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Introduction: Aspect-based sentiment classification is a fine-grained sentiment
classification task. State-of-the-art approaches in this field leverage graph neural
networks to integrate sentence syntax dependency. However, current methods
fail to exploit the data augmentation in encoding and ignore the syntactic relation
in sentiment delivery.

Methods: In this work, we propose a novel graph neural network-based architecture
withdual contrastive learning and syntax label enhancement. Specifically, a contrastive
learning-based contextual encoder is designed, integrating sentiment information for
semantics learning. Moreover, a weighted label-enhanced syntactic graph neural
network is established to use both the syntactic relation and syntax dependency,
which optimizes the syntactic weight between words. A syntactic triplet between
words is generated. A syntax label-based contrastive learning scheme is developed to
map the triplets into a unified feature space for syntactic information learning.

Results: Experiments on five publicly available datasets show that our model
substantially outperforms the baseline methods.

Discussion: As such, the proposed method shows its effectiveness in aspect-
based sentiment classification tasks.

KEYWORDS

aspect-based sentiment classification, graph convolutional networks, dual contrastive
learning, syntax label enhancement, bidirectional encoder representations from
transformers (BERT)

1 Introduction

Aspect-based sentiment classification (ABSC) is a fundamental task in sentiment
analysis [1]; [2], which aims to infer the sentiment of a specific aspect in sentences [3].
Generally, the sentiment of each aspect is classified according to a predefined set of
sentiment polarities, i.e., positive, neutral, or negative. For example, in the comment “the
price is reasonable, although the service is poor,” the sentiment toward aspects “price” and
“service” is positive and negative, respectively.

OPEN ACCESS

EDITED BY

Xin Lu,
De Montfort University, United Kingdom

REVIEWED BY

E. Zhang,
University of Leicester, United Kingdom
Yinong Chen,
Arizona State University, United States
Amin Ul Haq,
University of Electronic Science and
Technology of China, China

*CORRESPONDENCE

Qianhua Cai ,
caiqianhua@m.scnu.edu.cn

RECEIVED 11 November 2023
ACCEPTED 11 March 2024
PUBLISHED 05 April 2024

CITATION

Huang Y, Dai A, Cao S, Kuang Q, Zhao H and
Cai Q (2024), A dual contrastive learning-based
graph convolutional network with syntax label
enhancement for aspect-based
sentiment classification.
Front. Phys. 12:1336795.
doi: 10.3389/fphy.2024.1336795

COPYRIGHT

© 2024 Huang, Dai, Cao, Kuang, Zhao and Cai.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 05 April 2024
DOI 10.3389/fphy.2024.1336795

https://www.frontiersin.org/articles/10.3389/fphy.2024.1336795/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1336795/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1336795/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1336795/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1336795/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1336795&domain=pdf&date_stamp=2024-04-05
mailto:caiqianhua@m.scnu.edu.cn
mailto:caiqianhua@m.scnu.edu.cn
https://doi.org/10.3389/fphy.2024.1336795
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1336795


In general, an ABSC process involves two steps: the identification of
sentiment information toward the aspect from the context and the
classification of the expressed sentiment from predefined sentiment
polarities [4]. Comprehensively, the first step contains key contextual
information learning and aspect–context word relation establishment.
To capture important contextual words and prevent redundant
information, recent publications reveal that encoders and attention
networks are taken to encode the sequential information and determine
the attentive weights of contexts, respectively [5]. Typically, these deep
learning methods are trained via a large amount of textual data to
improve their working performance. Notwithstanding, the existing
manually annotated data resources are still limited, which causes
issues such as model overfitting. As a result, the precise capturing of
key contextual words remains challenging. More recently, contrastive
learning shows its superiority under the condition of limited training
samples. Based on data augmentation, both positive and negative
samples are generated. By setting contrastive loss of training models,
the representations of positive samples are brought closer, while those of
negative samples are pushed apart. In line with the contrastive learning,
the model training can be improved, which paves a way for key
contextual information learning in ABSC tasks.

On the basis of key contextual information, the aspect–opinion
word relation mainly lies in syntax dependency of the sentence [6].
With the parsing of syntax dependency, the relation between the aspect
and context words is built. Ongoing studies substantially focus solely on
the distance of words while neglecting the syntax label of specific
context words toward the aspect. That is, all syntactic relations are
interpreted as the same. Figure 1 shows the syntax structure of a given
sentence. The establishment of the subject–predicate syntactic relation
(nsubj) and adjective modifier syntactic relation (attr) plays a dominate
role in sentiment classification, especially comparedwith other syntactic
information. Moreover, the syntax label is also the foundation of textual
logical reasoning due to its effects in distinguishing the importance
among syntactic relations. Somuch is the significance of the syntax label
that it can be further applied to the aspect–opinion word relation
establishment in ABSC.

To address the above issues in ABSC, we propose a graph
convolutional network (GCN) based on dual contrastive learning
and syntax label enhancement (i.e., DCL-GCN). First, a contrastive
learning-based encoder is devised, which brings the context
representations of the same sentiment closer and pushes those of
different sentiments apart. Furthermore, a weighted label-enhanced
syntactic GCN is put forward, dealing with not only the syntactic

relation but also the syntax dependencies among words. Lastly, a
contrastive learning scheme that focuses on the sentence syntax label
is developed. A syntactic triplet between words is constructed. The
same syntax label-based triplets are given similar semantic
representations, while different syntax label-based triplets are
distinguished. Thereby, the syntax and semantics are integrated,
which contributes to the sentiment classification.

The contribution of our work is three-fold and given as follows:

• A GCN-based ABSC method is proposed with the integration
of dual contrastive learning and syntax label enhancement.
Specifically, the sentence is encoded using contrastive learning
to bring the context representations of the same sentiment
closer and push those of different sentiments apart.

• A weighted label-enhanced syntactic GCN and a contrastive
learning scheme are established to tackle the sentence syntax.
A syntactic triplet between words can be generated. The same
syntax label-based triplets are given similar semantic
representations to facilitate the ABSC.

• Experiments conducted on five benchmark datasets demonstrate
that our model achieves state-of-the-art results. The proposed
method significantly improves the working performance
compared to competitive baselines in the ABSC field.

2 Related work

Owing to the advancement of deep learning networks, current
methods with various structures are widely developed, aiming to
identify their superiority in ABSC tasks [7]. ABSC models are
devised to deal with either semantics [8], syntax [9], or both [10]
from the given text. In this section, these twomajor issues in the field
of ABSC are presented. In order to achieve better working
performance, previous work and their findings about these two
focuses are dedicatedly investigated and depicted.

2.1 Contextual information learning

One bottleneck in ABSC comes from capturing key contextual
words, which considerably affects the aspect–opinion word relation
modeling. Much recent work uses neural networks, attention networks,
or both to concentrate on useful contextual information [11]; [12]. Tang

FIGURE 1
Example of syntax dependency parsing.
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et al. focused on different contextual parts based on LSTM, targeting at
obtaining valuable information [13]. In addition, attention-based neural
networks are proposed to discriminate more relevant features toward
the aspect [14]; [15]. Sun et al. used a BERT-based model to capture
semantic features from contexts via fine-tuning, which significantly
improves the working performance [16]. Text encoders are widely
applied to various tasks [17,18]. Encouragingly, advances in contrastive
learning hold great potential in natural language processing (NLP)
tasks. Suresh et al. integrated contrastive learning strategy into the pre-
training of Bidirectional Encoder Representations from Transformers
(BERT) to improve the model efficacy [19]. A contrastive loss among
different input categories is introduced, while a weight network refines
the differences between each sample pair. In our work, contrastive
learning can be taken to distinguish the contextual representations
during sentence encoding.

2.2 Syntax dependency parsing

The parsing of syntax dependency plays a pivotal role in the field
of ABSC due to its relation establishment between the aspect and
contextual words. Previous work primarily tackles the syntactic
relation of either single or multiple word pairs. In recent years,

the application of a GCN in NLP gave rise to new opportunities in a
number of fields [20]; [21]. Regarding sentence syntax parsing, Sun
et al. transformed the syntax dependency into an adjacency matrix
and propagated the syntactic information using the GCN [22].
Furthermore, Zhang et al. incorporated the aspect-oriented
attention mechanism to benefit the contextual information
extraction toward a specific aspect [23]. To extract both aspect-
focused and inter-aspect sentiment information, an interactive
graph convolutional network (InterGCN) is built to leverage the
sentiment dependencies of the context [24]. Wang et al.
reconstructed the syntax dependency tree rooted at an aspect. A
relational graph attention network (R-GAT) is then proposed to
encode the aspect-oriented dependency tree and to establish the
syntactic relation between the aspect and its opinion words [25].

3 Methodology

A dual contrastive learning GCN (DCL-GCN) is devised on the
task of ABSC. Figure 2 shows the framework of the proposed model. A
pretrained BERT model is used as the sentence encoder. A contrastive
learning scheme is incorporated into contextual encoding duringmodel
training, which enhances the semantic information via sentiment labels

FIGURE 2
Model architecture.
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to obtain differentiated contextual representations. Then, both the
semantic and syntactic features are integrated within a weighted
label GCN, aiming at addressing the syntactic relation of context
words with the aspect. In line with contrastive learning, the syntax
labels of words are used for learning the sentence syntax at a higher
level. The sentiment polarity is predicted by sending the final sentence
representation into a sentiment classifier. More details of the proposed
model are given as follows:

3.1 Contextual encoder with
contrastive learning

The architecture of the contrastive learning-based contextual
encoder is shown in Figure 3. Let X = [w1, . . ., wa, . . ., wa+m−1, . . .,
wn] be a sentence of n words and A = [wa, . . ., wa+m−1] be the aspect of
m words within S. The contrastive learning scheme during sentence
encoding is implemented via data augmentation, feature extraction, and
contrastive loss construction. Inspired by the data augmentation in
image recognition [26]; [27], positive samples of the same polarities are
generated using synonym substitution and random noise injection.
Specifically, synonym substitution refers to randomly replacing words
within the sentence with their synonyms from WordNet, while noise
injection indicates introducing more aspect words and neutral
sentiment words to the sentence. The sentiment is enhanced in (1):

XE � Enchance X( ). (1)

The original sentence X and the data-enhanced sentence XE are
mapped to word vectors within the same feature space. We use the
BERT model obtained through large-scale corpus training by
Kenton et al to enhance the semantics of word representations.
We then train the BERT model in a fine-tuned manner by freezing
part of its parameters, which is written in (2):

hCLS,HX,HA � BERT CLS, X, SEP, A, SEP( ), (2)

where CLS and SEP are BERT tokens representing the overall
representation and the separation of the sentence, respectively. We
thus obtain the sentence-level feature representation hCLS, the word-level
feature representation HX, and the aspect feature representation HA.
Assuming that a batch consisting of k sentences is the model input for
training, the sentence set composed of the original and the enhanced
sentences is Xall � [Xbatch, (XE)batch] � [X1,X2, . . . ,X2k]}, with the
corresponding sentiment polarity set denoted as Yall = [Y1, Y2, . . ., Y2k].
We also have the index set of all sentences as I = [1, 2, . . ., 2k]. For each
sentence in Xall, a set of contrastive learning-based sentences with the
same sentiment polarity is generated, i.e., Pall = [P1, P2. . ., P2k], where
Pi = {p: p ∈ I (Yp = Yi) ∧ (p ≠ i)}. The contrastive learning loss of the
contextual encoder is defined in (3):

LECL � ∑2k
i�1

−1
|Pi| ∑p∈Pi

log
exp hCLSi *hCLSp /τ( )

∑k∈I/i exp hCLSi *hCLSk /τ( ), (3)

where τ is a hyperparameter, indicating the temperature coefficient
of contrastive learning. The higher the temperature coefficient is, the
smaller the sum of the loss reaches. The parameter hCLSi stands for
the representation of the ith sentence in Xall after BERT coding. In
such a manner, the context representations of the same sentiment
can be brought closer, and those of different sentiments are
separated, improving the use of contextual and sentiment labels.
Based on contrastive learning, abundant semantic information is
integrated into the encoder, targeting at deriving context
representation with key information.

3.2Weighted label-enhanced syntactic GCN

The framework of the syntactic GCN via weighted label
enhancement is presented in Figure 4. The syntax dependency
of the input sentence is derived using the spaCy toolkit.
Specifically, the sentence syntax dependency is characterized by
a triplet, i.e., (wi, wj, ri,j), where words wi and wj are of the relation

FIGURE 3
Contrastive learning-based contextual encoder.

Frontiers in Physics frontiersin.org04

Huang et al. 10.3389/fphy.2024.1336795

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1336795


ri,j. In line with the sentence syntax, we construct a syntax
adjacency matrix AS ∈ Rn×n that denotes the connecting edges
of the syntax dependency tree.

To address the effects of various syntactic labels in the sentiment
classification, a syntax label learning (SLL) unit is built. The main
purpose of the SLL unit is to transform the syntax label matrix to a
learnable syntax label score matrix.

A lexicon R = {relation1: 1, relation2: 2, . . ., relationt: t} that
consists of all syntactic relations from the corpus is constructed,
from which each syntactic label is mapped to an index number. For
each input sentence, all index numbers denote the syntactic relations
consisting of a syntax label matrix. Then, the syntax label adjacency
matrix AL ∈ Rn×n is built based on both the syntax dependency tree
and the lexicon R. All syntax labels can be mapped into a unified
feature space. The weighted score of each syntactic relation is thus
resolved in (4), which is written as a syntax label score adjacency
matrix ALS ∈ Rn×n:

ALS � Emb AL( )*WL*WS, (4)
where Emb (·) represents transforming the syntax label matrix into a
learnable matrix for syntax label characterization, WL ∈ RdL×dS and
WS ∈ RdS×1 are learnable parameter matrices, and dL and dS are
dimensions of AL and AS, respectively. We also have
Emb(AL) ∈ Rn×n×dLS , with dLS standing for the dimension of the
syntax label score space.

Likewise, the same syntactic relation type can have different
degrees of importance within different semantic contexts. For this
reason, the semantics among words are also integrated into the
computation of the syntax label score. We take the multi-head self-
attention (MHSA) mechanism to learn the semantic features and to
revise the syntax label scores based on attentive weights. Notably, the
elements in ALS represent all the syntactic relation scores, which are
not zero. To preserve the original syntax dependencies and remove
irrelevant syntactic information, the basic syntax adjacency matrix is
also used. The weighted syntax label adjacency matrix can be
computed in (5):

AWL
ij � AS

ij*A
W
ij *A

LS
ij (5)

with (6, 7, and 8)

AW � Norm Concat head1, head2, . . . , headh( ) ·Whead( ), (6)

headp � QWQ
p × KWK

p( )T				
dhead

√ , (7)

Q � W � HX, (8)
where AS

ij is the syntax adjacency matrix of wi and wj parsed from
the syntax dependency tree; ALS

ij is the syntax label score adjacency
matrix; AW

ij stands for the semantic weight adjacency matrix derived
from the MHSA mechanism; Concat represents the vector

FIGURE 4
Framework of the weighted label-enhanced syntactic graph convolutional network (GCN).

Frontiers in Physics frontiersin.org05

Huang et al. 10.3389/fphy.2024.1336795

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1336795


concatenation; Whead is the parameter matrix during concatenation;
Norm (·) is the normalization operation on the attentive weight
matrix; WQ

p and WK
p are parameter matrices of the pth attention

head in MHSA; dhead denotes the vector dimensions of each head;
and h is a hyperparameter indicating the attention head number.

The working principle of the weighted label-enhanced
syntactic GCN is shown in Figure 5. The input of the GCN is
the weighted syntax label adjacency matrix AWL and the feature
representation HX from BERT. The learning of syntactic
information is derived in (9):

hli � σ ∑n
j�l

AWL
ij Wl

Sh
l
j + blS⎛⎝ ⎞⎠, (9)

where H0 � HX � [hX1 , hX2 , . . . , hXn ], hljrefers to the word vector of
the jth word in the lth layer of the GCN, with l as an integer and l ∈
[0, F], F is the layer number of the GCN, Wl

S is the learnable
parametric matrix of the lth layer, blS is the bias vector, and σ is an
activation function. The output of the weighted label-enhanced
syntactic GCN is the output of the last layer,
i.e., Hout � [hF1 , hF2 , . . . , hFn ].

3.3 Syntax label-based contrastive
learning scheme

Considering the effect of syntactic information in ABSC, the
node pairs with the same syntax label indicate similar syntactic

features, and those with different syntax labels have differentiated
features. As such, a contrastive learning scheme using syntax labels is
proposed, aiming to enhance the learning of syntactic features at a
higher level.

Assuming that K′ triplets are of syntax dependencies within all
the K sentences, the node-pair set of these triplets is
X′ � [X1′, X2′, . . . , XK′′ ]. The syntax label set of these node pairs
is R′ = [r1, r2, . . ., rK′] with the index set I′ = [1, 2, . . ., K′]. Moreover,
for each node pair in X′, a set of node pairs with the same syntax
label for contrastive learning is constructed,
i.e., Pm′′ � {p′: p′ ∈ I′, (rp′ � rp′) ∧ (p′ ≠ m′)}. The syntax label-
based contrastive learning loss is defined in (10):

LLCL � ∑K′
m′�1

−1
|Pm′′ | ∑

p′∈Pm′′
log

exp gm′*gp′/τ′( )∑
t∈I′/m′ exp gm′*gt/τ′( ), (10)

together with (11)

gm′ � Xm′′ 1[ ]Wcl
1 +Xm′′ 2[ ]Wcl

2( )Wcl
3 + bcl, (11)

where τ′ is the temperature coefficient for contrastive learning
and gm’ represents the semantic feature representation by
mapping the node-pair representations from the syntax
dependency triplet and is normalized before the contrastive
learning loss computation. We define Xm′′ [1] as the feature
representation of the first node in the m′th node pair in X′
andXm′′ [2] as the feature representation of the second node in the
m′th node pair. Both Xm′′ [1] and Xm′′ [2] are obtained from the
BERT encoder, which convey semantic information. In addition,

FIGURE 5
Working principle of the weighted label GCN.
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Wcl
1 , W

cl
2 , and Wcl

3 are learnable parameter matrices, and bcl is a
bias vector.

3.4 Feature fusion

Average pooling is performed on Hout to obtain the syntactic
information-enhanced feature representation Hout in (12),
which is further concatenated with hCLS derived from the
BERT encoder. The final sentence representation ~H is given
in (13).

hout � avgpool hout( ), (12)
~H � hout ⊕ hCLS, (13)

where ⊕ denotes the concatenation operation. The final sentence
representation ~H is sent to a Softmax classifier to obtain the
sentiment polarity in (14):

y � softmax Wo
~H + bo( ). (14)

The pseudocode of the proposed model is given as follows:

1: Input: data D, batch_size N.

2: Output: Sentiment polarity y

3: for i = 0 to n by N do

4: batch ← D [i: i + N]

5: for j in [i, i + batch_size) do

6: hCLS
j ,HX

j � BERT(Xj)
7: AS, AW ← SLL (Xj)

8: AW ← MHSA(HX
j)

9: AWL = AS*AW*ALS

10: Hout
j ← Weighted_Label_Enhanced_GCN(AWL ,HX

j)
11: ~Hj ← Concatenate_Features(Hout

j ,hCLS
j )

12: yj � Softmax(~Hj)
13: end for

14: Ltotal � LCE + αLECL + (1 − α)LLCL

15: Update network by combined loss Ltotal

16: end for

Algorithm 1. Dual contrastive learning-based GCN forward propagation

algorithm.

3.5 Model training

Model training is implemented using cross-entropy and
regularization as the loss function in (15):

LCE � − ∑
x,a( )∈D

∑
c∈C

yc
x,a( )logŷ

c
x,a( ) + λ‖θ‖2, (15)

where (x, a) represents the vector of a sentence–aspect pair; C
refers to the set of sentiment classes; yc

(x,a) is the ground-truth
sentiment distribution of (x, a) with sentiment C, and ŷc

(x,a)
is the predicted one; and λ is the coefficient of L2

regularization.
On account of the training of contrastive learning in our

model, the total loss function Ltotal is composed of the contrastive
learning loss LECL from the contextual encoder, and the

contrastive learning loss LLCL based on the syntax label and
the cross-entropy loss LCE is shown in (16):

Ltotal � LCE + αLECL + 1 − α( )LLCL, (16)
where α is a learnable coefficient to adjust the weights of contrastive
learning losses in loss function.

4 Experiment

4.1 Experimental setup

The working performance of the DCL-GCN is evaluated on
five benchmark datasets, which are Restaurant 14, Restaurant 15,
Restaurant 16, and Laptop 14 from SemEval [28]; [29,30], and
Twitter [31]. The sentiment of each aspect from the datasets is
labeled as positive, neutral, or negative.

Following the idea of [15], the sentences labeled as conflicting
sentiment or without explicit aspects from Restaurant 15 and
Restaurant 16 are removed. Details of each dataset are given in Table 1.

In this experiment, the lexicon size of the BERT model is set to
30,522, the word embedding dimension is 768, and the layer number
of the transformer is 12. The head number of the MHSA is 8, and the
learning rate is 0.00001. The layer number of the weighted label-
enhanced syntactic GCN is 2. Both τ and τ′ in contrastive learning
schemes are set to 0.02. The L2 regularization coefficient is 0.00001.
An Adam optimizer is adopted during training with a data batch size
of 32. All the hyperparameters used in the experiment are given
in Table 2.

4.2 Baseline

In order to verify the effectiveness of the DCL-GCN in ABSC,
five state-of-the-art methods are taken for comparison:

• BERT [32]: The basic BERT model is established based on the
bidirectional transformer. With the concatenation of
sentences and the corresponding aspect, BERT can be
applied to ABSC.

• BERT4GCN [33]: The BERT model and GCN are integrated,
which exploits sequential features and positional information
to augment the model learning.

• R-GAT + BERT [25]: The pre-trained BERT is integrated with
the R-GAT, where BERT is used for sentence encoding.

TABLE 1 Statistics of datasets.

Dataset Positive Neural Negative

Train Test Train Test Train Test

Twitter 1,561 173 3,127 346 1,560 173

Laptop 14 994 341 464 169 870 128

Restaurant 14 2,164 728 637 196 807 196

Restaurant 15 912 326 36 34 256 182

Restaurant 16 1,240 469 69 30 439 117
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• DGEDT + BERT [34]: The pre-trained BERT is integrated
with DGEDT, where BERT is used for sentence encoding.

• TGCN + BERT [35]: The dependency type is identified with
type-aware graph convolutional networks, while the relation is
distinguished with an attention mechanism. The pre-trained
BERT is used for sentence encoding.

All results are expressed in percentage values. “-” denotes that
the results are not reported in the published research article. The
best performance achieved is marked in bold.

4.3 Result analysis

We take twometrics, i.e., accuracy andMacro-F1, to evaluate the
working performance of the proposed model. Table 3 shows the
results of six different methods on the task of ABSC. One can
observe that our model achieves the best and most consistent result
among all the evaluation settings. It is clear that the DCL-GCN result
is more remarkable than a range of competitive baselines on all five
benchmark datasets. In line with these results, the following
observations are made.

First, our model achieves the best andmost consistent result among
all the evaluation settings. Theminimumperformance gaps between the
DCL-GCN and the baselines are 1.33% (against the R-GAT) on
Restaurant 14, 1.62% (against the T-GCN) on Restaurant 15, 1.33%
(against the T-GCN) on Restaurant 16, 1.54% (against DGEDT) on
Laptop 14, and 0.22 (against DGEDT) on Twitter. In addition, the
F1 values on Restaurant 15 and Restaurant 16 are 3.64% (against the
T-GCN) and 5.04% (against DGEDT), respectively, higher than the
best-performing baseline method, which are significant.

Second, the syntax-dependent-method (BERT4GCN) performs
worse than models integrated with both syntax dependency and
syntactic relations (R-GCT and T-GCN). The main reason is that
the deeper-level syntactic information can be neglected by solely
exploiting the dependencies among words. By contrast, the syntactic
relation encoded in our model benefits the sentiment
comprehending to a large extent. The highest accuracy of our

model reaches 93.65 on Restaurant 16, indicating the importance
of syntax dependency and syntactic relations in ABSC.

Third, compared with other baselines, the basic BERTmodel has
its own distinctiveness in tackling sentence semantic information.
By incorporating BERT into state-of-the-art methods, the working
performance is substantially improved, which is the outcome of our
model. Notably, the proposed model significantly outperforms the
baselines, demonstrating that the contextual semantics take full
advantage in line with the BERT-based contrastive learning scheme.

It is worth noting that the DCL-GCN gives rise to the enhancement
in both syntax and semantics learning. With the application of the dual
contrastive learning scheme, it is reasonable to expect better working
performance in ABSC, as it is the case.

4.4 Ablation study

The impact of different components in our model is investigated
by conducting an ablation study (Table 4).w/o LECL specifies that the
contrastive learning scheme of the contextual encoder is removed;
w/o LLCL specifies that the syntax label-based contrastive learning
scheme is removed; and w/o WL-GCN indicates that the weighted
label-enhanced syntactic GCN is ablated.

As presented in Table 4, the most significant module in our
model is the weighted label-enhanced syntactic GCN. The exploiting
of syntactic information shows its effectiveness in word sentiment
learning. With the sole utilization of semantics, even with a
contrastive learning strategy, the working performance is inferior
to the syntactic-based methods in all evaluation settings. Clearly, the
integration of semantics and syntax has superiority in ABSC tasks.
Moreover, the removal of the contrastive learning scheme from the
contextual encoder leads to a substantial decrease on all five datasets.
The performance decreases of the accuracy and F1 score on Twitter
are 2.76% and 2.25%, respectively. As a result, the contrastive
learning scheme in the BERT encoder effectively promotes
semantic information learning. By contrast, the syntax label-
based contrastive learning scheme makes a relatively small
contribution to the model. We can infer that the application of

TABLE 2 Parameter settings.

Parameter Value

BERT model lexicon size 30,522

Word embedding dimension 768

Transformer layers 12

Multi-head self-attention (MHSA) heads 8

Learning rate 0.00001

Weighted label-enhanced syntactic graph convolutional network (GCN) layers 2

Τ 0.02

τ′ 0.02

L2 regularization coefficient 0.00001

Batch size 32

Optimizer Adam
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syntax labels also enhances the use of syntactic information and,
thus, contributes to the sentiment classification.

4.5 Impact of hyperparameters

An experiment is carried out to analyze the effect of the self-
attention head number on model working performance. The head
number of the self-attention network is set to [1, 2, 3, . . ., 8]. The model
accuracy with different head numbers is presented in Figure 6.

Apparently, the DCL-GCN achieves the highest accuracy with a
head number of 5 on Laptopt 14 and Restaurant 15 and a head
number of 6 on Twitter, Restaurant 14, and Restaurant 16. In line
with the multi-head self-attention mechanism, the attention head
stands for the vector representation in feature spaces via different
mapping methods. When the number of attention heads is reduced,
the self-attention mechanism operates within a smaller space with
correspondingly fewer semantic features. Accordingly, the proposed
model fails to capture sufficient semantic information. On the other
hand, when the head number exceeds 6, the model parameter size

significantly increases, resulting in overfitting issues during training.
In this way, a test accuracy decrease is inevitable.

4.6 Case study

Two samples are selected to visualize the working performance, in
order to further validate the distinctiveness of DCL-GCN. Specifically,
the representations of the sentence and the words are maintained. We
shall define a parameter φ as the contribution of each word for
sentiment delivery in the sentence, which is defined in Eq. 17:

φ X,wi( ) �
| ~H − ~HX

wi
|

∑n
j�1| ~H − ~HX

wj
|. (17)

The sentiment contribution of each word is shown in
Figure 7. For the sample given in Figure 7A, the contextual
words “professional,” “courteous,” and “attentive” make the
largest contribution toward the aspect “waiters.” Our model is
capable of extracting the most informative words for sentiment

TABLE 3 Experimental results on five public datasets.

Model Twitter Laptop 14 Restaurant 14 Restaurant 15 Restaurant 16

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

BERT [32] 75.00 72.53 78.68 74.64 84.55 77.34 83.40 65.28 89.54 70.47

BERT4GCN
[33]

74.73 73.76 77.49 73.01 84.75 77.11 - - - -

R-GAT +
BERT [25]

76.15 74.88 78.21 74.07 86.60 81.35 - - - -

DGEDT +
BERT [34]

77.90 75.40 79.80 75.60 86.30 80.00 84.00 71.00 91.90 79.00

TGCN +
BERT [35]

76.45 75.25 80.88 77.03 86.16 79.95 85.26 71.69 92.32 77.29

Our DCL-
GCN +
BERT

78.12 76.37 82.42 79.20 87.93 82.53 86.88 75.35 93.65 84.04

The bold values represent the best performance achieved among the different models or methods compared in the table. Specifically, the bold values indicate the highest accuracy and Macro-F1

scores obtained for each dataset (Twitter, Laptop14, Restaurant14, Restaurant15, Restaurant16) in the aspect-based sentiment classification (ABSC) task. These bold values highlight the

superior results of the model we proposed compared to the baseline methods, showcasing its effectiveness in sentiment classification across different datasets.

TABLE 4 Results of the ablation study.

Model Twitter Laptop 14 Restaurant 14 Restaurant 15 Restaurant 16

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

Accuracy Macro-
F1

w/o LECL 75.36 74.12 81.28 77.49 85.94 80.18 84.63 72.78 91.44 81.64

w/o LLCL 76.12 74.89 81.13 77.30 86.12 80.67 85.24 73.68 92.17 82.26

w/o
WL-GCN

75.13 73.85 80.62 76.83 85.20 79.47 84.27 72.14 91.23 81.08

Full model 78.12 76.37 82.42 79.20 87.93 82.53 86.88 75.35 93.65 84.04

The bold values represent the best performance achieved among the different models or variations compared in the table. Specifically, the bold values indicate the highest accuracy andMacro-F1

scores obtained for each dataset (Twitter, Laptop14, Restaurant14, Restaurant15, Restaurant16) in the aspect-based sentiment classification (ABSC) task when specific components or modules

of the proposed model are included.
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expressing. The sentence in Figure 7B contains two aspects,
i.e., “food” and “waiting.” For the aspect word “food,” the
proposed model accurately identifies the top two highest
sentiment contribution words as “good” and “so.” Regarding
“waiting,” not only is the the sentiment word “nightmare”
captured but also the syntactic relation words “so. . .that. . .”
for resultative adverbial clause establishment. Both semantics
and syntax are used for sentiment classification.

In our model, the use of contrastive learning enhances the
learning of sentence semantics, and the build of the weighted

label-enhanced syntactic GCN fully exploits the syntactic
information. The integration of semantic information and
syntactic information leads to a competitive manner in ABSC.

5 Conclusion

In this work, we propose a GCN based on dual contrastive
learning and syntax label enhancement for ABSC tasks. To obtain
sentiment information, a contrastive learning scheme is integrated

FIGURE 6
Accuracy of different head numbers.

FIGURE 7
Word sentiment contribution. (A) Weights to aspect “waiters” (B) and weights to aspects “food” and “waiting.”
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to a BERT encoder to enhance the learning of semantic-related
contextual information. Then, our model exploits both the syntax
dependency and syntactic relation, based on which a weighted label-
enhanced syntactic GCN is established. In addition, the learning of
the syntax label is enhanced using contrastive learning. A syntactic
triplet between words is mapped into a unified feature space for
syntax and semantic integration. The rxperimental results reveal
that the proposed model achieves state-of-the-art performance on
five benchmark datasets. The ablation study, the hyperparameter
analysis experiment, and the case study also obtain superior working
performance.

Future work will focus on introducing more information for
further improving the accuracy of ABSC and other sentiment
analysis tasks, such as background knowledge and part-of-speech
information. In addition, the integration of different categories of
information into the model is also considered.
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