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In this paper, we construct a newmodel based on the coupling of thermoelasticity,
plasma, and microelongation effect under volumetric absorption of laser pulse.
Three different thermoelasticity theories are applied to construct the new model
in a 2D thermoelastic semiconducting medium whose properties are
temperature-dependent. The medium surface is exposed to laser radiation
having spatial and temporal Gaussian distributions; in addition, the surface is
considered traction-free. The general solutions were obtained analytically via
Laplace and Fourier transformations; for Laplace inverse, we use the well-known
Riemann sum approximation. As an application and consistency validation, silicon
material is used.
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1 Introduction

Biot is credited by developing the coupling between temperature and strain in his
formulation of the classical coupled theory of thermoelasticity (CTE) in 1956 [1]. However, a
flaw in this theory gave rise to the concept of generalized thermoelasticity; see, for instance,
[2]. The first generalization was proposed by Lord and Shulman (LS) [3]; instead of relying
on Fourier’s law, LS’s theory relies on another heat conduction law involving relaxation time
[4, 5]. Hence, the produced thermal waves are physically accepted; see [6]. Due to its
application in thermoelasticity, this theory has been widely used in many studies [7, 8].
Green and Lindsay (GL) [9] followed LS’s theory with a generalization with two relaxation
times that considered temperature–rate dependence. This theory has been applied in many
problems of thermoelasticity, making it an essential part of its development; see [10, 11].
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Semiconductor materials, which have a wide range of
applications in physics and engineering, are among the most
significant materials that have directly influenced technological
advancement [12, 13]. Thermoelasticity (TE) and the
deformation of electrons DE are the two basic mechanisms that
are produced when a semiconductor surface is subjected to a laser
beam; for further information, see [14]. Recently, the relationship
involving TE and DE has become necessary, which increases the
viability of using generalized theories to study wave propagation in a
semiconductor medium [15]. Various generalizations were used by
Lotfy and Lotfy et al. [16–18] to examine the photothermal
illumination phenomenon in various results. Ezzat [19] used a
novel model within the context of time-fractional derivatives to
examine the impacts of combined plasma and thermal waves in a
viscoelastic material. In semi-infinite semiconductor materials with
such a cylindrical cavity exposed to thermal shock under a simulated
model considering variable thermal conductivity, for the
investigation of photothermoelastic consequences, we refer to
[20]. Youssef and El-Bary [21] addressed a two-dimensional
semiconductor material cylinder driven by ramp-type heat
through the use of the LS framework to discuss
photothermoelastic coupling. More recently, Tayel and Lotfy [22]
and Mohammed and Tayel [23] studied the photothermal effects
induced by a laser pulse under the new modification of Green and
Lindsay (MGL).

Due to the numerous uses of thermoelasticity, the study of
materials whose characteristics are temperature-dependent has
become increasingly important. The overwhelming majority of
results now available on thermoelasticity are achieved for
temperature-independent material, despite the fact that
components fluctuate at high temperatures; for examples, see [24,
25] and the references within. In terms of the generalized
thermoelasticity, some valuable works with significant results for
understanding the effect of the influences of temperature-dependent
features could be seen in [26–29].

Many applications have been introduced in the fields of science
and engineering based on special features of lasers. In material
processing various fields such as cutting, drilling of holes, glazing of
materials, and spot welding, high-power lasers are utilized [30, 31].
In semiconductor material, excitation caused by laser radiation
generates three different waves: thermal, elastic, and plasma
waves. Several papers have discussed the transportation processes
induced by the laser pulse in semiconductor materials; see [32–36].

Microelongated materials can be found in many branches of
material science; some examples of microelongated media involve
solid–liquid crystals, structural materials reinforced with crushed
elastic fibers, and porous materials having pores stuffed to the gills
with gases or non-viscous fluid. It should be noted that numerous
effects on microelongated thermoelasticity, such as initial stress, and
also comparing relaxation times including their effects on all
physical parameters, have not received much attention; see [37–41].

In this paper, we shall discuss the volumetric absorption of laser
radiation in a 2D thermoelastic microelongated semiconducting half
space whose properties are temperature-dependent. We introduce a
novel model based on the coupling of TE, plasma, and
microelongation waves by means of three different theories of
thermoelasticity, namely, CTE, LS, and GL. Moreover, the

temperature-dependent properties are investigated through all the
aforementioned waves.

2 Problem setting and basic equations

In what follows, we introduce the system of governing equations
that consider the microelongation effect coupled with plasma and
TE response. We start by

Energy is represented as follows [38]:

κT,ii − ρCE n1 + τ0
z

zt
( ) _T − γ1T0 n1 + n0τ0

z

zt
( ) _ui,i + Eg

τ
N − γ2T0 _φ

� − n1 + n0τ0
z

zt
( )Q x, z, t( ).

(1)

The plasma wave equation, which depicts the interaction between
plasma and temperature, is as follows [13]:

_N � DEN,ii − N

τ
+ κ T. (2)

The equation of motion is given as follows [18, 42]:

λ + μ( )uj,ij + μui,jj + λ1φ,i − γ1 1 + v0
z

zt
( )T,i − δnN,i � ρ€ui. (3)

Microelongation is represented as follows [18, 42]:

αφ,ii − λ2φ − λ1uj,j + γ2 1 + v0
z

zt
( )T � 1

2
jρ€φ. (4)

The microelongation constitutive equation is as follows [43–45]:

σ ij � λ1φ + λur,r( )δij + 2μuj,i − γ1 1 + v0
z

zt
( )Tδij − 3λ + 2μ( )dnN( )δij,

mi � a0φ,i ,

s − σ � λui,i − γ2 1 + v0
z

zt
( )T + − 3λ + 2μ( )dnN( )δ2i + λ1φ.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

(5)

where κ � 1
τ
zn0
zT , γ1 = (3λ + 2 μ)αt1, δn = (3λ + 2μ)dn, and γ2 = (3λ

+ 2 μ)αt2. For a volumetric technique of heating, we let

Q x, z, t( ) � A0q0ξe
−ξxQ z, t( ).

The aforementioned system of equations can be classified
according to the values of n0 and n1 as follows:

1. The classical coupled theory of thermoelasticity (CTE), when
n1 = 1, n0 = 0, τ0 =, and v0 = 0.

2. Lord and Shulman theory (LS) when n1 = n0 = 1, v0 = 0,
and τ0 > 0.

3. Green and Lindsay theory (GL), when n1 = 1, n0 = 0, and
v0 > τ0 > 0.

Consider a TE isotropic and homogeneous microelongated
semiconducting 2D half space to be at a reference temperature
T0. The medium surface x = 0 is subjected to a laser pulse and
considered traction-free.

Due to the two-dimensional effect of ED and TE deformations,
we assume that our primary fields depend on (x, z, t). In this setting,
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the scalar microelongational function in the xz-plane and
displacement tensor ui will be written as follows:

φ � φ x, z, t( )
�u � u, 0, w( ), u � u x, z, t( ), w � w x, z, t( )}. (6)

Thus, the cubic dilatation is expressed as follows:

e � zu

zx
+ zw

zz
. (7)

Let us assume the following parameters to be temperature-
dependent; see [28, 46]:

k, γ1, Eg, γ2, DE, κ, λ, μ, λ1, λ2, δn, α{ }
� k0, γ10, Eg0, γ20, DE0, κ0, λ0, μ0, λ10, λ20, δn0, α0{ }f T0( ),

(8)
where f(T0), a given linear dimensionless function, takes the form

f T0( ) � 1 − ζf T0( ), (9)
and ζ is an empirical parameter.

Consequently, our system becomes (2)–(1):

k0∇
2θ − ρCE

f T0( ) n1 + τ0
z

zt
( ) zθ

zt
− γ10T0 n1 + n0τ0

z

zt
( ) ze

zt
+ Eg0

τ
N

− γ20T0 _φ � − 1
f T0( )A0q0ξ n1 + n0τ0

z

zt
( )e−ξxQ z, t( ),

(10)
DE0∇

2N − N

f T0( )τ + κ0θ � 1
f T0( )

zN

zt
, (11)

α0∇
2φ − λ20φ − λ10e + γ20 1 + v0

z

zt
( )θ � 1

2f T0( ) jρ€φ, (12)

λ0 + μ0( ) ze
zx

+ μ0∇
2u + λ10

zφ

zx
− γ10 1 + v0

z

zt
( ) zθ

zx
− δn0

zN

zx

� ρ

f T0( )
z2u

zt2
, (13)

and

λ0 + μ0( ) ze
zz

+ μ0∇
0w + λ10

zφ

zz
− γ10 1 + v0

z

zt
( ) zθ

zz
− δn0

zN

zz

� ρ

f T0( )
z2w

zt2
. (14)

σxx � f T0( ) 2μ0
zu

zx
+ λ0e − γ10 1 + v

z

zt
( )T − δn0N + λ10φ( ),

σzz � f T0( ) 2μ0
zw

zz
+ λ0e − γ10 1 + v

z

zt
( )T − δn0N + λ10φ( ),

σyy � f T0( ) λ0e − γ10 1 + v
z

zt
( )T − δn0N + λ10φ( ),

σxz � μ0f T0( ) zu

zz
+ zw

zx
( ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(15)
where θ = T − T0 is the increment of the temperature.

We now introduce the initial and boundary conditions for the
considered problem as follows:The initial conditions are

θ � zθ

zt
� 0,

N � zN

zt
� 0,

u, w{ } � z u, w{ }
zt

,

ϕ � zϕ

zt
� 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

and the boundary conditions become

zθ

zx
0, z, t( ) � 0,

DE
zN

zx
0, z, t( ) � s0N 0, z, t( ),

σxx 0, z, t( ) � σxz 0, z, t( ) � 0,

ϕ 0, z, t( ) � 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

where s0 is the surface recombination velocity.It is possible to use
dimensionless variables to make the computations simpler, such as

~N � δn
T0γ10

N, ~xi � ω*
C1

xi, ~ui � ρC1ω*
T0γ10

ui, ~t, ~τ0 , ~]0( ) � ω* t, τ0 , ]0( ),

C2
1 �

2μ + λ

ρ
, ~θ � θ

T0
, ~σ ij � σ ij

T0γ10
, ~φ � ρC2

1

T0γ10
φ, ω* � ρCEC

2
1

K
, C2

2 �
μ

ρ
,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(18)

In computations, the primary governing equations are simplified
using Eq. 18, which results in the following:

∇2θ − ϵ1 n1 + τ0
z

zt
( ) zθ

zt
− ϵ2 n1 + n0τ0

z

zt
( ) ze

zt
+ ϵ3N − ϵ4 _φ

� − ϵ1A0q0ξ n1 + n0τ0
z

zt
( )e−ξxQ z, t( ),

(19)

∇2 − ϵ5 − ϵ6
z

zt
( )N + ϵ7θ � 0, (20)

∇2φ − C3φ − C5e + C6 1 + v0
z

zt
( )θ − C4 €φ � 0, (21)

λ + μ

ρC2
( ) ze

zx
+ μ

ρc2
∇2u + λ10

ρc2
zφ

zx
− 1 + v0

z

zt
( ) zθ

zx
− zN

zx

� 1
f T0( )

z2u

zt2
, (22)

and

λ + μ

ρC2
( ) ze

zz
+ μ

ρc2
∇2w + λ10

ρc2
zφ

zz
− 1 + v0

z

zt
( ) zθ

zz
− zN

zz

� 1
f T0( )

z2w

zt2
. (23)

The constitutive relations according to Eq. 5 can be written as
follows:

σxx � f T0( ) a2
zu

zx
+ a3e − 1 + v0

z

zt
( )θ −N + a1φ[ ], (24)

σzz � f T0( ) a2
zw

zz
+ a3e − 1 + v0

z

zt
( )θ −N + a1φ[ ], (25)

σyy � f T0( ) a3e − 1 + v0
z

zt
( )θ −N + a1φ[ ], (26)
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σxz � a4f T0( ) zu

zz
+ zw

zx
( ), (27)

and the boundary conditions become

zθ

zx
0, z, t( ) � 0,

zN

zx
0, z, t( ) � ϵ8N 0, z, t( ),

σxx 0, z, t( ) � σxz 0, z, t( ) � 0,

ϕ 0, z, t( ) � 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (28)

Here, we combine Eqs. 22, 23 to become

∇2e + a1∇
2φ − 1 + v0

z

zt
( )∇2θ − ∇2N � ϵ1

z2e

zt2
, (29)

where

ϵ1 � 1
f T0( ), ϵ2 �

T0γ210
ρk0ω

, ϵ3 �
Eg0γ10C

2
1

τδn0k0ω
, ϵ4 �

T0γ10γ20
ρk0ω

ϵ5 � C2
1

τDE0ωf T0( ), ϵ6 � C2
1

DE0ωf T0( ), ϵ7 � k0C
2
1δn0

τDE0γ10ω
,

ϵ8 � s0C1

DE0wf T0( ),

C3 � λ20C
2
1

α0ω2
, C4 � ρJC2

1

2f T0( )α0, C5 � λ10C
2
1

α0ω2
, C6 � γ20ρC

4

α0γ10ω
2

a1 � λ10
ρC2

1

, a2 � 2μ0
ρC2

1

, a3 � λ0
ρC2

1

, a4 � a2
2
.

3 Problem solution

The method of integral transformation will be applied using the
first Laplace transform for the variable of t and then the Fourier
transform for the coordinate z.Now, introduce Laplace transform

�f x, z, s( ) � ∫∞

0
f x, z, t( )e−stdt. (30)

Then, Fourier transform

�̂f x, p, s( ) � 1���
2π

√ ∫∞

−∞
�f x, z, s( )e−ipzdz. (31)

Applying Fourier and Laplace transformations for Eqs. 19–21 and
Eq. 22, this gives the following system:

D2 − p2 − β1( )�̂θ − β2�̂e + ϵ3 �̂N − ϵ4s �̂φ � −A0q0ξβ7e
−ξx �̂Q p, s( ), (32)

D2 − p2 − β3( ) �̂N + ϵ7 �̂θ � 0, (33)
D2 − p2 − β4( ) �̂φ − C5�̂e + β5

�̂θ � 0, (34)
D2 − p2 − ϵ1s2( )�̂e + a1 D2 − p2( ) �̂φ − β6 D2 − p2( )�̂θ

− D2 − p2( ) �̂N � 0,
(35)

where �̂Q(p, s) is Q(z, t) in the transformed domain, and

β1 � ϵ1s n1 + sτ0( ), β2 � ϵ2s n1 + n0sτ0( ), β3 � ϵ5 + ϵ6s,
β4 � C3 + C4s

2,β5 � C6 1 + v0s( ), β6 � 1 + v0s( ), β7 � ϵ1 n1 + sτ0( ).

Eliminating �̂θ and �̂e from Eqs. 32–35, we obtain the following:

c5 D2 − p2 − β1( ) D2 − p2 − β3( ) − ϵ3ϵ7( ) − β2β5 D2 − p2 − β3( )[ ] �̂N
+ β2ϵ7 D2 − p2 − β4( ) + ϵ4ϵ7c5s( ) �̂φ � A0q0c5ϵ7β7ξe−ξx �̂Q p, s( ),

(36)
and

ϵ7 D2 − p2 − ϵ1s2( ) D2 − p2 − β4( ) + a1c5 D2 − p2( )[ ] �̂φ
+ D2 − p2 − β3( ) −β5 D2 − p2 − ϵ1s2( ) + c5β6 D2 − p2( )( )[
− ϵ7c5 D2 − p2( )] �̂N � 0.

(37)

Eliminating �̂φ from (36) and (37), we get

D8 − b1D
6 + b2D

4 − b3D
2 + b4( ) �̂N � G1e

−ξx, (38)
where

G1 � A0q0β7ϵ7 ξ2 − p2 − ϵ1s2( ) ξ2 − p2 − β4( )[
+ a1c5 ξ2 − p2( )]ξ �̂Q p, s( )

and

b1 � − −4p2 + a1C5 − β1 − β3 − β4 − β2β6 − s2ϵ1( ),
b2 � 6p4 + 3β3p

2 + 3β4p
2 + 3β2β6p

2 + 3s2ϵ1p2 + β3β4 − sC5β6ϵ4− a1 C5 3p2 + β1 + β3( ) + β2β5( ) + β2β3β6 + β2β4β6 + β2ϵ7+ s2β3ϵ1 + s2β4ϵ1 + β1 3p2 + β3 + β4 + s2ϵ1( ) + sβ5ϵ4 − ϵ3ϵ7,
b3 � − 4p6 − 3β3p

4 − 3β4p
4 − 3β2β6p

4 − 3s2ϵ1p4 − 2β3β4p
2 − 2β2β3β6p

2

− 2β2β4β6p
2 − 2s2β3ϵ1p2 − 2s2β4ϵ1p2 − 2sβ5ϵ4p2 + 2sC5β6ϵ4p2

− 2β2ϵ7p2 + 2ϵ3ϵ7p2 − β2β3β4β6 − s2β3β4ϵ1 + β4ϵ3ϵ7 − β2β4ϵ7− β1 3p4 + 2s2ϵ1p2 + β4 2p2 + s2ϵ1( ) + β3 2p2 + β4 + s2ϵ1( )( )
+ s2ϵ1ϵ3ϵ7 + sC5ϵ4ϵ7 − sβ3β5ϵ4 + sC5β3β6ϵ4 − s3β5ϵ1ϵ4+ a1 β2 2p2 + β3( )β5 + C5 3p4 + 2β3p

2 + β1 2p2 + β3( ) − ϵ3ϵ7( )( ),
b4 � p8 + β3p

6 + β4p
6 + β2β6p

6 + s2ϵ1p6 + β3β4p
4 + β2β3β6p

4

+ s2β3ϵ1p4 + s2β4ϵ1p4 + sβ5ϵ4p4 − sC5β6ϵ4p4 + β2ϵ7p4 − ϵ3ϵ7p4

+ β2β3β4β6p
2 + s2β3β4ϵ1p2 + sβ3β5ϵ4p2 − sC5β3β6ϵ4p2 + s3β5ϵ1ϵ4p2

+ β2β4β6p
4 − s2ϵ1ϵ3ϵ7p2 − sC5ϵ4ϵ7p2 + β2β4ϵ7p2 − β4ϵ3ϵ7p2

+ β1 p2 + β3( ) p2 + β4( ) p2 + s2ϵ1( ) + s3β3β5ϵ1ϵ4 − s2β4ϵ1ϵ3ϵ7− a1 β2 p2 + β3( )β5 + C5 p4 + β3p
2 + β1 p2 + β3( ) − ϵ3ϵ7( )( )p2.

Factoring Eq. 38, we obtain

D2 − k2i( ) �̂N � G1e
−ξx, (39)

where k2i (i � 1, . . . , 4) are the roots of the characteristic equation.
Eq. 39 has the following solution:

�̂N x( ) � ∑4
i�1

Bi p, s( )e−kix +H1 ξ, s( )e−ξx, (40)

where

H1 � G1

ξ2 − k2i
.

The solution in terms of �̂φ is obtained in a similar manner; we
have

D8 − b1D
6 + b2D

4 − b3D
2 + b4( ) �̂φ � G2e

−ξx, (41)
where

G2 � −A0q0β7ϵ7 ξ2 − p2 − β3( ) −β5 ξ2 − p2 − ϵ1s2( ) + c5β6 ξ2 − p2( )( )[
− ϵ7c5 ξ2 − p2( )]ξe−ξx �̂Q p, s( ).

Eq. 41 is solved as follows:

�̂φ x( ) � ∑4
i�1

ψiBi p, s( )e−kix +H2e
−ξx, (42)

where
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H2 � G2

ξ2 − k2i
, i � 1, . . . , 4( ),

where

ψi � − k2i − p2 − β3( ) −β5 k2i − p2 − ϵ1s2( ) + c5β6 k2i − p2( )( ) − ϵ7c5 k2i − p2( )[ ]
ϵ7 k2i − p2 − ϵ1s2( ) k2i − p2 − β4( ) + a1c5 k2i − p2( )[ ] .

(43)

Using Eq. 33, we have

�̂θ x( ) � ∑4
i�1

ΓiBi p, s( )e−kix +H3e
−ξx, (44)

where

Γi � − k2i − p2 − β3( )
ϵ7

andH3 � − ξ2 − p2 − β3( )
ϵ7

H1. (45)

In a similar way, we get

�̂e x( ) � ∑4
i�1

ΛiBi p, s( )e−kix +H4e
−ξx, (46)

where

Λi � 1
C5ϵ7

ϵ7 k2i − p2 − β4( )ψi − β5 k2i − p2 − β3( )[ ] (47)

and

H4 � 1
C5ϵ7

ϵ7 ξ2 − p2 − β4( )H2 − β5 ξ2 − p2 − β3( )H1( ). (48)

As for the displacement, Eq. 22 can be written as follows:

∇2u + a5
ze

zx
+ a1

zϕ

zx
− a6 1 + v0

z

zt
( ) zθ

zx
− a6

zN

zx
� a7

z2u

zt2
, (49)

where a5 � λ0+μ0
μ0

, a6 � ρC2
1

μ0
, and a7 = a6ϵ1.

Using Laplace and Fourier transformation to the last equation,
one gets

D2 − p2 − a7s
2( ) �̂u � −a5z�̂e

zx
− a1

z �̂ϕ

zx
+ a6 1 + v0s( ) z

�̂θ

zx
+ a6

z �̂N

zx
. (50)

The solution of the non-homogeneous ordinary differential Eq. 50 gives

�̂u � −∑4
i�1

kiΩiBie−kix

k2i − p2 − a7s2( ) − ξJe−ξx

ξ2 − p2 − a7s2( ) + Re−qx, (51)

where

Ωi � −a5Λi − a1ψi + a6 1 + ]0s( )Γi + a6( ),
J � −a5H4 − a1H2 + a6 1 + ]0s( )H3 +H1( ),

and

q �
��������
p2 − a7s2

√
.

To get the other components, namely, �̂w, we will use Eq. 7 in the
transformed domain; we have

�̂w � 1
ip

∑4
i�1

Λi − k2iΩi

k2i − P2 − a7s
2( )( )Bie

−kix⎡⎣
+ H4 − ξ2J

ξ2 − P2 − a7s
2( )⎛⎝ ⎞⎠e−ξx + Rqe−qx⎤⎥⎥⎦. (52)

Here, we consider the stresses related to the boundary
conditions only, so we have

�̂σxx � f T0( ) σ1iBie
−kix + σ1*e

−ξx − qRe−qx[ ], (53)

�̂σxz � a4f T0( )
ip

σ2iBie
−kix + σ2*e

−ξx − q*Re−qx[ ], (54)

where

σ1i � a2
k2iΩi

k2i − p2 − a7s2
( ) + a3Λi − 1 + ]0s( )Γi + a1ψi − 1, (55)

σ1* � a2
ξ2J

ξ2 − P2 − a7s2
( ) + a3H4 − 1 + ]0s( )H3 + a1H2 −H1,

(56)
σ2i � −ki Λi − k2i + p2

k2i − p2 − a7s2
( ), (57)

σ2* � −ξ H4 − ξ2 + p2

ξ2 − p2 − a7s2
( ), (58)

and

q* � − 2p2 + a7s
2( ). (59)

Now, to attain the constants Bi, (i = 1, . . ., 4) and R, we use (28) to
obtain the following system:

kiΓiBi � −ξH3,
ki + ϵ8( )Bi � − ξ + ϵ8( )H1,

σ i1Bi − qR � −σ1*,
σ i2Bi − q*R � −σ2*
ψiBi � H2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (60)

From this, we complete the solution.

4 Inverse of the transformation

In this section, we obtain the inverse of the solutions derived in
the aforementioned section; we start by applying the inverse Fourier
transform using the following formula:

�f x, z, s( ) � 1���
2π

√ ∫∞

−∞
�̂f x, p, s( )eipzdp, (61)

where �f(x, z, s) is understood in the sense of Laplace transform.
After that, an inverse by means of Laplace is needed; for this, we use
the well-known Riemann sum approximation:

f x, z, t( ) � eϕt

t

1
2
�f x, z, ϕ( ) + Re∑K

n�1
−1( )n �f x, z, ϕ + inπ

t
( )⎡⎣ ⎤⎦.

(62)
For a faster convergence, we let ϕ = 4.7/t; see [47].

5 Special case

In order to increase the visibility of our results, we shall
consider a special case when obtaining the numerical results. In
particular, we neglect the effect of microelongation, i.e., we take
λ10 � λ20 � γ20 � 0.
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FIGURE 1
Spatial temperature distribution per q0 at t = 4 × 10−3 for the aforementioned two cases.

FIGURE 2
Temporal surface temperature θ(0, 0.0001, t) per q0 for the aforementioned two cases.

FIGURE 3
Carrier density N(x, 1 × 10−4, 4 × 10−3) for the aforementioned two cases.
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FIGURE 4
Displacement distribution u(x, 0.0001, t) per q0 for the aforementioned two cases.

FIGURE 5
Stress σxx per q0 for the aforementioned two cases.

FIGURE 6
Stress σxz per q0 for the aforementioned two cases.
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6 Application

Consider a silicon material’s half-space being subjected to a laser
beam with a Gaussian profile as

Q z, t( ) � V z( ).η t( ), (63)
where V(z) � e−

z2

a2 and η(t) � e−(t−bd )
2
.

The following constants, which are based on [48], will be used to
calculate the surface temperature θ(0, t), temperature θ, carrier
density N displacement u, and stresses σxx and σxz.

αt1 � 2.59 × 10−6K−1 k � 156W/(m × K) T0 � 800K
λ � 3.64 × 1010N/m2 ρ � 2330kg/m3 τ1 � 0.001
μ � 5.46 × 1010N/m2 Eg0 � 1.11eV τ � 10−5s

CE � 695J/(kg × K) n0 � 1020m−3 δ0 � 2m/s
DE � 2.5 × 10−3m2/s a � 3 × 10−3s A0 � 0.69
α10 � −9 × 10−31m3 τ0 � 0.00075 b � 10−3s.

7 Numerical investigation

The computational results are divided into two groups. Group A
shows the effect of the temperature-dependent properties for LS
theory, while group B describes the consistency of the results
through three different models. Through this, all the calculations
are carried out for t = 4 × 10−3 and z = 0.0001.

Figure 1 is combined of two sub-graphs. Figure 1A represents θ/
q0 at t = 4 × 10−3 for different ζ values, namely, ζ = 0, ζ = 5 × 10−4 and
ζ = 8 × 10−4 for LS theory. Figure 1B depicts θ/q0 at t = 4 × 10−3 for a
fixed ζ value, that is, ζ = 5 × 10−4 by taking into account three
different models: LS, CTE, and GL. From the two sub-figures, we
note that the temperature reached its maximum at the irradiated
surface and then declined inside the medium until it totally vanishes.
Figure 1A shows that the temperature increases as ζ increases, and
the penetration inside the medium decreases as ζ increases.
Figure 1B shows the GL model possessing the maximum
temperature at the surface with lower penetration and that CTE
has the maximum penetration into the medium; it is also noted that
the LS model has a weak slope near the surface.

Figure 2 contains two sub-figures, these are as follows:
Figure 2A, which displays the temporal surface temperature θ(0,
0.0001, t) per q0 for different ζ values, namely, ζ = 0, ζ = 5 × 10−4 and
ζ = 8 × 10−4 for LS theory, and Figure 1B, which describes the
temporal surface temperature θ(0, 0.0001, t) per q0 for a fixed ζ value,
that is, ζ = 5 × 10−4 considering the three models. The general
behavior of the two sub-figures could be stated in the following
statement“ The temperature increases until it achieves its maximum
with a notably shift from the maximum of laser pulse; after that
decreases but it will not be totally eliminated, see [30] for more
explanation”. From Figure 2A, we note that the temperature
achieves its peak at a longer time when ζ is small enough, which
makes the peak value increase with ζ. We also note that the peak gets
closer to the profile with greater ζ. At the same time, the curves
preserve their behavior even after the laser turns off. In Figure 2B, we
see that the LSmodel gets its peak at a time closer to themaximum of
η(t). In addition, this model has the greatest maximum temperature
compared with other two models.

The spatial carrier density distribution N represented in
Figure 3, as the previous sub-Figure 3A, outlines the carrier
distribution N for ζ = 0, ζ = 5 × 10−4 and ζ = 8 × 10−4 at time
t = 4 × 10−3, and sub-Figure 3B describes the carrier density
distribution N for a fixed ζ value, that is, ζ = 5 × 10−4,
considering the three models. The effect that took place by the
parameter ζ can be clearly seen in Figure 3A that it is inversely
proportional to the plasma. In Figure 3B, the model of LS possesses
the greatest carrier density at the surface, while the GL model
possesses the lower carrier density. Moreover, it is noted that
penetration is approximately the same for the three models.

The spatial displacement u represented by Figure 4, as the
previous sub-Figure 4A outlines the displacement distribution u
for ζ = 0, ζ = 5 × 10−4 and ζ = 8 × 10−4 at time t = 4 × 10−3 and sub-
Figure 4B describes the displacement distributions u for a fixed ζ

value, that is, ζ = 5 × 10−4, considering the three models. The
displacement appears in a region close to the surface and attains
negative values; from Figure 4A that represents the effect of ζ, it is
clearly seen that the displacement has the same value for all values of
ζ at the surface and different penetration inside the medium.
Figure 4B describes the case of the three mentioned models; it is
noted that the GL model possesses the greatest displacement at the
surface, while the CTE possesses the smallest displacement, and the
penetration of the three models is slightly the same.

Figure 5 contains two sub-figures; these are as follows:
Figure 5A, which displays the stress σxx per q0 for ζ = 0, ζ = 5 ×
10−4 and ζ = 8 × 10−4 for LS theory, and Figure 5B, which describes
the stress σxx per q0 for a fixed ζ = 5 × 10−4, considering the three
models. In both cases, the figure contains a small sub-figure
representing the stress distribution in a region close to the
surface; this figure shows that the stress obeys the given
boundary condition. As for Figure 5A, we see that the positive
peak getting smaller as ζ increases. We note that all curves matched
together on the illuminated surface until the positive peak is
achieved; after that, for a larger ζ, the gradient gets steeper. We
can also see that when ζ = 0, the penetration takes the largest value.
In Figure 5B, the curve behavior is preserved as in Figure 5A, and the
positive peak of the GLmodel is the greatest, while that of the CTE is
the smallest; moreover, the penetration of the CTE is the greatest.

Figure 6 contains two sub-figures; these are as follows: Figure 6A,
which displays the stress σxz per q0 for ζ = 0, ζ = 5 × 10−4 and ζ = 8 ×
10−4 for LS theory, and Figure 6B, which describes the stress σxz per q0
for a fixed ζ = 5 × 10−4, considering the three models. Figure 6A shows
that the increment of ζ caused a delay in both negative and positive
peaks. Figure 6B shows that the only model with a negative peak near
to the surface is that of LS, and also, LS possesses the highest peaks in
both cases (negative and positive peaks).

8 Conclusion

In this paper, we introduced a fully coupled system of equations that
represents thermal, plasma, elastic, and microelongation effects, and the
novel system based on three different theories of thermoelasticity. This
system has been applied to 2D TE microelongated semiconducting half
space whose properties are temperature-dependent, considering the
volumetric absorption illumination induced by a pulsed laser. From
the forgoing discussions, we can conclude that
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• The obtained results are in line with the physical
interpretations.

• A clear effect for the temperature-dependent properties on all
variables.

• The GL and CTE models consume more energy and take
longer time than the LS model to achieve their peaks.
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Glossary

λ and μ Lamé’s constants

δn � (3λ + 2μ)dn Deformation potential difference

dn Electronic deformation coefficient

T Absolute temperature

N Carrier density

T0 Reference temperature

γ1 � (3λ + 2μ)αt1 Volume thermal expansion

αt1 Linear thermal expansion

σij Microelongation stress

Ρ Density

K Thermal conductivity

CE Specific heat at constant strain

n0 Equilibrium-free carrier at temperature T

DE Carrier diffusion coefficient

Ρ Density

CE Specific heat at constant strain

Τ Photo-generated carrier lifetime

Eg Energy gap

ei,j Strain tensor component

j0 Microinertia of the microelement

λ1, λ2.α Microelongational material constants

τ0, ν0 Thermal relaxation times

Φ Scalar microelongational function

mk Microstretch component

s = sii Stress tensor component
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