compared the results with above three methods. For each event, we
calculated the S/Ns and the linearities of P-wave and S-wave in
different receivers and obtained the corresponding average values.
Figure 11 displays the average values of the S/Ns and the linearities
of P wave and S wave for all detected microseismic events before and
after noise suppression by different methods. We can see that the
proposed method can generally increase the S/Ns and the linearites

FIGURE 10
Comparison of S/Ns and the linearities of microseismic signals before and after noise suppression by the different methods. (A) the S/Ns of P-wave.
(B) the S/Ns of S-wave. (C) the linearities of P-wave. (D) the linearities of S-wave.
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of the microseismic signals more robustly than the other methods,
especially for the P-wave of low S/N microseismic events. It is worth
noting that the results of the proposed method are not necessarily
better than those of the other methods. This is because the proposed
methodmay also retain part of the ambient noise while preserving as
much the microseismic signal as possible. Nevertheless, the fact that
the S/Ns of the majority of microseismic signals increase when using
the proposed method demonstrate the effectiveness of this method
for microseismic signal denoising.

5 Conclusion

In this study, we have developed an adaptive noise suppressing
method based on ambient-noise-assisted multivariate empirical
mode decomposition (ANA-MEMD) for microseismic data.
Multivariate empirical mode decomposition (MEMD) is
employed to decompose multichannel seismic recording into
multivariate intrinsic mode functions (MIMFs). To address the
problem of mode mixing, ambient noise is used as assisted
channels. Additionally, the dominant noise can be removed by
calculating energy percentage with the ambient noise in the
assisted channels. We have applied the proposed method to
synthetic data and field data. The decomposing results show that

the proposed method can successfully separate and remove the
strong background interference noises. In the comparison to the
results of conventional filtering methods, the proposed method is
demonstrated to be able to improve the S/Ns of the microseismic
signals. Thus, it is favorable for microseismic signal denoising. We
must emphasize that while this study tested the feasibility of the
proposed method using microseismic data, this method can be
applied straight forward to the active seismic data (i.e., artificial
exploration seismic data) or any other multicomponent geophysical
dataset that can be represented as time series.
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