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The interaction between a fluid and a wall is described with a certain boundary
condition for the fluid velocity at thewall. To understand how fluids behave near a
roughwall in a completely laminar flow regime, the fluid velocity at every point on
the rough surface may be provided. This approach requires detailed knowledge
of, and likely depends strongly on the roughness. Another approach of modelling
the boundary conditions of a rough wall is to coarse grain and extract a
penetration depth over which on average the fluid penetrates into the
roughness. In this work, we examine the impact of well-defined patterned
surfaces on the fluid flow behaviour. We considered two extreme cases: one
with horizontal ridges and another with vertical ridges on the wall and an
intermediate case with ridges at an angle on the wall. We show that for a
broad range of periodic roughness patterns and relative flow velocities, a
universal penetration depth function can be obtained. We obtain these results
with experiments and complementary numerical simulations. We evaluate how
this penetration depth depends on the various roughness parameters such as
ridge depth, ridge spacing and ridge angle. Our results present a novel approach
to investigating wall roughness boundary conditions by considering the
penetration depth δ that captures the spatially averaged behaviour of the
decaying velocity profile between the asperities. We find that this penetration
depth δ can be rescaled into a simple exponential master curve δ = δ∞(1 − e−kD/S)
for horizontal ridges with varying depth D and spacing S. A similar variation of δ
withD and S is observed for vertical ridges, but with a smaller magnitude δ∞, while
for ridges at an angle, the penetration depth lies between the two extreme cases.

KEYWORDS

rough boundaries, wall effects, patterned geometries, periodic roughness patterns, fluid
flow penetration, complex flow profiles, stress-based measurements

1 Introduction

The interaction of a fluid with a wall can be extremely complex, especially when the wall
possesses small-scale features [1]. Typically, complexities arise in the form of slip layers [2,
3] and other complicated boundary conditions [4–6]. Slip layers are observed when the
fluid, at the fluid-wall interface, flows at a different velocity than the wall itself [6]. These
wall-fluid interactions can, however, be tuned to control the fluid flow behaviour further
away from the wall. The wall-fluid interactions can be modified in different ways. One
approach involves altering the walls of the flow geometry. Such modifications create
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complex boundary conditions at the wall, which can be introduced
either by adding certain geometrical features on the wall [7–11] or by
modifying the wetting properties of the wall itself (liquid infused
surfaces [12, 13], hydrophobic surfaces [14–17], bubbles [18]). Here,
we focus solely on the effects of geometrically altered surfaces.

Geometrical alterations to the walls in the form of well-defined
geometrical length scales such as riblets or grooves introduce
roughness into the wall. These features can then be systematically
varied to understand the influence of roughness on the fluid flow
behaviour near the wall. The study on explicitly patterned ribbed
surfaces came to prominence around 40 years ago, with inspiration
from nature [1, 19–21]. Sharks have denticles on their skin which
reduces drag and allows for more efficient swimming. To
understand the effect of drag reduction in animals, work has
been done on simplified model systems with various designs for
ridges such as L-shaped, V-shaped and U-shaped [7, 10, 22]. These
studies primarily deal with variations in ridge dimensions such as
ridge depth, ridge spacing, ridge width and angle of ridge orientation
and in particular, their effect on the performance of the ridged
surfaces [10, 22–24]. Since then, several studies have been carried
out on engineered patterned ribbed geometries in parallel plate and
concentric cylindrical systems. These patterned geometries have
been studied in the context of reducing viscous (friction) drag [10,
11, 15, 21, 25–31] or suppressing wall slip [2, 32, 33]. Most of these
studies have investigated the viscous drag reduction in the viscous
sublayer in turbulent flows. It is to be noted that the viscous drag
reduction in turbulent flows is governed by considerably different
factors compared to that in laminar flows. Previous studies have
examined only the flow within the viscous sublayer in turbulent fluid
flow, and considered that the convective terms in the Navier-Stokes
equations are negligible compared to the viscous terms, and
therefore the flow was studied in the much simpler framework of
the Stokes equations [34]. Walsh [26] indicated that microsurface
geometry variations change the near-wall structure of the turbulent
flow boundary layer, and making them effective in reducing
(viscous) drag. Bechert et al. [19, 35] carried out an extensive
parametric study on surfaces with longitudinal ribs, where they
argued that the velocity profile in between the ridges penetrates to a
distance below the ridge tips which they refer to as “protrusion
height”. This protrusion height depended on the ridge dimensions
and was indicative of the drag reduction. All these studies referred to
a single protrusion height for the parallel flow. Later studies by
Luchini [34] and Bechert [20, 29, 36] demonstrated the existence of
two protrusion heights corresponding to the parallel and cross flow,
respectively. Their findings also indicated that the parallel flow
protrusion height is always larger than the cross flow one.
Despite showing interesting results, their geometries posed a
problem in terms of manufacturing and durability. Davies et al.
[15] numerically studied the effect of patterned channel walls with
alternating microribs and cavities. They investigated the influence of
the vapour cavity depth in the entire laminar flow regime and
showed significant reduction in the frictional resistance in laminar
fluid flow. Their experimental studies were documented in [37].
Djenidi et al. [7, 9] showed that riblets cause a reduction in frictional
drag in laminar flows. These drag reducing techniques find
applications in the aerospace industry for saving fuel costs
[25–28] and also serve as a non-additive drag reduction
technology in pipe flow.

Experimental data on the performance of riblets in a laminar
flow regime are scarce. Measuring the drag reduction achieved by
riblets becomes much more challenging when transitioning from
turbulent to laminar boundary layers, primarily due to the relatively
lower skin frictions and forces encountered in laminar flow [28].
Several factors contribute to this increased challenge in measuring
drag reduction in laminar flow. First, the interaction between the
riblets and the wall, which is crucial for drag reduction, mainly
occurs in the near-wall region known as the boundary layer.
Laminar boundary layers are typically thinner than turbulent
boundary layers, which creates difficulties in accurately
measuring drag reduction effects near the wall. Second, the
reduction in drag in laminar flow is usually smaller, around 10%
[28], compared to turbulent flow, because of lower skin frictions and
forces. This diminished reduction makes it more challenging to
precisely measure such small drag reduction effects in laminar flow.
Third, laminar flow features a uniform flow profile, which makes it
more difficult to identify subtle changes in the flow behaviour that
could indicate drag reduction. Additionally, the classical theory
suggests that the roughness does not affect the laminar fluid flow
[8, 38]. However, substantial deviations from this theory have been
found in subsequent studies [15, 16, 39–42]. For instance, Jung and
Bhushan [39] demonstrated that wall roughness reduced the
pressure drop up to 30% in a closed channel flow. All these
investigations indicate that surface roughness reduces the flow
resistance in the laminar flow regime. Such studies still remain
an active area of research. For example, recently, McKinley and co-
workers [11] used different surface microtextures to study the drag
reducing effect on the fluid flow over a range of flow speeds. They
examined the interaction of Taylor vortices with the riblets in case of
Newtonian fluids. Nickerson and Kornfield [32] have shown that
cleated surfaces on parallel plate geometry can be used to suppress
wall slip. Although much previous work has established that rough
surfaces can be used to prevent wall slip, for instance in rheological
measurements, the effect of wall roughness on the laminar flow of
the fluid near the wall, specifically, the introduction of secondary
flows or the penetration of the fluid flow into the gaps between the
ridges on the wall, has not been extensively studied. Additionally,
riblets used are complex in structure and the associated flow fields in
such geometries are challenging to systematically investigate. Such
complexities make the interpretation of stress-based measurements
on the effect of rough walls difficult. Therefore, we focus on studying
the effect of surface roughness using well-defined riblets in a
completely laminar fluid flow regime.

In the present paper, we show that the role of the wall roughness
on the boundary layer of a laminar fluid flow can be effectively
quantified by a penetration depth for a range of different roughness
conditions that sets a decaying velocity profile between the
protrusions. The penetration has a similar interpretation as the
Navier slip length used in the case of partial wall slip or the
protrusion height introduced by Bechert et al. [19, 35]. Our work
highlights that a rough surface boundary condition reduces to that of a
flat wall at a different geometric location. We confirm this perspective
with stress-based measurements. We use simple 3D printed ridged
concentric cylinder geometries with ridges of different depth, spacing
and orientation. This way of creating rough surfaces gives the ability to
systematically investigate the role of a ridge in fluid flow, to
demonstrate how the flow penetrates between the ridges and to
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examine whether there are effects of secondary flows, orthogonal to
the primary flow direction. Figure 1A shows examples of patterned
geometries. D, S and W are the ridge depth, ridge spacing, and ridge
width, respectively. L is the length of the ridged geometry. The ridge
angle θ can be varied with respect to the vertical axis. A helical wall
patterning for angles between 0° and 90°, will induce secondary flows
at all flow rates, leading to the formation of vortices, which are usually
only observed at high rotation rates [43].

In this work, we investigate the influence of 3D printed ridged
geometries on the flow of a Newtonian fluid at a low Reynolds
number using standard concentric cylinder rheology. In Section 2,
we first describe the materials, and the experimental and the
numerical methods used for the determination of protrusion
height. Later in Section 3, we first briefly discuss the numerical
results of the flow profile penetration, in order to build the
framework for rationalising our experimental findings that are
discussed later in this section. We present the simulated flow
profiles in different ridged geometries. Subsequently, we explore
the flow profile penetration, both experimentally and numerically,
for two limiting cases of horizontal and vertical ridges, and then
discuss the angled ridge case.

2 Materials and methods

2.1 Design and fabrication of ridged
geometries

Custom 3D printed ridged geometries were fabricated on a
Stratasys Objet30 Scholar (Stratasys, Ltd.) and a Formlabs 2 SLA
(Formlabs, Inc.) printer to fit the Anton Paar rheometer shaft for
disposable geometries.

Patterning with 3D printing allows to create well-defined geometries
with good control to produce fine features with a dimensional accuracy of
~100 μm. The benefit of using the 3D printed ridged geometries is that
they can be easily incorporated into a flow imaging technique such as
MRI [44, 45], which allows to fully quantify the flow profiles and extract
the wall stresses present within the system.

The geometries with ridges perpendicular to the rotational axis
were designed by making cutouts of various spacings (0.5–3 mm)
and depths (0.5–3 mm) from the standard CC17 geometry with
constant Ri = 8.5 mm and Ro = 9 mm. They were printed on the
Stratasys Objet30 Scholar, using the Vero Black photopolymer
(Stratasys, Ltd.) with water-soluble supports. The geometries were
printed vertically with a layer thickness of 16 μm.

The geometries with ridges at an angle with respect to the rotational
axis were designed with the angle ranging from 10° to 60° with 10°

intervals. Geometries with ridge angles between 70° and 90° could not be
printed due to limitations of the printing technique. The geometries
were designed such that the shortest distance (spacing) between the
ridges was 2 mm, with a ridge depth of 1 mm and ridge thickness of
0.3 mm. This was achieved by changing the width and the number of
cutouts. The width and the number of cutouts were calculated using a
Python script with the length and the diameter of the ridged geometry,
ridge angle and shortest distance between the ridges as input. These
geometries with angled ridges were fabricated on a Formlabs 2 SLA
printer, using the glass reinforced Rigid resin (Formlabs, Inc.) with a
layer height of 50 μmand xy-resolution of 140 μm. The support needed
for the printing was only attached to the shaft and the top chamber to
prevent the introduction of artefacts coming from small residuals of the
support material.

The printed geometries were washed twice for 10–15 min in 95%
isopropanol. After drying, the geometries were post-cured under a
366 nm lamp for 1.5–2 h. The geometries were rotated 180° halfway

FIGURE 1
(A) 3D printed geometries with patterned surfaces: vertical ridges (left), angled ridges (centre) and horizontal ridges (right). (B) Schematic
representation of a concentric cylinder (CC) geometry with angled ridges. Ri and Ro are the radii of the inner and outer cylinder of the ridged geometry,
respectively and L is the length of the ridged geometry. Here the inner radius Ri corresponds to the distance from the centre of the coordinate system to
the farthest point on the ridges. D is the ridge depth, S is spacing between the ridges, W is the ridge width and δ is the penetration depth.
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through to cure evenly. The support material was removed manually
using flush side-clippers after curing. The shaft of all geometries was
printedwith a diameter of 8 mmandmilled down on a lathe to 6.95 mm
to fit the Anton Paar shaft for disposable geometries. We determined
that this lathe post-processing ensured the best concentricity of the
geometry with the Anton Paar rheometer shaft and cup.

2.2 Rheological experiments

Rheological experiments were performed on Anton Paar MCR
300 and MCR 501 rheometers, using the custom geometries in
standard cups and cup holders (Anton Paar CC17). The experiments
were performed at 20.5°C, using either a Peltier heat exchange
element and waterbath at 20°C as a heat sink (for MCR 501) or a
high flowrate waterbath at 20.5°C (for MCR 300). All the printed
geometries were tested on a Newtonian fluid. We used castor oil as a
Newtonian fluid, due to its high viscosity (~1 Pa s at 20°C compared
to 50 mPa s for most oils) and its stability against oxidation and high
temperatures for an extended period of time. Therefore, its viscosity
as a function of time at a given temperature can be considered
constant. Unlike other viscous fluids such as glycerol, castor oil is
non-hygroscopic and does not evaporate at room temperature, does
not degrade over time, and does not swell nor degrade the 3D
printed geometries, which sets it apart from most organic solvents.

Before each measurement, the geometry was placed in a
container with the test fluid to eliminate air bubbles between the
ridges. The geometries were then visually inspected for the presence
of air bubbles, which, if present, were removed by rubbing the
geometry against the cup while it was submerged in the fluid.

We performed steady shearmeasurements with average shear rates
ranging from _γ � 10–3 to 102 s−1, resulting in a range of Re from 2.5 ×
10−5 to 2.5 for castor oil (only the laminar regime was probed). In these
measurements, the average shear rate _γ is defined as the surface velocity
of the moving inner cylinder divided by the gap size of the
CC17 geometry. Each measurement consisted of 26 datapoints,
distributed logarithmically, and each datapoint started with a
stepwise increase of _γ, followed by an equilibration period of 2 min,
after which the data was averaged for 5 s. To test the viability of using
3D printed geometries in rheological measurements, a solid CC
geometry was designed with an outer diameter as close as possible
to that of a commercially available smooth standard stainless steel CC
geometry. These geometries were checked by comparing the flow
curves of the test fluid. Both the 3D printed and the standard
geometries yielded identical flow curves indicating that the accuracy
of the 3D printer was high enough to produce complex rheological
geometries and no deviations were expected in the results due to the
intrinsic roughness of the 3D printed geometries.

2.3 Numerical calculations

Finite Element calculations were done using COMSOL
Multiphysics® [46] to complement the experiments. Performing
numerical calculations in addition to experiments was necessary
given the limitations inherent in the printing technique, as it was
not feasible to fabricate all the different types of custom geometries and
to experimentally vary all the geometric parameters. To simplify the

calculations, the ridged geometries were approximated as infinitely large
parallel plate geometries. A depiction of the computational domain is
shown in Supplementary Figure S1 in SupplementaryMaterial.We also
performed mesh independence tests, see e.g. results in Supplementary
Table S1. We performed simulations for varying S, D, and θ, while
keeping the gap size Rgap,0 (i.e., the distance between the outer wall and
the tip of the ridges) and ridge width W constant and equal to the
experimentally used values. We then impose a constant velocity
difference Δv between the inner and outer wall, and solve the Stokes
equation (hence, ignoring inertial effects) numerically using quadratic
quadrilateral elements for the velocity components and linear elements
for the pressure. Since the flat plate limit does not account for the finite
curvature of the actual CC geometry, we performed additional
simulations for curved geometries with horizontal and vertical ridges
to quantify the effects of curvature (see Supplementary Figures S2, S3).
These simulations show that for the horizontal ridges, the effects of
curvature are negligible for the used gap size, while curvature effects for
the vertical ridges become significant at ridge depths D > 1 mm, and at
larger ridge spacings, as depicted in Supplementary Figure S3. We
expect that curvature effect for the angled ridges can be interpolated
between these two limiting cases. In the current study, all the angled
ridged geometries have a ridge depth D = 1 mm, which is sufficiently
small to neglect curvature effects.

2.4 Determination of penetration depth

When a Newtonian fluid is sheared between two surfaces at a
certain average shear rate _γ, a shear stress σ is generated and it can be
defined as σ � η _γ, with η being the viscosity of the fluid. The fluid flow
behaviour can be modified using different boundary conditions,
imposed by employing different geometries in a rheometer.
Concentric cylinder (CC) is one of the most commonly used
geometries, where the fluid is sheared in the gap between the inner
and outer cylinder of radius Ri and Ro, respectively. The inner cylinder
is made to rotate at a rotational velocity Ωi in revolutions per second
(rps). The average shear rate _γ, in s−1, is defined as the surface velocity
of the moving inner cylinder divided by the gap size Rgap. It should be
noted that the shear rate is not constant within the gap.

Adhering to Feynman’s approach [47–49] for deriving the final
expression for torque in a concentric cylinder configuration, the
torque M acting across the cylindrical surface is given by Eq. 1,
where ωi is the angular velocity in rad s−1.

M � 4πηωiL RoRi( )2
R2
o − R2

i

where ωi � 2πΩi (1)

The shear force in the azimuthal direction Fshear induced by the fluid
can be expressed as the ratio ofM and the radius of the inner cylinder
Ri. Thus, the shear stress in the azimuthal direction σ can be expressed
as Fshear divided by the surface area of the inner cylinder Ai (Eq. 2).

σ � Fshear

Ai
� M

2πR2
i L

where Fshear � M

Ri

, Ai � 2πRiL (2)

When roughness is introduced into the CC geometry in the form of
ridges (as shown in Figure 1B), both the gap size and shear rate within
the gap are not constant. Additionally, the flow profiles penetrate in the
space between the ridges. We now make the step to quantify this flow
profile penetration not via the flow field, but via the effect it has on the
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effective stress on the wall.We denote the extent of this penetration by a
parameter called the penetration depth δ, similar to the protrusion
height as mentioned in previous studies [19, 29, 34, 35, 50, 51].
Typically, the penetration depth is determined by inducing fluid
flow over a flat surface with ridges on it. In their theoretical
investigation, Bechert and coworkers [19] simulated velocity
distributions for various ridge configurations and found that the
apparent origin of the velocity profile in between the ridges lies in
the gap between the inner flat surface and the tip of the ridge. Lee and
Lee [51] experimentally investigated the flow structures inside the semi-
circular ridges. They referred to the distance between this origin and the
ridge tip as the protrusion height. Another equivalent way to determine
penetration depth is to create ridges on a concentric cylinder geometry
and introduce continuous flow by rotating the ridged geometry with
respect to the fluid.We use the secondmethod to generate differentflow
patterns. Due to the introduction of the ridged geometries, the effective
gap size Rgap changes as a function of the ridge spacing S and the ridge
depth D, as denoted in Eq. 3.

Rgap S, D( ) � Ro − Ri − δ( ) (3)

where Ri is assumed to be identical to the radius of the inner cylinder
without the cutouts. Due to the penetration of the flow in between
the ridges, the effective gap size increases. The ridged geometry can
thus be considered similar to the standard solid CC geometry with
an effective inner radius Ri,eff = Ri − δ (a similar equivalence was
reported by Luchini et al. [34] for a flat corrugated wall).

For every geometry with a particular ridge spacing S and ridge
depth D, the penetration depth δ can be measured from standard
rheological experiments. Rewriting the torque-rotation rate
conversion equation (Eq. 1), we get

M � 4πηωiL RoRi,eff( )
2

R2
o − R2

i,eff

where Ri,eff � Ri − δ (4)

In this equation, Ri, Ro, L are known from the geometry and Ωi, M
were measured from the rheological experiments. η was determined
by fitting the flow curves in a non-ridged (solid) CC geometry with
σ � η _γ. In this way, the penetration depth for every rotation rate can
be obtained by solving Eq. 4. For Newtonian fluids, the penetration
depth does not depend on the rotation rate Ωi, therefore, we
averaged the penetration depths corresponding to ten higher
rotation rates to give a single penetration depth value for a
geometry with a specific ridge spacing and ridge depth.

From the simulations in the flat plate limit, the penetration
depth was calculated from the average shear stress on the outer wall
using σ � η _γ � ηΔv/(Rgap,0 + δ).

3 Penetration of the flow profiles
between the ridges

We investigated the effect of different ridged geometries on the flow
behaviour of a Newtonian fluid. We numerically predicted the flow
profiles for the three cases of ridged geometries: horizontal, vertical and
angled ridges using Finite Element simulations. In the horizontal ridge
case, the imposed flow direction is parallel to the ridges and the flow is
purely in the azimuthal direction (i.e., ϕ-direction) while in the vertical
ridge case, the azimuthal flow is perturbed by the ridges, and the flow

includes a radial velocity component. Finally, in the angled ridge case,
the ridges exert an axial force on the fluid, therefore, there is also an axial
velocity component (Figure 2C).

From the azimuthal velocity profiles in horizontal ridged
geometry (Figure 2A) and angled ridged geometry (Figure 2B), we
observed that the fluid flow profile penetrates into the gap between the
ridges up to a certain extent. The extent of this penetration is denoted
by a parameter that we call the penetration depth δ. This flow profile
penetration influences the torquemeasured on the rheometer, thus, by
measuring the torque, we can quantify the penetration depth as
described in Section 2.4. We then characterised the penetration
depth for different ridge spacing, ridge depth and ridge angles.

In the following subsections, we first evaluated the penetration
depth for the two limiting cases of horizontal and vertical ridges,
i.e., with ridges that are at 90° and 0° angles with respect to the vertical
axis, respectively, both from experiments and numerical simulations.
In the last subsection, we investigated the effect of different ridge
angles on the penetration depth in the case of angled ridges.

3.1 Limiting case I: horizontal ridges

We measured the flow curves from the rotational tests on
multiple horizontal ridged geometries. On a log-log scale, the
torque M increased linearly with the rotation rate Ω for over
four orders of magnitude in rotation rate (Figure 3A), indicating
that the presence of ridges did not change the Newtonian shear rate
dependence of the flow. To investigate the variations due to the
different roughness parameters, we looked more closely on a linear
scale (Figure 3B) and found that the measured torque decreases with
increasing ridge depths D for a given ridge spacing S. This is due to
the influence of the flow profile penetration on the measured torque,
i.e., the penetration depth δ increases with ridge depth, leading to an
increase in the effective gap size (per Eq. 3) and a decrease in the
measured torque. It should be noted that in all these experiments,
the rotation rates were low enough to avoid Taylor vortices.

Figure 3C shows the penetration depth, obtained from the
measured torques using Eq. 4, as a function of D for various ridge
spacings S. We see that δ first increases with D, but then levels off to a
plateau that depends on the value of S. Hence, the flow can penetrate
between the ridges only up to a certain maximum depth, δ∞, which
increases approximately linearly with the ridge spacing S (Figure 3D).

To complement the experiments and to gainmore insight into the
flow profile penetration, Finite Element simulations were performed.
The geometries were recreated as described in Section 2.3, and the
curvature of the geometry was neglected. For this geometry, the only
non-zero velocity component is in the azimuthal (ϕ) direction, while
all gradients in the ϕ-direction are zero. The pressure was also
constant in this case. The simulated penetration depths as a
function of different ridge depths and ridge spacings are plotted in
Figure 3C as dashed lines. The experimental and simulation results
match quite well, especially at largerD. Similar to the experiments, the
δ values plateau after a certain ridge depth; and the plateau value δ∞
exhibits a linear increase with S, see Figure 3D.

For a solid cylinder case (S = 0), δ∞ must be zero as the fluid
cannot penetrate into a solid cylinder, and therefore, we would
normally expect δ∞ to scale linearly with the ridge spacing and
the linear plot (dashed line in Figure 3D) to extrapolate to the
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origin. However, this is not observed and δ∞ seems to deviate from
the linear dependence on S at small ridge spacings below 0.5 mm. This
is because in this small S limit, the ridge spacing becomes comparable
to the ridge width, which also starts to play a role in determining the
penetration depth. Strikingly, the normalised penetration depth δ/δ∞
for different ratios of D/S collapses onto a master curve (Figure 3E).
The collapse to the master curve is observed to be satisfactory for the
numerical data, whereas it is poor in case of the experimental data,
particularly in the small D limit. The underlying reasons behind this
observation are discussed in the subsequent paragraph. This master
curve can be described by a simple exponential function:

δ

δ∞
� 1 − e−kD/S with k ≈ 5.68 (5)

The initial part of this master curve, corresponding to smallD or large S,
can be linearized to give δ/δ∞ ≈ kD/S. It is expected that δ→ D in this
regime, so that we expect k = 1/k2, with k2 being the slope of the curve of
δ∞ versus S.We find 1/k2≈ 5.88 fromFigure 3D,which is indeed close to
the value found for k. This can also be understood as follows: a static
boundary layer is created due to the presence of the small ridges. The
thickness of this static boundary layer is D − δ and it goes to zero as the
spacing between the ridges becomes extremely large. The prefactor k
takes into account the other geometric effects, most likely the effect from
the other length scale, i.e., the ridge widthW. At a constant ridge spacing
S, the thicker the ridges, the lower will be the flow penetration, hence, δ
will be smaller. We expect that as the ridge width increases, δ will be
small and hence, δ∞ will also drop. If the normalised penetration depth
δ/δ∞ decreases, then k increases. But if both δ and δ∞ decrease by the
same factor, then δ/δ∞ will not change, hence, k will not change.
Therefore, k can bewritten as a function of normalizedW as: k= f (W/S).

The deviations of the experimental results from that of
simulations are more pronounced at smaller D, and this is a
consistent deviation for all ridge spacings. In order to understand
these deviations, we explored different possible sources of error.
First, we tried to reduce the end effects from the top and bottom
conical parts of the geometry. Their contribution to the torque was
calibrated on a solid cylindrical geometry and the torques for the
ridged geometries were corrected for these end effects. However,
deviations were still observed, suggesting the presence of additional
sources of error. For instance, small inaccuracies during the
fabrication of the geometries have a bigger influence at smaller
cutouts. Likewise, the measurement of the actual dimensions of the
3D printed geometries such as the inner and the outer radii, as well
as the length of the geometries is challenging due to the small size of
the geometries. Additionally, boundary conditions like wall slip are
uncontrolled in the experiments, especially for large S and small D,
which may further contribute to small errors. Another possibility is
that small air bubbles may be trapped between the ridges, especially
for small ridge spacings, and can lead to occasional deviations in the
results. Finally, we want to highlight the additional physics that can
come into play at ridge spacing below 0.5 mm (small S limit), where
the ridge spacing becomes comparable to the ridge width. The ridge
width is another important length scale that is relevant in case of
ridges with small spacings. However, the analysis of the effect of
different ridge width is beyond the scope of the present work. Due to
these reasons, we took the plateau value of delta (δ∞) in
experimental results as the average of the last three δ values. By
linking the experiments and the simulations, it is possible to
determine how changing the D and S of the ridges changes the
penetration depth δ.

FIGURE 2
Simulated flowprofiles of a Newtonian fluid in different ridged geometries: (A) horizontal (B, C) angled ridgeswith θ = 45°. Colourbar shows the velocity
in the respective directions indicated by the subscript (ϕ for azimuthal and z for axial). Here the azimuthal and axial velocities are of the order of ~ 10–3 and 10–4

inm s−1, respectively. The axial velocities in (C) are negativewithin the ridges and are positive outside the ridges, indicating that the net flux is zero. For all these
calculations, the curved geometries were approximated as flat (infinite radius) parallel plate geometries.
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3.2 Limiting case II: vertical ridges

The second limiting case for patterned walls is a cylindrical
geometry with vertical ridges. Here, we show only the numerical
results in the limit where the curvature can be neglected (i.e., for
large cylinder radii), see Section 2.3. In this case, the fluid velocity
has components both in the ϕ and the r-directions, and gradients in
the z-direction are zero.

The penetration depth for vertical ridges with different ridge
depths and ridge spacings were calculated as described in Section 2.4
and plotted in Figure 4A. The flow profiles penetrate more deeply in
between the ridges with increasing ridge depth and spacing,
therefore, δ increases. This behaviour is similar to what was
observed in the case of horizontal ridges, however, the
penetration depth values in vertical ridges are smaller than for
the horizontal ridge case because the main flow direction is
perpendicular to the ridges while for the horizontal ridges, the
flow is along the ridges. In contrast to the horizontal ridge case,
we see two (quasi-)plateau values of δ as a function of D: the first
plateau value is at aroundD = 0.5 mm, where the ridge depth is close
to the ridge width and most likely, the plateau value is attributed to
the influence of the ridge width. The second plateau value is at large

ridge depths similar to what was observed in the case of horizontal
ridges. We consider the second plateau value to be δ∞.

δ∞ increases linearly with the ridge spacing S (Figure 4B), but
the slope is about 2.5 times smaller in comparison to the horizontal
ridge case. Additionally, the linear plot of δ∞ against S does not
precisely extrapolate to the origin and there seems to be non-linear
dependence at small ridge spacings below 0.5 mm.

The normalised penetration depth δ/δ∞ for different ratios ofD/S
collapses onto a master curve (Figure 4C). However, a single
exponential fit does not work so well compared to what was seen
in the horizontal ridge case, suggesting a two-step function fit. This is
most likely due to the presence of two plateaus in the δ vs.D variation
(Figure 4A). For S≫ D, i.e., for small values of D/S, we expect δ→ D;
the plot of δ/δ∞ againstD/S is linear in this region and the slope of this
plot is inversely related to the slope of the variation of δ∞ with S.

Finally, it isworthnoting that the relationship between δ∞ and S could
potentially depend on the ridge widthW and the gap size Ro − Ri. These
are a few additional length scales to explore, which may give different
regimes (for example: two plateau values in δ vs.D plot). The current plots
shown are for S≫ W. This is a substantially general rescaling that to our
knowledge has not been reported in the literature, and it is helpful to get a
better understanding of the angled ridge case, as discussed below.

FIGURE 3
Experimental flow curves in (A) double logarithmic scale and (B) linear scale of castor oil measured in different horizontal ridged geometries. For all
geometries, S = 3 mm and D is indicated in the legend. (C) Variation of δ in a horizontal ridged geometry with ridge depth for different ridge spacing
(legend); experiments: symbols + lines, simulations: lines. (D) Plateau value of δ as a function of ridge spacing. A linear fit through the origin gives a slope of
0.17. (E)Master curve showing the collapse of the curves onto one exponential function (Eq. 5) when plotted as normalised δ versus normalised ridge
depth; ridge spacing is indicated in the legend; experiments: symbols, simulations: lines.
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3.3 Angled ridge case

Having studied the two limiting cases, we now investigate the
influence of geometries with ridges at finite angles on the flow behaviour
of a Newtonian fluid. All the angled geometries have the same ridge
spacing and ridge depth, and the ridge angles vary from 0° to 60° with
10° intervals. For different angles, the torque required to sustain a
certainΩ shows a linear dependence on the rotation rate even at higher
rotation rates, indicating that the angled ridges do not affect the
Newtonian shear rate dependence of the flow (Figure 5A). However,
the slope of the torque versus rotation rate changes as a function of ridge
angle (Figure 5B), indicating that the extent of flow profile penetration
into the gap between the ridges changes with the angle. To examine the
effect of different angles, we calculated the penetration depths from the
M vs. Ω relationship as previously done for the limiting cases.

Interestingly, δ shows a monotonic dependence on the ridge
angle (Figure 5C) and increases as θ increases, with the largest δ for
the horizontal ridges (θ = 90°). There are a few outliers at smaller
ridge angles. One of the plausible reasons is δ is derived from the
assumption that there is a shear stress only in the azimuthal
direction. In reality, there is a normal force (and hence, a shear
stress in the axial direction) and it is not clear whether the normal
force is completely decoupled from the azimuthal shear stress.

We compare our experimental findings with numerical results.
In the case of angled ridges, the velocity has non-zero components in
the ϕ, r, and z-directions, and also the velocity gradients in all three
directions are non-zero, so, a full 3D calculation is necessary. As we
restrict ourselves to a flat geometry (corresponding to large cylinder
radii), we can make use of symmetries to limit the computational
domain. In particular, we model a domain with five ridges (see

FIGURE 4
(A) Variation of simulated δ in a vertical ridged geometry (considered as flat plate) with ridge depth and different ridge spacing (legend). Here we see a
first plateau at the dashed line, followed by a second plateau at large ridge depths. (B) Plateau value of δ as a function of ridge spacing (slope = 0.065). (C)
Normalised δ as a function of normalised ridge depth; ridge spacing is indicated in the legend.

FIGURE 5
Experimental flow curves in (A) double logarithmic scale and (B) linear scale of castor oil measured in angled ridged geometries with ridges at various
θ (indicated in the legend) with respect to the vertical axis. For all geometries, ridge spacing S = 2 mm and ridge depth D = 1 mm. (C) Variation of δ as a
function of the ridge angle. All the simulation predictions are for a flat geometry corresponding to large cylinder radii, and with S = 2 mm and D = 1 mm.
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Supplementary Figure S1A) and impose a zero-outflow condition at
the bottom and top of the domain, and periodic boundary
conditions along the azimuthal directions. To reduce the
influence of end effects, we exclude the top and bottom regions
when calculating the average shear stress on the wall.

As shown in Figure 5C, the simulated δ values for angled ridges in
the flat plate regime exhibit a similar trend as the experimental values,
with δmonotonically increasing as the angle increases from 0° (vertical)
to 90° (horizontal). However, the experimental values are systematically
higher than the simulated ones, with an offset of ~ 0.1 mm. It is not
clear what determines this offset; potential factors include partial wall
slip (which would reduce the measured torque) or curvature effects.
Although we have previously seen that the effect of curvature is
negligible in horizontal and vertical ridges, it is highly unlikely that
the curvature will have an effect in the case of angled ridges (refer to
Section 2.3 for details). Likewise, the presence of even a small amount
of wall slip suppresses the shear rate because in such a slip situation,
there would be a large effective gap size which lowers the torque. A
lower torque would then result in higher penetration depth, as
observed in the case of experiments. It is important to note that the
flows in two directions (azimuthal and axial) are independent of each
other; the superimposition of an axial flow along the symmetry axis of
the rotating inner cylinder would not change the expression for the
torque M. Such axial flow components cannot be the source of the
discrepancy either.

4 Conclusion

Our work presents a novel approach to investigate wall
roughness boundary conditions by considering a penetration
depth δ. We have introduced rough textured surfaces in the form
of ridged geometries that can be readily fabricated using 3D printing
technique. This way of patterning offers the freedom to explore a
wide range of wall roughness features that can be easily characterised
to study their influence on the fluid flow behaviour.

We have considered three types of ridged geometries: one
featuring horizontal ridges, another with vertical ridges and a
third with angled ridges on the wall of the geometry. These
ridged geometries introduce (an anisotropic) wall roughness,
leading to non-trivial boundary conditions for the fluid flow. We
have demonstrated that this roughness has an influence on the flow
behaviour in case of simple Newtonian fluids even at a low Reynolds
number. More specifically, due to the presence of ridges, the flow
profiles penetrate in between the ridges and the extent of this
penetration can be captured as penetration depth δ. The
penetration depth captures the effective behaviour of the
decaying fluid velocity profile into the roughness. We have
measured the dependence of this penetration depth on various
roughness parameters such as D, S, and θ by using standard
rheological measurements on Newtonian fluids. For horizontal
ridges with varying depth and spacing, we show that the
penetration depth collapses onto a simple exponential master
curve δ = δ∞(1 − e−kD/S). A similar variation is observed for
vertical ridges, but the magnitude of the penetration depth is
smaller than for the horizontal ridges. The penetration depth for
angled ridges is found to lie quantitatively between that of horizontal
and vertical ridges. In the context of a concentric cylinder geometry,

our work indicates that the wall roughness can be effectively
modelled by a simpler no-slip wall condition at a different
effective radius. Numerical simulations support our experimental
observations.

As a follow-up work, we intend to use these ridged geometries in
a rheo-MRI setup to measure fluid velocity profiles, with a particular
emphasis on non-Newtonian fluids. This study will enable us to
delve deeper into understanding the relationship between different
velocity profiles in diverse fluids and their consequent effects on the
overall fluid flow.
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