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To achieve a comprehensive and accurate diagnosis of faults in rolling bearings, a
method for diagnosing rolling bearing faults has been proposed. This method is
based on Multivariate Variational Mode Decomposition (MVMD) signal
reconstruction, Multivariate Multiscale Dispersion Entropy (MMDE)-Generalized
Normal Distribution Optimization (GNDO), and Marine predators’ algorithm-
based optimization support vector machine (MPA-SVM). Firstly, by using a
joint evaluation function (energy*|correlation coefficient|), the multi-channel
vibration signals of rolling bearings after MVMD decomposition are denoised
and reconstructed. Afterward, MMDE is applied to fuse the information from the
reconstructed signal and construct a high-dimensional fault feature set.
Following that, GNDO is used to select features and extract a subset of low-
dimensional features that are sensitive and easy to classify. Finally, MPA is used to
realize the adaptive selection of important parameters in the SVM classifier. Fault
diagnosis experiments are carried out using datasets provided by the Case
Western Reserve University (CWRU) and Paderborn University (PU). The MVMD
signal reconstruction method can effectively filter out the noise components of
each channel. MMDE-GNDO can availably mine multi-channel fault features and
eliminate redundant (or interference) items. The MPA-SVM classifier can identify
faults in different working conditions with an average accuracy of 99.72% and
100%, respectively. The results demonstrate the accuracy, efficiency, and stability
of the proposed method.
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1 Introduction

Rolling bearings are one of the key components of rotating machinery, and their
operating status directly affects the overall performance, work efficiency, and service life of
the equipment. Because rolling bearings usually operate in very harsh operating
environments, the probability of various failures is relatively high. It is of great
significance for the safe operation of rotating machinery to effectively identify different
operating states, different damage degrees, and different types of rolling bearing faults [1].
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Due to the development of artificial intelligence technology and
the accumulation of industrial monitoring data, data-driven fault
diagnosis methods have attracted more and more attention [2]. At
present, analysis based on vibration signals is the most common
method for diagnosing rolling bearing faults. The process of fault
diagnosis can generally be divided into three main steps: signal
processing, feature extraction and selection (i.e., dimensionality
reduction), fault mode recognition, etc. Fault features can be
extracted from the time domain (including statistical analysis and
correlation analysis), frequency domain [including spectrum
analysis and Fast Fourier transform (FFT), coherence analysis,
spectrum refinement analysis, etc.], and time-frequency domain
(including short-time Fourier transform, Wigner-Ville, wavelet
packet analysis, wavelet analysis [3] and fractal-wavelet modeling
[4, 5], etc.). Guido R C et al. [6] proposed discrete path transform.
This method was designed as a novel manual feature extraction tool
to achieve spoken language recognition. However, vibration signals
are usually characterized by strong background noise, and non-
stationary, nonlinear, and coupled modulation [7, 8]. In recent
years, time-frequency analysis methods for vibration signals have
been widely studied. For example, Empirical Mode Decomposition
(EMD) [9] and Local Mean Decomposition (LMD) [10], but both
have common issues (i.e., mode mixing). To suppress the modal
aliasing phenomenon, Ensemble Empirical Mode Decomposition
(EEMD) [11] and Ensemble Local Mean Decomposition (ELMD)
[12] were proposed. Among them, ELMD is a noise-assisted analysis
method proposed based on EEMD. Nonetheless, after adding noise
in ELMD, there are problems such as residual noise pollution and a
large amount of computation when reconstructing the signal.
Different from EMD and its extended algorithm, Empirical
Wavelet Transform (EWT) [13, 14] determines the modal
components in different frequency bands by dividing the
frequency spectrum of the signal. However, EWT has poor
robustness and is susceptible to noise interference, resulting in
too dense spectrum allocation, which in turn leads to over-
decomposition of the results. Variational Mode Decomposition
(VMD) [15] is more effective than EWT, EMD, and EEMD in
extracting transient shocks because it uses a non-recursive method
to obtain several modal components with sparse characteristics.
However, the superiority of VMD depends on the accurate selection
of the number of modes K and the penalty factor α, which greatly
restricts its application. At present, three major ways are used to
obtain appropriate parameters, such as prior knowledge or center
frequency observation method, optimization algorithm (for
example, Genetic Algorithm, Whale Algorithm, and Bat
Algorithm, etc.), and several single evaluation indicators (for
instance, correlation coefficient, kurtosis, energy, etc.). Li et al.
[16–18] proposed a series of VMD parameter adaptive methods
and achieved the extraction of fault features for different rolling
bearings. The above parameter-adaptive VMD methods have
achieved some good results in the field of fault diagnosis, yet the
modal components obtained by VMD still contain noise, especially
periodic pulses are more sensitive to noise, which directly affects the
effective extraction of fault features.

Currently, most vibration signals are only collected from a single
accelerometer. If the fault location is different, the vibration signal
strength and spectrum structure are not the same, which may cause
misjudgment or missed judgment. For this reason, extending unary

data-driven methods to multivariate becomes a research hotspot.
Multivariate signal algorithms mainly face the two major challenges
of aligning frequency information across multiple channels in each
mode (called mode alignment) and feature fusion of multi-channel
information [19]. For example, Bivariate Empirical Mode
Decomposition (Bivariate EMD) [20], Multivariate Empirical
Mode Decomposition (Multivariate EMD) [21], Complex Local
Mean Decomposition (Complex LMD), etc. However, they all
inherit the limitations of EMD and LMD, especially the problems
of pattern aliasing and pattern splitting. MVMD is a generalization
of VMD on multivariate or multi-channel datasets. MVMD [22] is
used to extract the set of bandwidth modes of inherent multivariate
modulated oscillations contained in the multivariate input signal,
and the sum of the bandwidths of the signal modes is minimal. This
approach addresses the pattern alignment problem [23] whereas
there is still litter research on parameter setting and component
optimization of MVMD. Gao J et al. [24] applied the MVMD
method to DC circuit breaker fault detection. Under weak fault
conditions affected by noise, faults of equipment under different
working conditions can be detected correctly. But MVMD also
inherits the shortcomings of VMD. Song Q et al. [25] utilized
MVMD to adaptively decompose multivariate raw signals.
However, its evaluation process is simple, which is not conducive
to the accurate extraction of the optimal component.

Entropy [26] theory is a feature extraction method that
quantifies the degree of irregularity and complexity of time series,
such as Sample Entropy (SE), Fuzzy Entropy (FE), Dispersion
Entropy (DE), and their Fractional [27], etc. In addition,
Rostaghi M et al. [28] proposed fuzzy dispersion entropy (FDE)
for signal nonlinear analysis. Common multiscale entropy methods
include MSE [29], MFE [30], MDE [31], etc. By utilizing adaptive
VMD and multiscale entropy, feature extraction of vibration signals
can be achieved. Li Y et al. [32] proved that MDE has the
characteristics of fast calculation speed and strong noise
resistance through comparative analysis with methods such as
MSE and MFE. In addition, Zhou X et al. [33] utilized adaptive
VMD and Multipoint Optimal Minimum Entropy Deconvolution
Algorithm (MOMEDA) to achieve feature extraction under weak
fault impact components and environmental noise interference.
Envelope demodulation is also widely used for fault feature
extraction. By comparing the fault frequency obtained through
envelope demodulation with the theoretical value, fault
identification is achieved. Zhang B et al. [34] proposed a fault
characteristic frequency -oriented criterion to determine all the
informative frequency bands. In this way, all frequency
components with fault information are enhanced. In the field of
unary signal processing, these methods have been widely applied.
But they can only analyze single-channel time series. In addition, the
vibration signal collected by a single channel is often not enough to
provide sufficient rolling bearing fault information to accurately
identify the fault type. For multi-channel time series, the multi-scale
entropy method can only be applied when the signals are
independent and uncorrelated. Inspired by the theory of
multidimensional embedding reconstruction, Kafantaris E et al.
[35] proposed MMDE, which extended single-channel time series
evaluation to multi-channel. Compared with single-channel time
series evaluation, multi-channel time series evaluation can evaluate
the dynamic interrelationship of multi-channel time series from the
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perspectives of complexity, mutual predictability, and long-term
correlation [36]. Ma Y et al. [37] utilized multivariate multiscale
fuzzy distribution entropy to extract fault features. However,
compared to distribution entropy, the performance of feature
extraction using distribution entropy is not stable enough.
Therefore, using the multi-channel nonlinear coupling
characteristic of MMDE, the obtained entropy value can be used
as a rolling bearing fault characteristic. It has recently been applied
to fault feature extraction of multi-channel signals. Zhou J et al. [38]
proposedmultivariate local characteristic-scale decomposition and a
1.5-dimensional empirical envelope spectrum, which can effectively
suppress the noise of the envelope signal and highlight the fault
features of the signal. However, compared with entropy, the
extraction of fault frequency is highly susceptible to interference
from complex background noise.

On the premise of maintaining or improving the classification
accuracy, the feature selection method is used to select some of the
most effective features from the fault feature set to reduce the
dimension of the feature space and improve the generalization
ability. According to whether it is independent of the subsequent
learning algorithm, it can be mainly divided into three types: filter,
embedded and wrapper. Compared with other methods, the
wrapped methods have higher overall accuracy [39]. Many
scholars use the search method of swarm intelligence
optimization algorithm as the search mechanism of wrapped
feature selection to screen features. Thus, the problem of difficult
implementation of exhaustive search can be solved. These include
Particle Swarm Optimization (PSO) [40], Grey Wolf Optimization
(GWO) [41], Whale Optimization Algorithm (WOA) [42] and
other classic swarm intelligence optimization algorithms. The
wrapping methods use the performance of the learner as the
evaluation criteria of the feature subset. Therefore, this approach
is also most conducive to selecting the optimal subset of features for
the learner. Through feature dimensionality reduction, on the one
hand, noise interference can be eliminated and the burden on the
classifier can be reduced. On the other hand, the feature set can also
be compressed to reduce storage requirements, etc. [43]. At the same
time, some new algorithms with excellent performance have
emerged, such as Atom Search Optimization (ASO) [44], Manta
Ray Foraging Optimization (MRFO) [45], Slime Mold Algorithm
(SMA) [46]. Zhang et al. proposed a Generalized Normal
Distribution Optimization algorithm (GNDO) and applied it to
the key parameters’ extraction of photovoltaic models [39]. The
parameter extraction results of this method are verified in terms of
quality and stability, and outperform methods such as PSO and
GWO. However, there are few studies on the feature selection of
rolling bearing faults using GNDO.

After feature selection is performed on the high-dimensional
feature set, fault classification and recognition of rolling bearing are
required. Currently, machine learning methods are still highly used
in fault diagnosis, especially SVM. Compared with methods such as
matrix classification networks (including the multi-class fuzzy
support matrix machine, the non-parallel bounded support
matrix machine, the deep stacked support matrix machine, etc.
[47]), deep learning (recently proposed graph attention network
[48], convolutional-vector fusion network [49], deep convolutional
generative adversarial network [50], etc. But the above deep learning
methods all require sufficient sample data.), deep transfer learning

(for example, reinforcement ensemble deep transfer learning
network [51], etc. The SVM is widely used because it does not
require a large amount of sample data. Meanwhile, Classification
and regression problems are simplified by not involving laws of large
numbers and probability measures, etc. SVM models are generally
robust and have good generalization capabilities. However, the
performance of SVM mainly depends on the selection of key
parameters (i.e., penalty factor C and kernel function σ), as well
as the quality of training samples. If the selection is inappropriate,
there will be over-learning and under-learning phenomena, which
will directly affect the robustness of the classification and regression
models [52]. Among them, the kernel function will affect the
complexity of the model in high-dimensional space. Moreover, if
it is not selected properly, it will lead to a complex spatial
distribution of training samples. In recent years, research on
parameter optimization of SVM classifiers based on meta-
heuristic optimization algorithms has become common. Many
scholars have been exploring the use of some new algorithms to
optimize the parameters of SVM, such as the Salp Swarm Algorithm
(SSA) [53], Butterfly Optimization Algorithm (BOA) [54], Harris-
Hawkes Optimization algorithm (HHO) [55], etc. However, the
above swarm intelligence optimization algorithms are prone to
falling into local optima. The two selected SVM key parameters
are not optimal. Recently, Wang Z et al. [56] proposed a method
based on Beetle Antennae Search-based Support Vector Machined
for the operation status monitoring and fault classification of wind
turbines, which can reliably identify multiple types of faults. In 2020,
Faramarzi A′ et al. [57] proposed a Marine Predators Algorithm
(MPA), inspired by the predator’s predation strategy in nature. The
algorithm considers top predators to have the greatest hunting
prowess. Chen X et al. [58] used MPA-SVM to discriminate
different types of faults in rolling bearings. The reliability of the
method is proved through large number of experiments. Compared
with other algorithms, MPA enhances the optimization effect [59]. It
can obtain equivalent or better solutions than other methods at a
lower computational cost [60]. To this end, this paper will use MPA
to optimize SVM and achieve its parameter adaptation.

Although the various feature extraction and recognition
methods mentioned above have been widely used in intelligent
fault diagnosis of rolling bearings, there are still the following
problems: 1. The influencing parameters in the decomposition
process of MVMD are the same as those of VMD. On the one
hand, the two key parameters must be preset, which is not suitable
for direct application as an adaptive model in practical engineering
applications. On the other hand, the selection of the evaluation
function for the signal component is not appropriate or too simple.
There is still noise in themodal components, making it impossible to
analyse the signal effectively. 2. There are inevitably redundant (or
interference) items in the high-dimensional features of MMDE, and
the problem of low classification accuracy will follow. In addition,
the fitness function selected by the current swarm intelligence
optimization algorithm is too single. It is not conducive to
selecting as few features as possible to obtain the highest possible
fault diagnosis accuracy. At the same time, there are few attempts to
use the GNDOmethod for feature selection of rolling bearing faults.
3. The classification accuracy of traditional SVM varies with changes
in key parameters and does not have self-adaptability. The
generalization ability of the SVM classifier needs to be further
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improved. Meanwhile, most adaptive methods are not robust to
changes in operating conditions or unseen conditions during
model training.

Aiming at the above problems, a fault diagnosis method based
onMVMD signal reconstruction, feature selection, and self-adaptive
SVM is proposed. The main research work and innovative points of
this paper are briefly summarized as follows: 1) A noise reduction
and reconstruction method for MVMD signals is proposed. This
method not only decomposes multi-channel vibration signals, but
also introduces a joint evaluation function (energy*|correlation
coefficient|) to analyse each modal component. Signal noise
reduction is achieved by selecting effective IMF components, and
reconstruction is completed. 2) Propose MMDE-GNDO feature
extraction and selection method. On the one hand, MMDE is
used to realize multi-channel signal feature extraction; on the
other hand, GNDO is used to select sensitive and easy-to-classify
low-dimensional feature subsets from the high-dimensional feature
set of rolling bearing faults. This can not only avoid the curse of
dimensionality, but also improve the efficiency of fault classification
and recognition. 3) Construct the MPA-SVM fault classifier. By
combining with the optimal feature subset, it has strong adaptability,
high optimization precision and fast convergence speed. Moreover,
this method can obtain the optimal parameters of SVM in the
shortest time. The implementation process is as follows: First,
MVMD decomposition, noise reduction, and reconstruction are
performed on the multi-channel vibration signals (including
different operating conditions of rolling bearings). Second,
MMDE-GNDO is used to realize feature extraction and selection
as the optimal feature subset. Then, the MPA-SVM is trained with
the optimal feature subset to construct the optimal adaptive
classifier. Its unique feature lies in directly utilizing the fault
classification accuracy of SVM as the fitness function of MPA,
fully improving optimization efficiency. Finally, it is verified
through continuous testing and applied to the fault diagnosis of
rolling bearings. Through comparative analysis with other methods,
its characteristics of accuracy, efficiency, and stability are validated.

The overall structure of this paper: Section 2 briefly introduces
the MVMD theory and the multi-channel signal reconstruction
process based on the joint evaluation function. Section 3 briefly
introduces MMDE, GNDO theory, and the feature selection process
of multi-channel signals based on MMDE-GNDO. Section 4
presents the process of optimizing SVM parameters using MPA.
Section 5 gives a brief overview of the proposed fault diagnosis
method. In Section 6, the superiority of this method is confirmed by
the CWRU and PU-bearing data sets, and the experimental process,
comparative analysis of each method, and preliminary conclusions
are discussed in detail. Section 7 is the experimental conclusion of
this paper.

2 Signal reconstruction method based
on MVMD

2.1 Signal noise reduction and
reconstruction

TheMVMDmethod extends the traditional VMD algorithm from
one-dimensional to multi-dimensional, which provides great

convenience for dealing with multi-variable or multi-channel data.
The main goal of MVMD is to extract predefined K multivariate
modulation oscillations uk(t) from the input signal (as shown in Eq.
1) containingC data channels, namely, x(t) � [x1(t), x2(t), ...xC(t)].

x t( ) � ∑K
k�1

uk t( ) (1)

Where: uk(t) � [u1(t), u2(t), ...uC(t)].
The constrained relative optimization problem becomes Eq. 2:

min uk,c{ }, ωk{ } ∑
k

∑
c

∂t u+k,c t( )e−jωkt[ ]���� ����22⎧⎨⎩ ⎫⎬⎭
s.t.∑K

k�1
uk,c t( ) � xc t( ), c � 1, 2, ..., C

(2)

Where: c and k are the number of channels and the number of
modes of signal decomposition, respectively; uk,c is the k − th mode
of the c − th channel; ωk is the central frequency of the k mode;
u+k,c(t) is the analytical representation of each element in the
corresponding channel c and vector uk(t); ∂t is the time-
dependent partial derivatives.

To solve the variational problem described above, the Lagrange
representation of the augmented structure as Eq. 3, as follows:

L uk{ }, ωk{ }, λc( ) � α∑
k

∑
c

∂t u+k,c t( )e−jωkt[ ]���� ����22
+∑

c
xc t( ) −∑

k
uk,c t( )

�������� ��������22 +∑
c

〈λc t( ), xc t( ) −∑
k

uk,c t( )〉
(3)

Where: α is the penalty factor; λc(t) is the Lagrange multiplier; 〈., .〉
is the inner product.

To solve the unconstrained variational problem after this
transformation, the Alternate Direction Method of Multipliers
(ADMM) method is used to implement alternate updates [61].
For the algorithm process, please refer to [62]. Then, calculate
and the centre frequency to get the decomposed signal
components.

Like the mode update method of the VMD, the mode updates
can be obtained to Eq. 4, as follows:

u
∧n+1
k,c ω( ) � xc

∧
ω( ) −∑i≠ku

∧
i,c ω( ) + λ

∧
c ω( )
2

1 + 2α ω − ωk( )2 (4)

Get the centre frequency update to Eq. 5 as:

ωn+1
k �

∑
c
∫∞
0
ω u

∧
k,c ω( )

∣∣∣∣∣∣ ∣∣∣∣∣∣2dω∑
c
∫∞
0
u
∧
k,c ω( )

∣∣∣∣∣∣ ∣∣∣∣∣∣2dω (5)

The frequency bands of the signal are adaptively decomposed by
updating the relation to obtain K narrowband IMF components. In
addition, because the MVMD method can calculate data from
multiple channels at the same time, the frequency consistency
between channels is guaranteed, and the signal analysis tends to be
more stable.

However, the effect of MVMD signal processing is also closely
related to the two parameters of the penalty factor α and the number
of decompositions K. In order to solve the influence of artificial
empirical parameter setting on the multivariate signal
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decomposition results, this paper uses the peak method to determine
K. Meanwhile, MVMD introduces a secondary penalty factor to
ensure the reconstruction accuracy of the signal. The penalty factor
α not only has an effect impact on the convergence speed, but also
has an impact on the decomposition results. In this paper, the search
method is used to determine α and analyze each IMF component. It
is necessary to accurately reflect that each decomposed signal
component only contains a single vibration mode, and there are
no false components or redundant modes. Then, effective IMF
components are screened out based on the evaluation function.
Finally, the vibration signal of the rolling bearing is reconstructed to
eliminate noise interference.

2.2 Multivariate variational mode
decomposition

For signal noise reduction and reconstruction, the existing
single index evaluation function can characterize the sparsity of
the signal. However, it is very easy to decompose to obtain a set of
simple harmonic signal components in the actual application
process. This type of harmonic signal belongs to false
components. Their energy only accounts for a small portion of
the original signal. Therefore, under the premise of avoiding false
components (or redundant modes), it is necessary to ensure that
the IMF components have a high energy proportion while
maintaining a strong correlation with the original signal [63].
Then, to determine the appropriate decomposition number K
and penalty factor α, this paper applies the joint evaluation
function to the optimization process of MVMD components.
Finally, screen the IMF components that can accurately reflect
the fault to reconstruct a new vibration signal.

To this end, the energy evaluation index Energy (as shown in Eq. 6)
is introduced first:

Energy � ∑K
k�1

uk t( )2
f t( )2 (6)

where: uk(t) is the signal component; f(t) is the original signal;K is
the number of IMF components; Energy represents the sum of the
energy proportions of each signal component, and its value range is
Energy≤ 1.

At the same time, to avoid the occurrence of the above-
mentioned negative optimization situation mentioned above, the
selected signal components should retain most of their energy.
Because of the possible false components or redundant modes,
this article introduces the correlation evaluation index
Correlation (as shown in Eq. 7):

Correlation �
∑N
n�1

x n( ) − �x( ) y n( ) − �y( )������������������������∑N
n�1

x n( ) − �x( )2∑N
n�1

y n( ) − �y( )2√ (7)

Where: x(n) and y(n) are the signal sequence respectively; �x and �y
are the mean value of the signal respectively;N is the signal length; is
the correlation coefficient between x(n) and y(n), representing the
correlation coefficient between each IMF and the original signal, and
its value range is |Correlation|≤ 1.

The above two evaluation indicators have the same order of
magnitude, so this paper uses the product operation to construct a
joint evaluation function (as shown in Eq. 8):

Comprehensive � Energy* Correlation| | (8)
In the equation: Comprehensive represents both the energy of

the signal component and the correlation with the original signal; | · |
is the absolute value

The detailed process is shown in Figure 1, and the algorithm
steps are as follows:

(1) First, the multi-channel, original rolling bearing vibration
signals are input into the MVMD.

(2) Use the peak method to determine the main mode numberM of
the signal and its corresponding center frequency of the signal.

(3) Initialize the MVMD parameters, the decomposition parameter
K is assigned as M, and the center frequency is initialized as
ωk{ } � fi{ }. At the same time, use the search method to
determine the penalty factor α. Among them, the search range
α ∈ [100, 5000], and the step size is 100. If there is noise in the
signal, it needs to be set τ to reduce the influence of noise.

(4) Using the MVMD algorithm to decompose the multi-channel
original vibration signal.

(5) After the IMF components are sorted by the joint evaluation
function Comprehensive (i.e., Energy*|Correlation|{ }), the
topN effective components are screened out according to the
signal proportion. The above effective components are used to
reconstruct a new vibration signal after noise reduction.

(6) Finally, the noise-reduced signal is reconstructed, and new
multi-channel vibration signals are respectively output.

In summary, this paper first utilizes MVMD to decompose multi-
channel vibration signals and obtain M IMF components. Then, the
joint evaluation function is used to select the first N components, and
the above components are used to achieve signal denoising and
reconstruction. By utilizing the reconstructed signal, subsequent
feature extraction can be performed.

FIGURE 1
Flow chart of MVMD signal denoising and reconstruction.

Frontiers in Physics frontiersin.org05

Mao et al. 10.3389/fphy.2024.1301035

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1301035


3 Multi fault signal feature extraction

3.1 Multivariate multiscale
dispersion entropy

MMDE is obtained by multi-scale expansion based on
Multivariate Dispersion Entropy (MDE), which can obtain
coarse-grained time series information of multi-channel time
series at multiple scales. Therefore, under the premise of noise
reduction and reconstruction of multi-channel rolling bearing
vibration signals, this paper uses MMDE to extract fault
features. MMDE allows multivariate quantification of
Dispersion Entropy (DE) from multi-channel time series.
Meanwhile, temporal, and spatial dynamics across multiple
time scales will be considered. For a set of P-channel time
series X � xk,i{ }i�1,2,...,Nk�1,2,...,p with length N, the calculation steps of
MMDE can be found as follows [64]:

1. Production of univariate quantized time-series: U �
uk,i{ }i�1,2,...,Nk�1,2,...,p .

2. Formulation of multivariate embedded vectors.
3. Mapping to multiple dispersion patterns.
4. Calculation of Dispersion Pattern Relative Frequency.
5. Calculation of Multivariate Dispersion Entropy:

MMDE(X,m, c, stau, Scale), where X are multivariate
signals, m is scalar embedding value, c is number of classes
(it usually set c = 5, 6, or 7), stau is scalar time lag value (it is
usually equal to 1), Scale is maximum number of scale factors.
All parameters of MMDE are set as follows:m is 2, c is 5, stau is
1, Scale is 20, referring to the setting method in Ref. [36].

Finally, the multi-channel vibration signals are processed by
using the MVMD signal reconstruction method in the previous
section, and then the fault MMDE of different working conditions is
calculated. Thus, the fault feature set (as shown in Eq. 9) is
constructed, characterized by high dimensionality:

FeaSetmvMDE � F1, F2, ...FScale[ ] (9)
In the equation: F is the fault feature obtained by using MMDE,

Scale is the dimension.
However, since the rolling bearing fault feature set obtained

by using MMDE usually has problems such as high
dimensionality, nonlinearity, and redundancy, it will bring
certain difficulties to the subsequent data processing and fault
diagnosis. For this reason, it is particularly important to
introduce feature selection methods.

3.2 Fault signal feature selection

This paper introduces GNDO into the dimensionality
reduction process of fault feature set to extract sensitive and
low-dimensional fault features. The normal distribution theory is
the inspiration of GNDO. For the design inspiration,
implementation framework, and pseudocode of GNDO, please
refer to [65]. The information-sharing strategies designed in
GNDO include local search and global search.

(1) Local search. The optimized generalized normal distribution
model can be established using Eq. 10, as follows:

vti � μi + δi × η, i � 1, 2, 3, ..., N (10)
where: vti is the trajectory vector of the i − th individual at time t, μi is
the generalized mean position of the i − th individual, δi is the
generalized standard deviation, and η is the penalty factor.
Additionally, μi, δi, η can be defined respectively as Eqs 11–13:

μi �
1
3

xt
i + xt

Best +M( ) (11)

δi �
�������������������������������
1
3

xt
i − μ( )2 + xt

Best − μ( )2 + M − μ( )2[ ]√
(12)

η �
��������− log λ1( )√

× cos 2πλ2( ), if a≤ b��������− log λ1( )√
× cos 2πλ2 + π( ), otherwise{ (13)

In the equation: a, b, λ1 and λ2 are random numbers from 0 to 1,
Xt

Best is the current best position and M is the average position of the
current whole. In addition, Eq. 14 can be used to calculateM, as follows:

M � ∑N
i�1x

t
i

N
(14)

(2) Global search. The global search for GNDO is based on three
randomly selected individuals and can be expressed as:

vti � xt
i + β × λ3| | × v1( )︸������︷︷������︸

localinformationsharing

+ 1 − β( ) × λ4| | × v2( )︸��������︷︷��������︸
Globalinformationsharing

(15)

where: λ3 and λ4 are random numbers. These two numbers obey the
standard normal distribution. β is called the tuning parameter. It is a
random number with a value between 0 and 1. v1 and v2 are two
trajectory vectors. In addition, v1 and v2 can be calculated by the
following equation:

v1 � xt
i − xt

p1, if f xt
i( )<f xt

p1( )
xt
p1 − xt

i , otherwise
{ (16)

v2 � xt
p2 − xt

p1, if f xt
p2( )<f xt

p3( )
xt
p3 − xt

p2, otherwise
{ (17)

In the equation: P1, P2 and P3 are three random numbers selected
from 1 toN, satisfying P1 ≠ P2 ≠ P3 ≠ i. Given Eqs 16, 17, the second
termon the right side of Eq. 15 can be called a local learning term,which
means that the solution P1 shares information with the solution i. The
third item on the right side of Eq. 15 can be called global shared
information, which means that individuals P2 and P3 provide
information to individual i. Tuning parameter β is used to balance
the two information sharing strategies. In addition, λ3 and λ4 are
random numbers with standard normal distribution, which can make
GNDO have a larger search space in the process of performing global
search. The absolute sign in Eq. 15 is consistent with the screening
mechanism in Eqs 16, 17.

Through the iterative operation of local search and global search,
the population and individual positions are updated. Finally, the
optimal position that gradually converges to the solution space is
obtained, that is, the optimal combination of fault features. Using
GNDO to realize rolling bearing fault feature selection is designed based
on local and global search strategies. These two strategies are equally
important to GNDO and have the same probability of being selected.
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Furthermore, like other swarm intelligence optimization algorithms, the
population in GNDO (as shown in Eq. 18) is initialized as:

xt
i,j � lj + uj − lj( ) × λ5, i � 1, 2, 3, ...N, j � 1, 2, 3, ..., D (18)

where: D is the number of design variables, lj is the lower boundary
of the j − th design variable, uj is the upper boundary of the j − th
design variable, and λ5 is a random number between 0 and 1. Note
that the i − th individual may not find a better solution by location
exploitation strategy or global exploration strategy.

To better introduce solutions to the next-generation population,
GNDO designs a screening mechanism, which can be specifically
expressed as Eq. 19:

xt+1
i � vti , if f vti( )<f xt

i( )
xt
i , otherwise

{ (19)

3.3 Construction of optimal feature subset
based on MMDE-GNDO

In this paper, GNDO is exploited to solve multi-objective
optimization (i.e., feature selection) problems. In the GNDO
population, each individual represents a set of feature
combinations in the rolling bearing fault dataset, the so-called
feature subset. The number of raw features in the dataset
determines the individual dimension. This paper aims to select as
few features as possible to achieve the highest accuracy in fault
classification [66]. The fitness function for evaluating the quality of
an individual needs to consider two factors at the same time. For this
reason, this paper adopts the superposition operation to construct
the joint fitness function, and the two assign corresponding index
coefficients. As defined in Eq. 20:

fMMDE−GNDO � α ×
100 − Accuary tMMDE−GNDO( )( )

100
+ β ×

R| |
N| |
(20)

In the equation: tmvMDE−GNDO is the number of iterations,
Accuary(tmvMDE−GNDO) is the classification recognition rate of
the classifier after tmvMDE−GNDO iterations (this paper uses the
MPA-SVM classification algorithm to evaluate the advantages
and disadvantages of feature subsets), |R| is the number of
features contained in the current individual, |N| is the number of
original features in the data set, α and β are coordination parameters
to balance classification accuracy and feature subset length, and
β � 1 − α, α ∈ [0, 1]. After 20 times of experimental analysis, it is
concluded that a value of 0.99 for α is better.

GNDO is used to optimize the fault feature set to obtain its
sensitive and low-dimensional features. Finally, construct an
optimal, subset of fault features (as shown in Eq. 21):

FeaSubMMDE−GNDO � F1, F2, ..., FTopR[ ], TopR ∈ 1, Scale[ ] (21)

where: F is the fault feature selected by MMDE-GNDO, and
1, 2, ...TopR is the first TopR items selected.

The specific algorithm flow of MMDE-GNDO is shown in
Figure 2, and the detailed steps are as follows.

First, input the reconstructed multi-channel bearing vibration
signal. By calculating the MMDE, construct the X*Y-dimensional
bearing fault feature vector FeaSetMMDE.

(2) GNDO initialization. Initialize the population by constructing
anX*Y-order matrix, whereX is the number of individuals in
the population, and Y is the number of bearing samples.

(3) Through the iterative operation of local search and global search
in GNDO, the population and individual positions are updated.
On the one hand, local search assigns the fitness value of each
individual with a rank-basedmethod (Rank basedMethod), and
obtains the current optimal solution (that is, the current best
bearing fault feature combination) and the best position vector
(that is, the multidimensional vector space s position). On the
other hand, the global search updates the position of the target
individual based on the position of the random individual
(Random individual), expanding the search space.

FIGURE 2
Dimension reduction flow chart of MMDE-GNDO bearing fault features.
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(4) Determine the ending conditions for the iterative process
(that is, the maximum number of iterations tMMDE−GNDO is
reached, and the value is 20). If not, repeat step (3) to update
the bearing feature subset until the end condition of the
iteration process is met (obtain the best position that
gradually converges in the solution space, that is, the best
bearing fault feature combination).

(5) Finally, output the globally optimal, low-dimensional bearing
fault feature vector FeaSubMMDE−GNDO.

4 Adaptive fault diagnosis model
construction (MPA-SVM)

SVM is a machine learning method highly used in the field of
rolling bearing fault diagnosis, which is a typical small sample problem.
To solve the problem of optimal parameter selection, MPA is
introduced to optimize it and obtain the optimal self-adaptive model.

First, its inspiration comes from the natural advantage rules in
the best foraging strategy. The algorithm principle is as follows:

1) Similar to most meta-heuristic algorithms, MPA is a method
based on population. Among them, in the first experiment, the
initial solution (as shown in Eq. 22) is uniformly distributed in
the search space:

X0 � Xmin + rand Xmax −Xmin( ) (22)

2) The MPA optimization process is divided into three main
optimization stages. Consider different speed ratios while
simulating the entire activity of predators and prey: The
first stage: the speed is relatively large. Second stage: same
speed ratio. Third stage: In the case of low speed, the predator
moves faster than the prey. Each stage accounts for 1/3 of the
entire iterative process.

3) Eddy formation and FADs′ effect. Another factor that changes
the behaviors of marine predators is environmental factors,
such as eddy current formation or Fish Aggregation Devices
(FADs). To avoid falling into local optimum, 20% of the time
will take longer jumps in different dimensions. The FADs
effect is mathematically expressed by Eq. 23:

Preyi
!!!!!→ � Preyi

!!!!!→ + CF �Xmin + �R �Xmax − �Xmin( )[ ] ⊗ �U if r≤FADs

Preyi
!!!!!→ + FADs 1 − r( ) + r[ ] Preyr1

!!!!!!→− Preyr2
!!!!!!→( ) if r>FADs

⎧⎪⎨⎪⎩
(23)

In the equation, FADs is the probability that affects the
optimization process, with a value of 0.2; U is a binary vector
containing 0 and 1; r is a uniform random number in the range [0,1];
Xmax
!!!!→

andXmin
!!!!→

are vectors of the maximum and minimum values of
the dimension, respectively; and the subscripts r1 and r2 are the
random exponents of the prey matrix.

4) The best-adapted position is selected as the top predator
position. The process is to calculate the corresponding
fitness by updating the position of the predator. Then,
compare it with the previous fitness value.

5) Repeat steps 2-4 until the termination condition is met. Then,
the top predator coordinate position is output.

This paper utilizes MPA to effectively optimize the two key
parameters of SVM. That is, after each iteration, the SVM classifier
model is evaluated through the fitness function.

In summary, by using MPA to construct an adaptive SVM
classifier to accurately identify rolling bearing faults. The detailed
steps of this method are as follows:

(1) The normalized data set is input. Then, it is randomly
divided into training samples and test samples in a certain
proportion.

(2) Initialize parameters for MPA and SVM. The algorithm
population and the number of iterations set to 20 and 20,
respectively. The dimension of parameter optimization is set
to 2, and its value range of ( C, σ) is set. The maximum and
minimum values of C and σ are set to 100 and 0.01,
respectively, according to the parameter setting method
in Ref. [67].

(3) Obtain the initial position. The fitness function in this
optimization process is Eq. 24, and the initial value is set
to infinity.

fitnessSVM � 100 − Accuary tSVM( )( )
100

(24)

In the equation, tSVM is the number of iterations, and
Accurcy(tSVM) is the classification accuracy after tSVM iterations.
The smaller the fitness function value, the more accurate it is.

(4) Perform iterative optimization to update the prey location.
(5) Determine the iteration end condition (i.e., Iter reaches Iter ); if

not, repeat steps (3)–(4) until the iteration end condition is
satisfied. Then, the global optimal parameter combination
is output.

(6) Use the combination (Cbest, σbest) to build the optimal
SVM classifier.

(7) The test samples are input into the self-adaptive SVM
classifier for rolling bearing fault pattern recognition and
output the results.

The MPA-SVM execution process is shown in Figure 3, which
includes the adaptive SVM (MPA-SVM classifier) part.

5 Rolling bearing fault diagnosis
method

To diagnose rolling bearing faults more comprehensively and
accurately, an intelligent fault diagnosis method based on MVMD
signal reconstruction and MMDE-GNDO and MPA-SVM is
proposed. The specific implementation process can be described
as follows:

(1) Using the industrial Internet platform [68], a rolling bearing
condition monitoring system is built. Through the cloud/edge
collaboration technology, the vibration signal is uploaded
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from the edge to the cloud, and the rolling bearing fault
database is continuously expanded.

(2) To successfully achieve multi-channel fault data fusion of rolling
bearings, the model and parameter settings of each acceleration
sensor need to be consistent, and vibration acceleration signals in
the X-Y-Z coordinate directions should be collected. Under the
sampling frequency fs, the vibration signals collected by sensors
at differentmonitoring points and different operating conditions
are analyzed. Multi-channel signals of rolling bearings are
decomposed by MVMD to obtain K signal components.

At the same time, to accurately extract different types of fault
features of rolling bearings, the joint evaluation function is used to
denoise the vibration signal and reconstruct it.

(3) To characterize different types of faults of rolling bearings,
MMDE is used to calculate the entropy of each vibration
signal in different channels and scales. Then, all the entropy is
combined to construct the most original fault feature set
(i.e., high-dimensional).

(4) To further remove the redundancy or noise in the original
feature set, GNDO is used for feature selection. Thus, the
feature dimension is reduced to obtain a low-dimensional,
sensitive, and independent optimal fault feature subset.

(5) The cloud uses steps (2)–(4) to obtain the optimal and low-
dimensional fault feature subset, and inputs it into the MPA-
SVM classifier for training to obtain the optimal fault diagnosis
model. Finally, the model is used for rolling bearing fault

classification testing to achieve accurate identification of
different operating conditions and different types of faults.

(6) The penalty factorCbest and kernel function σbest aremigrated to
the edge in time to construct the latest MPA-SVM classifier. The
edge end analyses the multi-channel rolling bearing vibration
signal through steps (2)–(4) to realize online fault diagnosis.

In summary, the method proposed in this paper is shown in
Figure 3, which is applied to intelligent fault diagnosis of rolling
bearings based on cloud/edge collaboration technology.

6 Experiment validations

Two sets of rolling bearing data sets from CWRU [69] and PU
[70] are used for experimental analysis to confirm and demonstrate
the viability of the suggested method in diagnosing rolling bearing
faults. At the same time, as compared to other ways. All experiments
were conducted by using the tool software MATLAB R2018b
(64bit). The hardware configuration of the device is: Intel (R)
Core (TM) i9-10900K CPU @ 3.70 GHz, 3.70 GHz 32 GB RAM.

6.1 Experiment validations for CWRU
bearing datasets

The CWRU Experimental Platform is shown in Figure 4. The
Rolling Bearing Fault Diagnosis device is mainly composed of a

FIGURE 3
Flow chart of the MPA-SVM classifier and rolling bearing fault diagnosis method.
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FIGURE 4
Diagram of CWRU rolling bearing fault simulation experimental device.

TABLE 1 Description of 36 working states of rolling bearing.

Fault
status

Fault type
(mils)

Approximate speed of
motor (r/min)

Label Channel Number of training
samples

Number of testing
samples

Boll 007, 014, 021 1797, 1772, 1750, 1730 01–12 DE, FE, BA 40 20

Inner Race 007, 014, 021 1797, 1772, 1750, 1730 13–24 DE, FE, BA 40 20

OuterRace@6 007, 014, 021 1797, 1772, 1750, 1730 25–36 DE, FE, BA 40 20

FIGURE 5
Time-domain waveform of multi-channel rolling bearing vibration signals [(A) rolling body failure, (B) inner circle fault, (C) out ring fault].
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motor, torque sensor/encoder, power meter and electronic control
equipment. Rolling bearings operate under different fault
conditions, different operating speeds, and different degrees of
damage. The signals were mainly obtained from the motor shell
drive end, the fan end 12 o’ clock position accelerometer, and the
basic accelerometer on the motor support plate. All types of signals
were vibration signals.

The experimental data include three fault states, three damage
degrees, and four operating speeds, a total of 36 operating
conditions. Details are shown in Table 1. By collecting the
vibration signal of the drive end, the sampling frequency is
12 kHz and the number of sampling points is 4,096. The number
of samples of various types of signals is 60 (among them, 40 training
samples and 20 test samples are randomly selected 20 times), and a

FIGURE 6
The waveform and spectrum of DE, FE and BA end vibration signals before and after reconstruction.
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total of 2,160 sets of signals are collected. The waveforms of some
multi-channel signal samples are shown in Figure 5.

6.1.1 MVMD and signal reconstruction for
three channels

Firstly, this paper uses MVMD to decompose the multi-channel
rolling bearing vibration signal. Through experimental analysis, the
important parameter settings of MVMD are obtained, K is 7, α is
2000, τ is 0. To this end, the signals of the three channels of the DE
end, the FE end, and the BA end are subjected to multivariate
variational mode decomposition, and the results of signal
decomposition are shown in Figure 6. Among them, the original
waveforms (a1), (b1), (c1) of each channel and the Fourier transform
of the 7-order IMF component after decomposition are included.
MVMD can not only effectively extract the useful IMF components
of each channel, but also avoid modal aliasing. At the same time, the
error between the reconstructed signal and the original signal is
reduced. However, from Figures 6A2, B2, C2, the amplitude of some
IMF components is small, so not all components have a strong
correlation with bearing vibration signals. It is worth noting that
some components can not only improve the classification accuracy,
but also bring some interference. Therefore, how to effectively select
and process this component information is very important for
identifying bearing vibration signals.

Therefore, the joint evaluation function is introduced to
comprehensively evaluate each component of the signal. The
evaluation process not only considers the proportion of IMF
component energy in the original signal, but also fully retains the
IMF component with a strong correlation with the original signal.
The proportion of components is set to greater than 90%. The
specific evaluation indicators mainly include Comprehensive,
Correlation, Energy, Envelope Spectrum, Kurtosis, etc. By sorting,
the first 4 order components with a higher proportion are selected to
rebuild the signal, which can realize the noise reduction of the
original signal.

The time domain waveforms of the reconstructed signals of each
channel are shown in Figures 6A3, B3, C3. Finally, the first four-
order component Fourier transform after MVMD decomposition is
used, as shown in Figures 6A4, B4, C4. In the subsequent
comparative experiments, the noise reduction and reconstruction
methods of each signal are compared and analysed to verify the
advantages of the proposed method. It can also be seen from the
figure that the proposed method can effectively select effective signal
IMF components in each channel.

Through different MVMD signal denoising and reconstruction
methods, new multi-channel rolling bearing vibration signals are
obtained respectively. Using the reconstructed signal, the
corresponding MMDE is solved. It is necessary to use the
optimal feature selection method to select the most suitable
subset of features and reduce the fault feature dimension of the
rolling bearing. At the same time, it can also reduce the
computational pressure of the classifier.

6.1.2 Feature selection based onGNDO (for CWRU)
The MMDE-GNDO method is used to achieve feature

dimensionality reduction, where X is 20, Y is 2,160, and the
number of iterations Max Iter is 20. Through iterative update,
the optimal and low-dimensional feature subset X*Y is finally

obtained. To fully reflect the advantages of this method in feature
dimension reduction, other methods (including different signal
reconstruction methods and feature selection methods) are
introduced for comparison. Among them, the feature subset
constructed by using the joint evaluation function to reconstruct
the signal has a low dimension and is relatively stable. Several other
feature selection methods were used for comparative analysis based
on this strategy. Through thorough experimental analysis, the
following conclusions have been drawn. The features selected
using GNDO are as follows: E1, E2, E3, E7, E8, E10, E15. Just
scales 10 and 15 are chosen, and the first 8 critical features are
entirely kept. This allows the GNDO approach to choose the features
more effectively in MMDE scales 9 to 20, which significantly reduces
feature redundancy and interference between various types of
bearing failures. Yet, the issues exist with MRFO (E2, E3, E4, E5,
E7, E10, E15, E19, E20), HHO (E1, E2, E5, E6, E8, E9, E12, E14, E18),
MPA (E1, E2, E3, E4, E5, E6, E7, E15), and BOA (E2, E4, E5, E10,
E14, E15, E16, E19), namely, high dimensionality. There is a
difficulty in that important features are filtered out, even though
ASO (E2, E3, E4, E5, E10, E12), GWO (E2, E4, E6, E7, E10, E15), and
SMA (E2, E3, E4, E6, E8, E12) can use a lower dimensional feature
space. In addition, although EO (E2, E3, E5, E6, E10, E12, E14) and
PSO (E2, E3, E4, E5, E6, E7, E15) have the same dimensionality as
GNDO, the selected features are not crucial.

Under the fault of different working conditions, the entropy
mean distribution curves of MMDE at different scales are shown in
Figure 7. It can be seen from the figure that the fault feature subset
dimension constructed by MMDE-GNDO is 7, and its advantage is
that the feature aliasing between different types of bearing faults is
relatively small. Therefore, it is used as the optimal and low-
dimensional feature subset (7*2,160) and input into the fault
classifier of rolling bearing (i.e., MPA-SVM) to analyse and verify
different types of rolling bearing faults.

6.1.3 Analysis of intelligent fault diagnosis
By constructing the MPA-SVM classifier, the optimal and low-

dimensional rolling bearing fault feature sets are trained and tested,
and the final classification results are obtained. To fully validate the
practicality and universality of the method proposed in this paper,
different types of fault feature sets and different fault diagnosis
models are introduced for comparative analysis. The bearing fault
feature set is constructed by multi-channel and different single-
channel signals, different MVMD signal denoising and
reconstruction methods and different feature selection methods.
The fault diagnosis model is all kinds of self-adaptive SVM
classifiers, and each classifier runs 20 times to verify its reliability
and stability. The optimal parameters of SVM, average recognition
accuracy, average operation time, classification standard deviation,
and other information are recorded for subsequent
comprehensive analysis.

6.1.3.1 Comparison 1. Comparison of MVMD signal
reconstruction and feature selection methods

To verify that the multi-channel signal can more fully
characterize different types of bearing faults, the multi-channel
signal is processed by the MVMD signal denoising and
reconstruction method, and the respective MMDE is solved.
Finally, the MPA-SVM model is used for fault classification. By

Frontiers in Physics frontiersin.org12

Mao et al. 10.3389/fphy.2024.1301035

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1301035


FIGURE 7
The mean distribution of different scale entropy in various states [(A) Four types of faults in B007, (B) Four types of faults in B014, (C) Four types of
faults in B021, (D) Four types of faults in IR007, (E) Four types of faults in IR014, (F) Four types of faults in IR021, (G) Four types of faults in OR007, (H) Four
types of faults in OR014, (I) Four types of faults in OR021)].

TABLE 2 Comparison of average classification recognition rate and operation time based on different fault feature sets.

Adaptive model Different types of fault feature set Feature selection algorithm—GNDO

Mean accuracy (%) Standard deviation Mean time (s)

MPA-SVM A2: multi-channels Reconstruction (Multivariate) 99.72 2.916e-14 46.55

B2: multi-channels (Multivariate) 97.22 2.916e-14 59.15

C2: Single channel (DE End) Reconstruction 96.24 0.0621 48.99

D2: Single channel (FE End) Reconstruction 97.50 0 60.63

E2: Single channel (BA End) Reconstruction 96.94 4.374e-14 51.17

F2: Single channel (DE End) 97.74 0.0617 49.54

G2: Single channel (FE End) 98.19 4.374e-14 55.53

H2: Single channel (BA End) 97.64 1.458e-14 77.59

Frontiers in Physics frontiersin.org13

Mao et al. 10.3389/fphy.2024.1301035

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1301035


introducing a total of 8 feature sets (A1-H1 and A2-H2) of multi-
channel original signals and single-channel signals (including
3 VMD reconstructed signals and 3 original signals), a large and
sufficient comparative analysis was conducted, as shown in Table 2
and Figure 8. The recognition rate of rolling bearing fault feature set
A1 is 99.17%, the standard deviation is 2.916e-14, and the operation
time is 116.44 s. Compared with B1, C1, D1, E1, F1, G1, H1, the
average classification recognition rates were 2.27%, 4.12%, 2.24%,
2.59%, 1.81%, 1.39%, 1.68% higher. This fully proves that the multi-
channel reconstructed signal can characterize different types of
faults more comprehensively. However, in comparison, the
operation time of MPA-SVM is relatively prolonged by 31.44 s,
19.14 s, 16.68 s, 14.34 s, 33.24 s, 34.49 s and 28.98 s, respectively.
Therefore, it is necessary to consider the optimization of the rolling
bearing fault feature set to reduce the pressure of
classification operation.

To fully reduce the operating pressure of MPA-SVM, this paper
proposes to use GNDO to optimize high-dimensional features before
fault classification, as shown in Figure 10. Comparing Figure 8A
-A1 with Figure 8B -A2, the recognition rate is further increased by
0.55%–99.72%. This is sufficient to indicate the presence of
redundancy or interference in the fault feature set. At the same
time, the operation time is significantly reduced by 69.89 s, and
the efficiency is significantly improved. In addition, through the
comparison between B1 and B2, C1 and C2, D1 and D2, E1 and
E2, F1 and F2, G1 and G2, H1 and H2, on the one hand, the average
classification recognition rate is relatively higher than 0.32%, 1.19%,
0.57%, 0.36%, 0.38%, 0.41%, 0.15%. On the other hand, the operation
time of MPA-SVM is shortened by 25.85 s, 48.30 s, 36.30 s, 45.41 s,
33.66 s, 26.42 s, and 9.87 s respectively. This shows that multi-channel
signals not only need to be denoised and reconstructed before feature
extraction, but also should be optimized for high-dimensional feature
sets (dimensionality reduction).

To verify the comprehensive evaluation method for noise
reduction and reconstruction of rolling bearing vibration signals,
some traditional (or classical) methods such as Energy, Correlation,
Envelope Spectrum, and Kurtosis are compared. The multi-channel

signals are denoised and reconstructed by using the above methods,
and finally sent to the MPA-SVM classifier for analysis. The average
fault classification accuracy of the comprehensive method is 99.17%,
which is 1.39%, 2.41%, 4.96% and 7.85% higher than other methods.
However, the operation time is 116.44 s, which is significantly higher
than other methods. The details of each method are shown in
Table 3 (a) Original high-dimensional features. Therefore, this
paper uses GNDO to optimize high-dimensional features to
improve the efficiency of classification and recognition. After
feature optimization by this method, the average recognition
accuracy can reach 99.72%, which is 1.66%, 4.59%, 5.98%, and
9.72% higher than other methods, and the classification standard
deviation is only 2.916e-14 (i.e., the stability of the classifier is good).
At the same time, the operation time is only 46.55 s, which is 4.48 s,
4.57 s, 19.02 s and 15.93 s shorter than other methods, and the
recognition efficiency is significantly improved. The details of
various methods are shown in Table 3 (b) Feature Selection
Algorithm—GNDO. Therefore, the proposed method is superior
to the existing single vibration signal-denoising and reconstruction
methods. At the same time, feature selection is also needed.

Furthermore, by comparing with 9 methods such as EO, MRFO,
GWO, ASO, MPA, SMA, PSO, HHO, BOA, etc., the superiority of
using the GNDO method to achieve fault feature dimensionality
reduction in this paper is verified. The low-dimensional feature set
optimized by eachmethod is input into the fault classifier (i.e., MPA-
SVM) for fault classification. Firstly, the key parameter optimization
of SVM is achieved through MPA. Compared with the average
classification accuracy, it is 0.41%, 0.55%, 0.55%, 0.56%, 0.83%,
1.11%, 1.11%, 1.39%, and 1.48% higher respectively. Compared with
the operation time consumption, it is reduced by 9.51 s, 27.47 s,
6.21 s, 2.74 s, 11.88 s, 7.32 s, 7.31 s, 20.05 s, and 20.35 s respectively.
The experimental results show that the GNDO method can
improve the fault diagnosis accuracy of rolling bearings. Through
the detailed comparison of Table 4, the necessity of using this
method for secondary feature extraction is confirmed. Therefore,
this paper ultimately uses GNDO to achieve fault feature selection.
Meanwhile, the optimal parameter combination for SVM is

FIGURE 8
Comparison of fault classification results between different high-dimensional fault feature sets and different GNDO preferred feature sets [(A)
MMDE-MPA-SVM, (B) MMDE-GNDO-MPA-SVM].
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obtained by using MPA, namely, (Cbest is 91.24, σbest is 66.17). Then,
the MPA-SVM classifier is established, and the test samples are
input into the optimization model for testing, as shown in Figure 9
[Confusion matrix (%)]. According to the above two graphs, the
MPA-SVM classifier performs fault classification with an accuracy
of 99.72% (only 2 of 720 test samples are misclassified, that is, 30:
OuterRace@6-014-1772 is identified as 31: OuterRace@6-021-
1750,35: OuterRace@6-021-1750 is identified as 34: OuterRace@
6-021-1772). It has been demonstrated that the fault diagnosis
method outlined in this study may successfully and precisely
pinpoint rolling bearing defects in a variety of working
environments.

6.1.3.2 Comparison 2. Comparison of self-adaptive SVM
classifiers

The superiority of MPA-SVM classifiers is verified by comparing
them with five self-adaptive SVM classifiers, including HBA-SVM,
SMA-SVM, SSA-SVM, GWO-SVM, AND PSO-SVM. The detailed
comparison is shown in Figure 10. The most noteworthy thing is
that the average classification recognition accuracy of MPA-SVM,

HBA-SVM, and SMA-SVM is 99.72%, which is 0.14%, 0.20%, and
0.41% higher than SSA-SVM, GWO-SVM, and PSO-SVM, respectively.
The classification operation time of MPA-SVM is 46.55 s, which saves
29.20 s, 29.05 s, 45.58 s, 42.77 s, and 54.85 s compared with other
classifiers. Similarly, comparative analysis is conducted using multi-
channel raw signals and single-channel signals. Not only does it
demonstrate that the classification recognition efficiency of MPA-
SVM is significantly superior to other classifiers, but it further proves
that the use of multi-channel signals can obtain richer fault features.

At the same time, five multi-channel signal noise reduction and
reconstruction methods (sent to each classifier after GNDO feature
selection) are compared and analysed by each classifier, as shown
in Figure 11. It can be seen from the figure that the fault
classification based on Comprehensive, Energy, Correlation,
Envelope Spectrum, and Kurtosis methods is similar, and the
classification effect of Comprehensive is the best. At the same
time, the operation time of MPA-SVM is 46.55 s, 51.03 s, 51.12 s,
65.57 s, and 62.48 s, respectively, and the classification recognition
efficiency is superior to other classifiers. In addition, the
practicality and universality of Comprehensive MVMD signal

TABLE 3 Comparison of fault diagnosis indexes of different signal denoising and reconstruction methods (MPA-SVM).

Fault features Reconstruction
method

Best_c Best_σ Mean
accuracy (%)

Standard
deviation

Mean
time (s)

(a) Original high-dimensional
features

Kurtosis 100 0.65 91.32 0.0712 99.02

Envelope Spectrum 85.32 3.24 94.21 0.0653 96.44

Correlation 100 0.94 96.76 0.1296 85.83

Energy 72.49 18.17 97.78 2.916e-14 102.33

Comprehensive 99.71 30.80 99.17 2.916e-14 116.44

(b) Feature Selection
Algorithm—GNDO

Kurtosis 100 4.71 91.46 0.0843 62.48

Envelope Spectrum 65.53 20.53 95.28 2.916e-14 65.57

Correlation 100 1.60 97.22 0.0621 51.12

Energy 91.94 32.86 98.19 4.374e-14 51.03

Comprehensive 91.24 66.17 99.72 2.916e-14 46.55

TABLE 4 Fault diagnosis results of different feature selection methods (MPA-SVM).

Feature selection algorithm Best_c Best_σ Mean accuracy (%) Standard deviation Mean time (s)

BOA 7.04 40.15 98.24 0.0932 66.90

HHO 59.02 79.14 98.33 2.916e-14 66.60

PSO 92.51 98.97 98.61 1.458e-14 53.86

SMA 100 87.99 98.61 1.458e-14 53.87

MPA 79.09 99.55 98.89 1.458e-14 58.43

ASO 59.59 94.38 99.06 0.0570 49.29

GWO 21.70 100 99.17 2.916e-14 52.76

MRFO 23.73 85.73 99.17 2.916e-14 74.02

EO 52.12 86.97 99.31 4.374e-14 56.06

GNDO 91.24 66.17 99.72 2.916e-14 46.55
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noise reduction and reconstruction have been further
demonstrated.

Finally, the high-dimensional characteristics of the multi-channel
reconstruction signal are used for fault classification, as shown in
Table 5 (a) Original high-dimensional features. By comparing with

Table 5 (b) Feature Selection Algorithm - GNDO, the classification
recognition rates of MPA-SVM, HBA-SVM, SMA-SVM, SSA-SVM,
GWO-SVM and PSO-SVM decreased by 0.55%, 0.55%, 0.69%, 0.69%,
0.35% and 0.56%, respectively, but the operation time increased by
69.89 s, 84.89 s, 22.18 s, 83.20 s, 24.30 s, and 36.83 s, respectively. Once

FIGURE 9
Using the GNDO method, MPA-SVM detailed fault classification results are output.

FIGURE 10
Fault classification comparison of different self-adaptive SVMs for different channel signals.
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again, it indicates that the classification recognition efficiency of MPA-
SVM is significantly superior to other classifiers. At the same time, it
indirectly proves that the feature selectionmethod based onGNDOhas
a significant effect on improving the accuracy of fault classification.

6.2 Analysis of intelligent fault diagnosis for
PU bearing datasets

To further validate the superiority of the proposed method,
experiments are conducted on the PU datasets (as shown in
Figure 12 for the fault diagnosis experimental platform).

Experimental data is generated by installing rolling bearings of
different damage types in the bearing test module. Bearing failures
are divided into man-made damage and real damage. The real
damaged bearings obtained from the acceleration life test bench
were selected for the experiment. Bearing condition monitoring
signals include vibration and current signals, where the vibration
signal is sampled at a frequency of 64 KHz. In this analysis, the
vibration signals were used to analyse the experimental data under the
conditions of Rotational Speed of 1,500 rpm, Load Torque of 0.7 Nm,
and Radial force of 1000N (Name of Setting: N15_M07_F10).

The real damage faults of 14 types of bearings were included in
the experimental data, including 5 outer ring faults, 3 inner ring and

FIGURE 11
Noise reduction and reconstruction methods of different types of signals and fault classification comparison of different self-adaptive SVMs.

TABLE 5 Multi-channels reconstruction signal fault features and fault classification of different self-adaptive SVM classifiers.

Fault features Adaptive model Best_c Best_σ Mean accuracy (%) Mean time (s)

(a) Original high-dimensional features PSO-SVM 71.48 33.39 98.75 138.23

GWO-SVM 54.92 32.86 99.17 113.62

SSA-SVM 83.31 24.58 98.89 175.33

SMA-SVM 30.34 31.71 99.03 97.78

HBA-SVM 26.02 31.60 99.17 160.64

MPA-SVM 99.71 30.80 99.17 116.44

(b) Feature Selection Algorithm—GNDO PSO-SVM 89.55 58.86 99.31 101.40

GWO-SVM 92.27 64.46 99.52 89.32

SSA-SVM 99.06 72.54 99.58 92.13

SMA-SVM 59.22 61.26 99.72 75.60

HBA-SVM 57.25 69.22 99.72 75.75

MPA-SVM 91.24 66.17 99.72 46.55
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outer ring composite faults, and 6 inner ring faults. The number of
samples for various types of fault signals is 60 (including randomly
cross-selected training samples 40 and testing samples 20, which
were executed 20 times), a total of 840 sets of signals were collected,
and the number of sampling points was 4,096. The detailed
information is shown in Table 6.

6.2.1 Comparison 1. Comparison of MVMD signal
reconstruction and feature selection methods
(for PU)

Similarly, using the same parameter settings of the previous
section CWRU, MVMD decomposition and reconstruction of
14 types of fault vibration signals were carried out, and high-
dimensional fault features of rolling bearings were extracted by
MMDE. The proportion of components is also set to greater than
90%. Figure 13 shows the frequency domain plot for each IMF
component of the raw data. It can be seen from the figure that the
phenomenon of modal aliasing has been effectively avoided by
MVMD. It is worth noting that selecting the first 4-dimensional
IMF component with a large amplitude can better characterize the
fault, and the rest is the interference component (which needs to be

filtered out). The original vibration signal is reconstructed by the
Comprehensive method, and then the fault features are extracted.
Through sufficient experimental comparison and analysis, it can be
concluded that the feature distribution of the reconstructed signal is
significantly better than that of the original signal. However, it is still
not possible to obtain any useful information related to faults
(different operating conditions of rolling bearings). Therefore, the
extracted original features are input into MPA-SVM for fault
classification identification. To fully demonstrate the superiority
of the MVMD signal reconstruction method in this paper, the other
four methods are compared, and the detailed information is shown
in Table 7 (a) Original high-dimensional features. The fault
classification recognition rate of the proposed method is 100%,
the operation time is 10.55 s, and the classification standard
deviation is 0 (which also demonstrates that the stability of the
classifier is good), which is better than other reconstruction
methods. The MVMD signal reconstruction method based on
Comprehensive can effectively reduce the noise of rolling bearing
vibration signals, which is once again proved.

However, due to the high feature dimension of rolling bearing
faults, the operation efficiency of the MPA-SVM classifier is greatly

FIGURE 12
(A) Diagram of PU rolling bearing fault simulation experimental device, (B) vibration signal waveform diagram.

TABLE 6 Description of 14 working states of rolling bearing (Name of Setting: N15_M07_F10).

Bearing code Bearing
element

Label Channel Number of training
samples

Number of testing
samples

KA04, KA15, KA16, KA22, KA30 OuterRace (OR) 01-05 Vibration 40 20

KB23, KB24, KB27 IR (+OR) 06-08 Vibration 40 20

KI04, KI14, KI16, KI17, KI18, KI21 InnerRace (IR) 09-14 Vibration 40 20
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reduced. Similarly, feature selection is made using GNDO (all
parameter settings are consistent with the previous section).
Finally, the optimal and low-dimensional fault features are input
into MPA-SVM for identification. As shown in Table 7 (b) Feature
Selection Algorithm—GNDO, the fault classification operation time
is reduced by 6.21 s, 5.23 s, 7.02 s, 4.96 s, and 6.52 s, respectively, and
the standard deviation of classification is still 0, and the efficiency is

significantly improved. Therefore, the GNDO method can
effectively extract sensitive features in the high-dimensional fault
features based on MMDE.

By comparing with 9 methods, including EO (E4, E9, E12, E13,
E15, E18, E19, E20), MRFO (E2, E5, E8, E9, E11, E12, E15, E16,
E17, E20), GWO (E1, E2, E4, E9, E10, E20), ASO (E1, E2, E4, E8,
E10, E11, E20), MPA (E1, E3, E4, E10, E20), SMA (E8, E9, E13,

FIGURE 13
MVMD decomposition frequency domain diagram of each fault vibration signal.

TABLE 7 Comparison of fault diagnosis indexes of different signal denoising and reconstruction methods (MPA-SVM).

Fault features Reconstruction
method

Best_c Best_σ Mean
accuracy (%)

Standard
deviation

Mean
time (s)

(a) Original high-dimensional
features

Kurtosis 76.15 39.70 96.43 4.374e-14 13.26

Envelope Spectrum 45.56 0.68 95.79 0.2485 11.64

Correlation 16.39 6.72 98.21 0.0799 11.74

Energy 77.18 0.66 99.54 0.3298 10.88

Comprehensive 69.90 0.65 100 0 10.55

(b) Feature Selection
Algorithm—GNDO

Kurtosis 9.35 27.31 96.43 4.374e-14 6.74

Envelope Spectrum 0.91 43.34 97.05 0.2281 6.68

Correlation 16.88 8.55 99.64 1.458e-14 4.72

Energy 100 3.59 99.64 1.458e-14 5.65

Comprehensive 16.34 5.53 100 0 4.34
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E15, E18, E19, E20), PSO (E1, E5, E8, E10, E12, E15, E20), HHO
(E4, E5, E6, E8, E10, E14, E15, E20), and BOA (E1, E2, E4, E6, E7,
E8), the superiority of the GNDO method is demonstrated. The

fault feature subset dimension selected by GNDO is 7, which are as
follows: E1, E2, E3, E5, E6, E10, E11. With the same parameter
settings as the CWRU datasets, Figure 14 shows the MMDE mean

FIGURE 14
Themean distribution of different Scale entropy in various states [(A) The top 7 types of fault features selected using GNDO feature selection, (B) The
remaining 7 types of fault features selected using GNDO feature selection, (C) The original high-dimensional features of the first 7 types of faults, (D) The
original high-dimensional features of the remaining 7 types of faults)].

TABLE 8 Fault diagnosis results of different feature selection methods (MPA-SVM).

Feature selection algorithm Best_c Best_σ Mean accuracy (%) Standard deviation Mean time (s)

BOA 6.05 58.03 99.07 0.1795 5.25

HHO 46.31 0.57 95.77 0.1308 8.18

PSO 100 2.04 96.55 0.6269 6.91

SMA 19.01 34.04 94.59 0.1308 7.38

MPA 97.18 2.97 99.61 0.1099 4.96

ASO 77.57 2.64 97.11 0.1099 5.03

GWO 100 2.54 98.07 0.2693 5.40

MRFO 69.02 1.11 98.77 0.1823 6.32

EO 29.38 38.08 96.43 4.374e-14 8.07

GNDO 16.34 5.53 100 0 4.34
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distribution curve for faults under different operating conditions.
By comparing Figures 14A, B with Figures 14C, D, it can be
intuitively seen that the degree of aliasing of the preferred low-
dimensional fault features of GNDO is significantly weaker
than that of the original fault features (high-dimensional).
Pattern recognition is performed by using the input of the
respective low-dimensional feature subsets to the self-adaptive
classifier (MPA-SVM). In terms of average classification
recognition accuracy, the GNDO method is 3.57%, 1.21%,
1.87%, 2.86%, 0.43%, 5.41%, 3.41%, 4.25% and 0.84% higher,
respectively. Compared with the standard deviation of
classification, it also fully reflects stability. Once again, GNDO
is significantly superior to other methods, as detailed in Table 8 for
comparison.

6.2.2 Comparison 2. Comparison of self-adaptive
SVM classifiers (for PU)

After signal reconstruction based on MVMD and fault feature
extraction and selection based on MMDE-GNDO, the optimal and
low dimensional feature subset (7 * 840) was obtained. Then, the
MPA algorithm is used to optimize the SVM, and the key
parameters are obtained: (Cbest is 16.34, σbest is 5.53). By
establishing the MPA-SVM classifier, the test samples are input
into the optimization model for testing. Finally, it is compared with
five adaptive classifiers, including HBA-SVM, SMA-SVM,
SSA-SVM, GWO-SVM, and PSO-SVM. The fault
misidentification rate of all classifiers is 0, indicating that the
fault characterization ability of the feature extraction method in
this paper is better. MPA-SVM has the fastest operation speed,
which is 2.25 s, 2.77 s, 3.49 s, 3.51 s, and 1.65 s less than other
classifiers. Similarly, it is compared and analysed with other types
of fault features, including feature selection after reconstruction
signal feature extraction, no feature selection after reconstruction

signal feature extraction, feature selection after original signal
feature extraction, and no feature selection after original signal
feature extraction. It is clear from Figure 15 and Table 9 (a)
Original high-dimensional features and Table 9 (b) Feature
Selection Algorithm—GNDO that the MPA-SVM performs best
regardless of the characteristics used. On the other hand, it can also
be fully demonstrated that both the MVMD signal reconstruction
method and MMDE-GNDO in this paper are conducive to the
effective selection of fault features.

At the same time, five MVMD signal reconstruction methods
are compared and analysed by each classifier, as shown in
Figure 16. As can be seen from the figure, the experimental
results are almost consistent with the previous section. The
classification effect based on the Comprehensive method is the
best. Similarly, the operation time of MPA-SVM is 4.34 s, 7.11 s,
7.83 s, 7.85 s, and 5.99 s, all of which are superior to other
classifiers. In addition, it can also fully demonstrate the
practicality and universality of Comprehensive MVMD signal
noise reduction and reconstruction methods.

7 Conclusion

In this paper, a method based on MVMD signal reconstruction,
MMDE-GNDO, and MPA-SVM is proposed for fault diagnosis of
rolling bearings. This method combines the advantages of MVMD
in multi-channel vibration signal decomposition, joint evaluation
function (Comprehensive) in signal noise reduction and
reconstruction, MMDE in multivariate feature extraction, GNDO
in feature optimization, and MPA-SVM in pattern recognition.
Through extensive experimental analysis, the results have
confirmed the effectiveness and superiority of the proposed
method compared to existing methods. This method can achieve

FIGURE 15
Comparison of fault classification for different types of signals and different self-adaptive SVMs.
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the highest classification recognition rate with as few samples as
possible, which is to some extent superior to deep learning methods.
The main conclusions are summarized in the following
three aspects:

(1) The proposed multi-signal noise reduction and reconstruction
method can realize multi-channel signal decomposition by
using MVMD on the one hand. On the other hand, the
joint evaluation function can be effectively used to filter out
the noise in the vibration signal, to realize multi-channel signal
reconstruction. Compared with the existing classical methods

(Energy, Correlation, Envelope Spectrum, Kurtosis), it has a
better noise reduction effect, and can retain the signal IMF
component that is conducive to fault classification as much
as possible.

(2) On the one hand, the proposed MMDE-GNDO method can
realize feature extraction from multivariate reconstruction
signals and obtain a rich set of high-dimensional fault
features. On the other hand, redundant (or noisy)
information can be removed from the high-dimensional
feature set, and the most sensitive and easily classifiable low-
dimensional feature set can be obtained. Compared with other

TABLE 9 Multi-channels reconstruction signal fault features and fault classification of different self-adaptive SVM classifiers.

Fault features Adaptive model Best_c Best_σ Mean accuracy (%) Mean time (s)

(a) Original high-dimensional features PSO-SVM 58.49 0.66 99.05 21.63

GWO-SVM 75.13 0.83 99.95 10.50

SSA-SVM 100 0.60 99.89 13.40

SMA-SVM 50.31 0.80 99.71 10.90

HBA-SVM 41.65 0.82 99.87 12.93

MPA-SVM 16.34 5.53 100 10.55

(b) Feature Selection Algorithm - GNDO PSO-SVM 59.24 1.74 100 5.99

GWO-SVM 97.01 0.99 100 7.85

SSA-SVM 34.98 5.33 100 7.83

SMA-SVM 67.82 3.99 100 7.11

HBA-SVM 22.87 6.55 100 6.59

MPA-SVM 16.34 5.53 100 4.34

FIGURE 16
Comparison of noise reduction and reconstruction methods for different types of signals and fault classification using different self-adaptive SVMs.
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methods (9 methods such as EO, MRFO, GWO, etc.), the
proposed GNDO method provides better feature optimization
performance and higher fault diagnosis accuracy.

(3) The proposed MPA-SVM classifier can adaptively select the
pattern recognition parameters of data samples (Cbest, σbest).
Compared with classifiers such as HBA-SVM, SMA-SVM,
SSA-SVM, GWO-SVM, PSO-SVM, etc., the highest
recognition accuracy and the shortest operation time are
fully displayed. The experimental results of rolling bearing
fault diagnosis show that the method can correctly identify
the faults of rolling bearings under different working
conditions, and the recognition rates reach 99.72% and
100%, respectively.

However, the classification performance of this method will
need further improvement under time-varying speed conditions.
Meanwhile, in future research, we plan to compare and analyse the
proposed adaptive SVM classifier with new methods such as
adaptive CatBoost, adaptive LightGBM, and adaptive XGBoost,
etc. By introducing computational effort, and complexity and
applying it to other types of equipment faults (such as gearboxes,
motors, one-way valves, etc.), strengthens comparison to determine
its effectiveness and universality.
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