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In recent years, a surge in malicious network incidents and instances of network
information theft has taken place, with malware identified as the primary culprit.
The primary objective of malware is to disrupt the normal functioning of
computers and networks, all the while surreptitiously gathering users’ private
and sensitive information. The formidable concealment and latency capabilities
of malware pose significant challenges to its detection. In light of the operational
characteristics of malware, this paper conducts an initial analysis of prevailing
malware detection schemes. Subsequently, it extracts fuzzy features based on
the distinct characteristics of malware traffic. The approach then integrates traffic
detection techniques with Type II fuzzy recognition theory to effectively monitor
malware-related traffic. Finally, the paper classifies the identified malware
instances according to fuzzy association rules. Experimental results showcase
that the proposed method achieves a detection accuracy exceeding 90%, with a
remarkably low false alarm rate of approximately 5%. This method adeptly
addresses the challenges associated with malware detection, thereby making
a meaningful contribution to enhancing our country’s cybersecurity.
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1 Introduction

The Internet hosts various forms of malware, including botnets, network worms, and
malicious phishing websites. This category of malware exhibits distinct characteristics of
malicious network behaviors, such as spam dissemination, the presence of malicious
crawlers, dos attack, and port scanning. These activities have a detrimental impact on
the network data security of both users and enterprises, posing a significant threat to the
network information security of society and the country. Malware has the capability to
establish a persistent, malicious controlling network topology that is highly contagious.
Port-scanning malware conducts polling attacks on the ports of target computers,
particularly targeting commonly used 80. Once the port is attacked and occupied by
malware, it significantly disrupts the normal operation of web pages and hampers users’
regular Internet activities.

Computer users frequently navigate through a substantial number of web pages during
their internet browsing activities. Consequently, numerous malware instances are deployed
across a plethora of websites. This situation exposes users to considerable risks as they
traverse the web, increasing the likelihood of falling into traps that can result in the
compromise of their information, privacy, and property. This phenomenon poses a
significant threat to both social and national internet security, eroding the trust of the
majority of internet users in the national internet security system.
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Simultaneously, the structure of internet cybersecurity is
intricate, making it challenging to precisely characterize the
evolving features of data traffic in certain research fields due to
the inherent uncertainty in research outcomes. Model mathematics
emerges as a solution to address this challenge. The primary role of
fuzzy mathematics is to effectively blur the boundaries of
dichotomous problems. Consequently, this paper employs fuzzy
recognition methodology for the detection of malware traffic in
network communication.

The article has two innovative points:
Firstly, it involves conducting a statistical analysis of malware

traffic through the application of fuzzy recognition theory.
Utilizing fuzzy membership functions, a substantial volume of
traffic is assessed, and the ambiguity characteristics are employed
to extract the value range denoting the maliciousness of
each traffic.

Secondly, the malware detection technique, supported by the
innovative fuzzy mathematics theory, is aptly tailored for the
demands of the current Internet era. Furthermore, tools for
malware identification based on fuzzy recognition are anticipated
to gain widespread adoption among a diverse range of cybersecurity
enterprises and professionals, fueled by continuous innovation and
improvement.

The remainder of this article is structured as follows. Section
2 is the related works of this paper and introduces the theoretical
foundation and methodology of this paper. Section 3 describes
Malware Feature Extraction. Section 4 describes Malware
identification and classification. Section 5 discusses the
experiments and experimental results. Section 6 concludes the
paper with some final remarks and future research directions.

2 Related works

With the rapid proliferation of malware, traditional static
analysis techniques are no longer sufficient to meet the demands
of detection. Consequently, the adoption of fuzzy recognition
theory for classifying and detecting malware has become
increasingly prominent. An illustrative example of this is the
application of fuzzy recognition to analyze network patterns and
behavioral styles. Fuzzy mathematics [1] represents a
contemporary branch of mathematics that emerged in the
20th century. It relies on fuzzy concepts to enable the
estimation and computation of subjects that are not readily
addressed by classical mathematics.

In some foreign countries, current practices involve employing
two-way traffic analysis [2] and sensory inspection of network data
packets [3] to detect specific states of malware, such as inward
scanning, exploits, egg downloading, outward parallel sessions, etc.
When these particular states align with predefined rules, they are
identified as malicious traffic.

In certain security domains in China, the analysis of malware
traffic predominantly relies on the WinPcap [4] function library,
supplemented by external dependent software and applications.
Enterprises leverage their internal functions. An application
designed for monitoring network traffic or a user-friendly
desktop application is developed in alignment with the

specified software system functionality and the assessment of
malicious traffic [5]. Subsequently, the proposed scheme outlines
the specific system structure and optimization process diagram
for each module.

In general, numerous cybersecurity projects, both domestically
and internationally, have proposed effective solutions to mitigate
excessive reliance on source IP, target IP, and the number of host
ports during traffic monitoring. This particular scheme involves
analyzing whether the uplink effective load and total downlink load
of Internet traffic contain distinctive signatures or markers
associated with known malicious programs or software for traffic
classification [6]. It subsequently calculates fuzzy feature values,
thereby achieving a high level of accuracy to some extent. Despite its
accuracy, this solution entails a high analytical cost and demands
significant effort. To alleviate resource consumption in terms of cost,
time, and space, it can be synergistically employed with already
analyzed and low-cost monitoring methods. This way, it can
efficiently filter out straightforward and easily analyzable traffic
in the initial stages.

In addressing the aforementioned challenges, this article
employs malware detection tools grounded in fuzzy
mathematics as the theoretical foundation, with fuzzy
recognition theory serving as the detection method. Through
extensive experimentation involving data statistics and analysis
of data traffic packet captures, the study aims to offer practical
assistance in enhancing the security of personal computers or
enterprise extranets. The objective is to furnish efficient tools for
inspecting malware traffic and analyzing data packets. By
scrutinizing traffic characteristics, along with the expansive
range of malware traffic, and employing fuzzy membership
function calculations, the proposed approach aims to
effectively and efficiently identify malware within IoT or
personal computer network cards.

3 Malware feature extraction

3.1 Feature classification

Cluster analysis serves as a pivotal method in fuzzy feature
classification. Cluster analysis serves as a valuable tool in identifying
fuzzy patterns and similarities within data, providing a means to
navigate the inherent ambiguity and uncertainty associated with the
classification of such fuzzy features. Additionally, cluster analysis
aids in the exploration of the intrinsic structure and patterns
embedded in the data. This facet is particularly crucial for the
classification of fuzzy features, as they may be inherent in the
data’s structure and can be better comprehended and recognized
through the clustering process.

Moreover, the method’s applicability to large-scale datasets
further enhances its significance in the realm of fuzzy feature
classification. These attributes collectively render cluster analysis
advantageous and highly applicable in addressing the challenges
posed by fuzzy features in classification tasks.

In this experiment, the classification of traffic features is
categorized into five intervals based on the similarity of features
and their close relationships: malicious traffic, approximate
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malicious traffic, no obvious features, approximate normal traffic,
and normal traffic. Striking a balance is crucial; excessive intervals
(>5) can diminish recognition accuracy, leading to frequent results

spanning two intervals simultaneously, thereby introducing
ambiguity. Conversely, few classification intervals (0–5) can also
elevate recognition ambiguity, making it challenging to clearly
discern the malicious nature of the traffic. Achieving an optimal
number of intervals is key to ensuring accurate and unambiguous
traffic feature classification results.

KM fuzzy clustering [7] classifies the feature classification of
malicious traffic into five intervals. This method groups the values
recorded under the same quantitative feature into the target dataset. For
each interval, it extracts the maximum and minimum values, using the
minimum value as the closed left endpoint and the maximum value as
the closed right endpoint of the interval. A comprehensive analysis and
summary of numerous sets of malicious data have been conducted, as
illustrated in Table 1. The data characteristics represented are: total
number of data packets, number of uplink data packets, number of
downlink data packets, number of uplink loads, number of downlink
loads, total uplink load, total downlink load, flow duration, uplink data
Avg, downlink data Avg, Uplink minimum load, downlink minimum
load, uplink maximum load, downlink maximum load, uplink load
variance, downlink load variance, uplink load Avg, downlink load Avg,
uplink minimum data, downlink minimum data, uplink maximum
data, downlink maximum data, uplink data Variance, downward
data variance.

3.2 Feature extraction

3.2.1 Feature calculation
Feature extraction represents a pivotal step in fuzzy recognition.

To extract fuzzy features, the initial task involves determining the
weight of each traffic feature. Subsequently, an extensive
examination and analysis of the range of each feature across all
malicious traffic instances are conducted using big data. The testing
data for this experiment is sourced from a malware simulator, which
generates malicious traffic. This traffic is then combined with
normal traffic. The membership function is pre-established based
on the characteristics of traffic emitted by known malware, resulting
in a unique function. Following this, the dataset is utilized for
testing, aiming to identify the number of malicious traffic
instances, analyze the type of malware, and ultimately calculate
the proportion and false alarm rate.

In the experimental section, we scrutinize the features of captured
malicious network samples and public datasets, extracting distinct
characteristics of malware traffic. These characteristics encompass
the five-tuple [8], packet size, port number, DNS response time, and
data packet load. Each type of malware exhibits its unique traits. During
the statistical analysis, we filter out all malicious traffic instances,
focusing on extracting abnormal characteristics from malicious
traffic and HTTP network traffic.

This experiment primarily employs the method of fuzzy cluster
analysis for malware identification. In traffic clustering, we utilize
common clustering algorithms such as database scanning, memory
sharing, K-Means, and design pattern [9]. Particularly, when handling
substantial data with high concurrency, the KM algorithm proves
effective in revealing the actual distribution and transmission of traffic.

As a result, the membership function will be translated into
program code, and the likelihood of malicious traffic will be
calculated by executing the program.

TABLE 1 Fuzzy feature range of traffic.

1 (%) 2 3 4 (%) 5 (%)

all_pkts 94.3–100 66.8%–

84.4%
44.1%–

47.1%
18.5–32.7 0–4.2

up_pkts 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_pkts 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_pl_pkts 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_pl_pkts 94.3–100 66.8%–

84.4%
44.1%–

47.1%
18.5–32.7 0–4.2

up_pl_byte 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_pl_byte 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

duration 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_avg_plsize 94.3–100 66.8%–

84.4%
44.1%–

47.1%
18.5–32.7 0–4.2

dw_avg_plsize 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

up_min_plsize 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

dw_min_plsize 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_max_plsize 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_max_plsize 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_stdev_size 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_stdev_size 94.3–100 66.8%–

84.4%
44.1%–

47.1%
18.5–32.7 0–4.2

up_avg_ipt 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

dw_avg_ipt 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

up_min_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

dw_min_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7

up_max_ipt 94.3–100 66.8%–

84.4%
44.1%–

47.1%
18.5–32.7 0–4.2

dw_max_ipt 218–230 122.8%–

160%
75.9%–

97.2%
25.1–58.2 0–22.2

up_stdev_ipt 97.2–99.9 92.9% 35.7%–

42.4%
27–25.2 0–8.5

dw_stdev_ipt 84.7–100 66.7%–71% 38.5%–

52.8%
22.3–36.3 0–9.7
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We can summarize that there are three types of fuzzy
membership functions with a normal distribution:

A x( ) 1 x ≤ a

e
− x−a( )

δ x > b

⎧⎨⎩ (1)

A x( )
1 x ≤ a

e
− x−a( )

δ x > a

⎧⎨⎩ (2)

A x( ) 1 x ≤ a

e
− x−a( )

δ x > b

⎧⎨⎩ (3)

In this experiment, the network is modeled, analyzed, and
detected based on the ecological characteristics of malicious
traffic. These ecological characteristics encompass the utilization
of commands to control communication traffic, which is generated
during the propagation of the network and when the malware
reaches a certain scale.

During the generation and dissemination of malicious traffic by
malicious application software, fuzzy mathematics establishes its own
models and conducts extensive calculations and statistical analysis on

the fuzzy characteristics of network data structures. By considering the
fuzzy characteristics specific to malicious network traffic, we ultimately
perform clustering on such traffic. Leveraging big data investigation
methods, we monitor malicious network traffic to detect common
malicious software and applications. The fuzzy recognition scheme,
based on cluster analysis, utilizes fuzzy clustering to analyze malware
and identify the technical core of the operating system. Employing high-
speed mirroring [10] for saving malicious network traffic, it acts as a
snapshot, subsequently stored on the computer’s hard disk. This traffic
is then input into a malicious network identification system based on
cluster analysis. The system filters, monitors, and analyzes the traffic,
extracts features, and finally conducts cluster analysis to determine the
accuracy or success rate of all enterprise or personal traffic received.

3.2.2 Flow characteristics
The optimal number of classifications is a crucial concept in data

feature segmentation within fuzzy recognition theory. Given the
intricate nature of traffic features, different characteristics exhibit
variations in their thresholds after the application of the fuzzy
clustering analysis algorithm. The optimal number of

TABLE 2 Traffic feature range and weight.

Weights (%) Upper range (%) Lower bound of range (%) Optimal number of classifications

all_pkts 84.4 44.1–47.1 18.5–32.7 4

up_pkts 31 75.9–97.2 25.1–58.2 3

dw_pkts 92.9 35.7–42.4 27–25.2 5

up_pl_pkts 71.3 38.5–52.8 22.3–36.3 4

dw_pl_pkts 84.4 44.1–47.1 18.5–32.7 5

up_pl_byte 45 75.9–97.2 25.1–58.2 3

dw_pl_byte 92.9 35.7–42.4 27–25.2 3

duration 71 38.5–52.8 22.3–36.3 4

up_avg_plsize 84.4 44.1–47.1 18.5–32.7 5

dw_avg_plsize 21.1 75.9–97.2 25.1–58.2 5

up_min_plsize 92.9 35.7–42.4 27–25.2 3

dw_min_plsize 71 38.5–52.8 22.3–36.3 3

up_max_plsize 36.2 75.9–97.2 25.1–58.2 4

dw_max_plsize 92.9 35.7–42.4 27–25.2 5

up_stdev_plsize 1 38.5–52.8 22.3–36.3 4

dw_stdev_plsize 3.3 44.1–47.1 18.5–32.7 5

up_avg_ipt 9.1 75.9–97.2 25.1–58.2 3

dw_avg_ipt 92.9 35.7–42.4 27–25.2 4

up_min_ipt 71 38.5–52.8 22.3–36.3 5

dw_min_ipt 71 38.5–52.8 22.3–36.3 3

up_max_ipt 84.4 44.1–47.1 18.5–32.7 3

dw_max_ipt 7.4 75.9–97.2 25.1–58.2 5

up_stdev_ipt 92.9 35.7–42.4 27–25.2 3

dw_stdev_ipt 1 38.5–52.8 22.3–36.3 4
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classifications is defined as the number at which the threshold is
maximized. At this point, the membership function is most accurate
in determining the feature, resulting in the highest fuzzy recognition
rate. Subsequently, we calculate the similarity of each feature after
determining the optimal number of classifications for individual
features. Ultimately, the optimal number of classifications for the
entire set of traffic features is determined using the maximum
number algorithm, resulting in five intervals.

To align with the feature function described in fuzzy
mathematics, this experiment aims to automatically identify fuzzy
features, learning their range and weight, as illustrated in Table 2.

3.3 Feature membership function

Since malicious traffic generated by different malware exhibits
significant variations in the range of fuzzy features, the fuzzy
features’ membership function is fine-tuned with the aid of artificial
learning. Leveraging an extensive analysis of massive malicious traffic
techniques, we scrutinize and compare identical features to ascertain the
average value and range of each fuzzy data level. Subsequently, we
incorporate this information into the standard fuzzy membership
function. Through program recognition and the application of a
series of mathematical algorithms, we amalgamate normal
distribution characteristics with the membership function of fuzzy
features. Each traffic encompasses dozens of fuzzy features, and
distinct types of traffic are associated with unique fuzzy features. To
illustrate, consider the following fuzzy feature along with its
corresponding membership function:

up_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60≤ x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

dw_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

up_pl_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

dw_pl_pkts:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Upstream Payload Variance:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Downstream Payload Variance:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

In the traffic analysis of certain software, the time interval
proves to be a crucial feature. Therefore, it is essential to examine
the fuzzy feature of time intervals. This involves calculating the
minimum, maximum, average, and variance of the uplink and
downlink time intervals. Subsequently, the weight of the time
interval in the overall fuzzy recognition feature is determined
through computation:

Upstream Mean Time Interval:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

1 81≤ x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Downstream Mean Time Interval:

W x( )

0 0≤ x ≤ 23.7

1 − e −x − 5
10

( ) 23.7≤ x ≤ 41.2

1 − e − x
8( ) 41.2≤ x ≤ 60

e − x−5
6( ) 60< x ≤ 81

e −x−5
6( ) 81< x ≤ 100

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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4 Malware identification and
classification

4.1 Fuzzy recognition process

Firstly, in fuzzy recognition theory, the identification process
begins with defining the object to be recognized. Subsequently, the
fuzzy characteristics of the target object are analyzed. Finally,
ambiguity is calculated through functions, and the result interval
is determined to achieve the recognition and classification of
malware. For the experiment, the identification process is divided
into the following steps:

1. Identifying the target object involves the initial step of capturing
and filtering data packets that satisfy specific identification criteria.
Subsequently, the traffic is regarded as the object of identification
in accordance with the five-tuple principle.

2. Conducting fuzzy feature calculation and classification
involves the determination of fuzzy features within the data
flow. Subsequently, cluster analysis is applied to ascertain the
optimal number of interval classifications for each identified
feature. Ultimately, this process culminates in the
establishment of classification intervals for the entirety of
the fuzzy recognition procedure.

3. Following the establishment of classification intervals, the
evaluation of fuzzy features involves assessing the degree of
variation using a normal distribution. Employing the fuzzy
membership functions derived from the normal distribution,
determine the membership functions for each feature within
the data flow.

4. Upon completing all prerequisites, execute fuzzy recognition
computations within the program. Integrate the interval values
of data flow features and the pre-determined membership
functions of features into the program to achieve
comprehensive fuzzy software recognition.

5. Ultimately, leveraging the fluctuation range of recognized data
flow features, proceed with the identification and classification
of malicious software.

4.2 Type I fuzzy recognition

Fuzzy recognition theory posits that the attributes of the object
undergoing recognition exhibit fuzziness throughout the
recognition process. In other words, the standard fuzzy model is
inherently fuzzy. Type I fuzzy recognition theory involves the
manual determination of the variable range of data characteristic
ambiguity. This is achieved through human learning and
experiential judgment, leading to the subdivision of intervals for
data characteristics. By iteratively tuning and calculating, we identify
the maximum threshold through cluster analysis, facilitating
subsequent stages of identification.

Type I fuzzy recognition theory focuses on the proximity of data
features. The proximity of fuzzy sets is inversely proportional to the
size of the outer product: the closer the fuzzy set, the smaller the
outer product. Conversely, the larger the inner product, the closer
the fuzzy set. Hence, closeness serves as a metric to depict the
similarity between two fuzzy sets.

The algorithmic principles guiding the design of the first type of
fuzzy recognition theory include:

1. Maximum Membership Principle;
2. Threshold Principle; This fuzzy algorithm employs a fuzzy

decision-making method to prescribe a specific design plan,
addressing issues that may arise in the current or future
selection of the optimal plan. The objective of fuzzy
decision-making [11] is to rank objects in the domain by
considering their superiority and inferiority, or to choose a
satisfactory plan from the domain using a predefined method.
Ultimately, the application of fuzzy decision-making is
specifically manifested in the realms of scientific technology
and economic management.

4.3 Type II fuzzy recognition

In practical datasets, instances often emerge where data display
ambiguity and uncertainty. Traditional binary classification
methods may fall short in effectively addressing such
complexities. The Type II fuzzy recognition theory excels in
handling issues related to fuzziness and uncertainty, providing a
robust framework for the classification and recognition of data
characterized by fuzziness.

In intricate scenarios, data features can become highly complex,
posing a challenge for traditional classification methods to adapt
effectively. The Type II fuzzy recognition theory demonstrates
notable prowess in managing large volumes of complex data,
enabling the classification and recognition of extensive datasets.
This capability significantly enhances the accuracy and efficiency of
data processing in such complex situations.

Type II fuzzy recognition theory differs from Type I in that it
mandates that the feature set to be recognized possesses attributes
that either completely belong or do not belong at all. In other words,
there is a stringent [0,1] closed interval constraint between feature
elements and fuzzy sets within the fuzzy model lib. Unlike Type I
recognition, Type II recognition dispenses with the need for fuzzy
cluster analysis, as it eschews artificial feature interval classification.
Instead, it directly determines the membership function based on
the established fuzzy standard model lib, thereby facilitating the
identification process.

The design of Type II fuzzy recognition theory adheres to the
following principles:

1. The Proximity Principle.
2. Multi-characteristic Proximity Principle.

We leverage the fuzzy association rules within Type II fuzzy
recognition theory for the classification of fuzzy features. The
primary objective involves parsing and calculating the entire dataset
of malware traffic using big data techniques. Subsequently, we
determine the degree of membership for each fuzzy feature and
assess fuzzy association rules based on support and trust criteria.

Compared to Type I fuzzy recognition, Type II fuzzy recognition
can adjust recognition methods according to specific situations, better
adapting to different scenarios and requirements, thereby improving the
flexibility and applicability of recognition. Moreover, Type II fuzzy
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recognition methods have relatively lower requirements on hardware
devices and software running memory, making them better suited to
meet the needs in resource-limited environments.

Type II fuzzy recognition introduces a novel concept known as
closeness [12]. In contrast to Type I’s fuzzy recognition theory, Type
II involves the comparison of two fuzzy sets: the model fuzzy set and
the standard fuzzy set. The process entails identifying the affiliation
between these sets, establishing fuzzy subsets, and determining the
closeness between subsets and supersets.

4.4 Malware classification

Following the completion of fuzzy identification on the traffic data
collection, a subsequent analysis is essential to extract malicious traffic
and ascertain the type of malware. In this experiment, the calculation of
the fuzzy degree of trust is conducted based on the fuzzy association
rules outlined in Section 3. Ultimately, the degree of trust, represented
by FConf, is employed for the classification of malware:

Dos attack: The predominant fuzzy feature, given its significant
weight, is the time interval of the traffic. Additionally, the port
number serves as a robust criterion for determining its nature. This
type of malware is classified as C1.

Web crawlers: These malware entities engage in the
unauthorized retrieval of users’ or enterprises’ data through the
transmission of malicious crawler data. Consequently, this type of
malware falls under the classification C2.

Mail interception: This category involves the interception or
camouflage of Internet mail on the designated network card. Hence,
this type of malware is classified as C3.

Phishing websites: This category involves the deployment of
phishing advertisements or the malicious download of phishing
software on specific websites. The primary goal is to illicitly obtain
users’ information, primarily targeting individual users. This type of
malware is classified as C4.

Port scanning: This type of malware engages in extensive port
scanning processes on corporate extranets to identify available ports.
It subsequently floods idle ports with numerous malicious and
invalid data packets, creating confusion in corporate network
data and disrupting the analysis of network traffic. Consequently,
this type of malware is classified as C5.

In addition to the aforementioned malware, there are numerous
comprehensive threats, including Pajio and Ofred, among others.
These comprehensive malware variants use a diverse range of
malicious attack methods. Consequently, a thorough traffic
analysis of this type of malware necessitates multiple iterations
for comprehensive understanding.

5 Experiments

5.1 Data sets

In this experiment, the dataset comprises network data packets,
with the traffic data collection predominantly categorized into two
segments: malware traffic data and normal traffic data, as outlined in
Table 3 and Table 4:

In this experiment, the malware traffic was generated by the
malicious traffic simulator, directing phishing website traffic to
the network. Simultaneously, the Doser packet sender executed a
simulated Dos attack on a designated port. Furthermore,
the MBlocker mail [13] blocking simulation tool intercepted
mail on the experimental machines. The normal traffic, on
the other hand, involved regular Internet access by the
experimental computer network card, encompassing both the
sending and receiving processes of network data packets.
Various protocols, such as HTTP, FTP, SMTP, RIP, DNS,
ARP, were employed in the traffic packets. Once the normal
traffic reached a specified volume, it was deliberately mixed with
malware traffic packets at an appropriate ratio. Subsequently,
the network simulated the reception of malware attacks based on
this proportion, thus forming the dataset utilized in this
experiment.

5.2 Environment and operation

For environmental configuration, Wireshark was employed
in this experiment to capture data packets for testing purposes.
The data to be tested originated from traffic transmitted through
the SMTP or HTTP protocol. Malicious traffic was generated
through the testing of phishing websites and malware, and
subsequently captured on the experimental machine, as
illustrated in Figure 1.

The equipment used in this experiment comprises an
experimental computer equipped with 8.00 GB of memory and a
64-bit operating system, featuring an x64 processor. In addition to
Wireshark, the primary software tools include Qt Creator and Visual
Studio 2019 as programming tools. The characteristics of the traffics
are saved in Excel tables, and the results are documented in Word
text files.

The initial phase of this experimental program involves parsing
Pcap data packets as the primary input. Specifically, it parses all data
packets within files designated with the. pcap suffix and
subsequently classifies the traffic. The analysis process is as
shown below:

Serial Number:90.
89:725906(Len:60) (capLen:60).
5254 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
0028 00 82 40 00 80 06 2b a2 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 03 f9 c8 50 10
fa f0 6c 5d 00 00 00 00 00 00 00 00.
Serial Number:91.
89:725981(Len:60) (cpLen60).
52 54 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
0028 00 83 40 00 80 06 2b a1 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 04 04 e0 50 10
fa f0 61 45 00 00 00 00 00 00 00 00.
Serial Number:92.
89:726024(Len:60) (capLen:60).
52 54 00 12 35 02 08 00 27 e6 9f 5f 08 00 45 00.
00 28 00 82 40 00 80 06 2b a2 0a 00 02 0f 1f aa
a2 f3 04 1a 00 50 84 31 f7 72 00 04 0a 6c 50 10
f5 64 61 45 00 00 00 00 00 00 00 00.
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5.3 Experimental results

Due to constraints in the program operating environment and
limited CPU memory, this experiment will selectively choose a
subset of traffic from the dataset as samples for testing and
analysis. The goal is to make comprehensive assessments through
multiple analysis and comparison processes, as depicted in Table 5
and Table 6.

The analysis results can be accessed and reviewed from the
Word document. Each analysis produces a distinct Word document,
as illustrated in Table 7.

The malware traffic statistics are presented in Table 8.
The outcomes of the malware identification process are

displayed in Table 9.

In addition to checking through the result Word log document, the
final parsing results can also be directly obtained from the program’s
execution results, as shown in Figure 2. The final analysis result of the
data in the figure ismalware. The total number of data flows is 1,384, the
total number ofmalicious data flows is 11, and the current percentage of
malicious data flows is 0.008%, of which 0.0022% is email interception,
0.00122% is Dos attack, 0.00138% is malicious crawler, and 0.00122% is
phishing website traffic. 0.00122% is a port scan, the identification
success rate is about 96.00%, and the false positive rate is 1%.

In contrast to specific technologies employing approaches focused
on monitoring malware traffic, particularly those dependent on the
fuzzy characteristics of network data to differentiate between diverse
network applications—whether benign ormalicious—with the ultimate
goal of identifying traffic using fuzzy mathematics. Although most of

TABLE 3 Malicious traffic dataset.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

Dos Attack 1,387 765 1.15

Mail Interception 2,456 874 2.04

Malicious Crawlers 3,399 3,240 2.81

Phishing Websites 2,365 2,310 1.96

Port Scanning 1777 965 1.48

Comprehensive Malware 8,365 1,028 6.97

TABLE 4 Normal traffic dataset.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

HTTP Requests 45630 54420 38

SMTP Mail Requests 14721 12351 12.2

FTP File Requests 11023 9,897 9.19

DNS Domain Requests 21100 7,684 17.5

Telnet 350 5568 0.29

SNMP 765 6,327 0.63

FIGURE 1
Packet capture diagram.
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these methods showcase a low false alarm rate coupled with high
accuracy, the primary challenge resides in establishing an appropriate
classification basis for the categorization of network traffic.

Our approach demonstrates a feature balance, referring to a
rational weighing and adjustment of different features in malicious
traffic detection. This ensures that the model comprehensively
considers the contribution of each feature, preventing any single
feature from becoming overly prominent or dominant, thereby
affecting the overall accuracy and stability of detection.

We use fuzzy recognition theory for malicious traffic
monitoring. Through the analysis and extraction of malicious

traffic features, we determine the importance and weights of
different features, maintaining a balance among them.
Additionally, we utilize fuzzy feature extraction methods to
identify malicious traffic. During feature extraction, it is essential
to assess and balance the weights of each feature to ensure the model
comprehensively considers their contributions. Finally, we use
clustering analysis methods to categorize malicious traffic features
into different intervals. Through reasonable classification and
interval assignment, we maintain a balance among features,
preventing any single feature from becoming overly prominent
or dominant.

TABLE 5 Malicious data flow samples.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

Dos Attack 121 45.4 1.15

Malicious Crawlers 54 36.7 2.04

Phishing Websites 79 79.5 2.81

Port Scanning 83 31.4 1.96

Mail Interception 34 42.6 1.48

TABLE 6 Normal data flow samples.

Total malicious flows (Entries) Packet size (MB) Traffic percentage (%)

HTTP Requests 1,235 32.4 38

SMTP Mail Requests 897 19.9 12.2

FTP File Requests 2,548 32.2 9.19

DNS Domain Requests 1,241 49.1 17.5

Telnet 1,090 14.1 0.29

SNMP 765 22.3 0.63

TABLE 7 Data flow recognition results table.

Malicious
traffic

Approximate malicious
traffic

No clear
characteristics

Approximate normal
traffic

Normal
traffic

Fuzziness Level
Classification

92.193% 71.020% 51.531% 20.389% 0.896%

Malware
Determination

Yes Yes Pending No No

Number of Data Flows 135 452 654 124 781

TABLE 8 Malware traffic statistics table.

Malware status Yes

Total Number of Data Flows (Entries) 1,389

Total Number of Malicious Data Flows (Entries) 16

Current Packet Malicious Flow Percentage (%) 0.012%

Recognition Success Rate (%) 96.000%

False Positive Rate (%) 3.000%

TABLE 9 Malware identification results table.

Mail interception 2.67

Dos Attack 4.01

Malicious Crawlers 1.90

Phishing Website Traffic 2.10

Port Scanning 1.88

Trojan Virus 3.00
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This paper predominantly revolves around the application of the
Type II fuzzy recognition theory in the context of a malware traffic
detection method. The targeted scenario involves addressing the
inherent uncertainty and fuzziness associated with data features.
Leveraging fuzzy set theory and its conceptual and operational
aspects, the paper employs fuzzy sets to describe and handle the
intricacies of the problem.

While both Type I fuzzy recognition and Type II fuzzy
recognition fall under the umbrella of fuzzy theory, they diverge
in their approaches to problem-solving. Despite these differences,
both are dedicated to addressing similar challenges. Therefore, this
paper is primarily dedicated to a comparative analysis between Type
I fuzzy recognition and Type II fuzzy recognition.

Type II fuzzy recognition methods adeptly handle the volatility
of fuzzy features, presenting results within a range interval. Even
with minor fluctuations in the results, they do not exert a significant
influence on the overall judgment of malicious traffic, thus
maintaining a higher level of accuracy.

As the application fields of Type II fuzzy set theory continue to
expand with ongoing development, there is a need to delve into the

nature and measurement methods of uncertainty within Type II fuzzy
sets. Building upon an examination of the uncertainty characteristics
and fuzzy entropy of Type II fuzzy sets, we propose the definition of
discrete Type II fuzzy set entropy by extending the conventional fuzzy
entropy definition. This endeavor opens up novel perspectives and
methodologies for the application of Type II fuzzy sets in uncertain
environments, as depicted in Figure 3.

It is evident that opting for Type I fuzzy recognition is more
rational when dealing with messy data and intricate traffic types. On
the other hand, the selection of Type II fuzzy recognition becomes
more accurate in scenarios with a substantial volume of data but
simpler traffic software types. Tailoring the recognition method to
specific circumstances significantly impacts identification accuracy.

Deep learning techniques present a versatile approach to handling
situations characterized by vast datasets and intricate data flows.
However, in the context outlined in this paper, the application of
deep learning typically necessitates a substantial volume of labeled data
for effective training. In the domain of cybersecurity, acquiring large-
scale labeled data poses challenges, particularly when dealing with
labeled data pertaining to malicious traffic.

FIGURE 2
Program result graph.

FIGURE 3
Identification scheme comparison chart.
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Furthermore, in the field of network security, the prompt detection
of malicious traffic demands real-time responsiveness. The training and
inference processes of deep learning models often entail a significant
time investment, rendering them unsuitable for meeting real-time
requirements. As a result, the constraints related to data availability
and real-time processing pose practical challenges to the widespread
application of deep learning in the described cybersecurity scenario.

The approach grounded in fuzzy recognition theory proves
adept at addressing uncertainty and fuzzy patterns within
the realm of network security. It demonstrates adaptability to the
intricate characteristics and dynamic changes inherent in malicious
traffic. The findings affirm that opting for a method based on fuzzy
recognition theory is more fitting within the specific domain and
scenario delineated in this paper.

6 Conclusion

In this paper, we introduce a malware traffic detection approach
grounded in fuzzy-theory recognition, leveraging fuzzy mathematics
as its theoretical foundation. Acknowledging the limitations of the
certainty inherent in classical sets, we leverage the ambiguity offered
by fuzzy sets to establish the variable range of characteristics for the
research object, thereby extending the scope of fuzzy recognition
theory. Ultimately, we use membership functions to compute the
ambiguity of fuzzy features, providing an effective basis for
malware detection.

This method effectively addresses uncertainty and ambiguity
within the realm of cybersecurity, showcasing adaptability to the
intricate characteristics and dynamic changes inherent in malicious
traffic. It automatically recognizes ambiguous features, learning their
ranges and weights to accommodate various types and sizes of
malicious traffic. The utilization of the maximum number algorithm
enhances the precision of classification results, ensuring
greater accuracy.

However, it is essential to note that the method’s computational
process can be complex, particularly when handling large-scale
datasets. This complexity may lead to longer processing times
and increased demands on computational resources. Fuzzy
theoretical models typically involve parameter selection and
tuning, and determining the optimal fuzzy set and affiliation
function necessitates thorough validation and experimentation.

Based on the above analysis, the next steps in research should
focus on the following issues:

1. A versatile and efficient method for collecting multi-source
data in network environments, coupled with the rapid
evolution of malware targeting backbone networks.

2. A malicious traffic detection technique grounded in the temporal
and spatial characteristics of behavior has been devised, endowing
it with broader applications and higher efficacy. This technology
relies on behavioral patterns over time and space for effective
identification of malicious network traffic.

3. The development of three-level hierarchical models
encompassing traffic analysis, fuzzy feature recognition, and
collaborative decision-making.

4. A collaborative-capable malicious traffic detection system
has been created, providing support for multi-party
cooperation, thereby comprehensively safeguarding
network security. This system is designed to facilitate
collaboration among various entities in order to bolster
defenses against potential threats.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

WZ:Writing–original draft. JiL: Writing–review and editing. JP:
Writing–review and editing. QL: Writing–review and editing. KY:
Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article.We acknowledge
the financial support received for this research from the National Social
Science Fund of China under grant number 20CXW016 for the project
titled “Computational Communication Strategy for Chinese
Technology Image on Twitter”, The authors also extend their
appreciation to the support of The National Natural Science
Foundation of China (Grant No. 62102049). The National Key
R&D Program of China (Grant No. 2017YFB0802300). The Natural
Science Foundation of Sichuan Province (Grant No. 2022NSFSC0557).
The National Key Research and Development Plan of China, Key
Project of Cyberspace Security Governance (No. 2022YFB3103103).
The Key Research and Development Project of Chengdu (No. 2023-
XT00-00002-GX). TheKeyResearch andDevelopment Project of Sichuan
Province (No. 2022YFS0571, No. 2021YFSY0012, No. 2021YFG0332,
No. 2020YFG0307).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Physics frontiersin.org11

Zhang et al. 10.3389/fphy.2024.1350117

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1350117


References

1. Weiyong Y, Peng L, Jinsuo L, Yibin H. Research on data protection technologies
against emerging network threats. Electric Power (2014) 12(5):14–5.

2. Harnish R. Cybersecurity in the world of social engineering. Cybersecurity in Our
Digital Lives (2015) 12(5):20–1.

3. Di W, Xiang C, QiXu L, FangJiao Z. Research on Ubiquitous Botnet. Inf Netw
Security (2017) 18(7):16–28.

4. Shuning W, Xingru C, Qiang C. Application research of AR-OSELM algorithm in
network intrusion detection. Inf Netw Security (2017) 17(6):56–7. doi:10.3969/j.issn.
1671-1122.2018.06.001

5. Lu J, Chen K, Zhuo Z, Zhang X. A temporal correlation and traffic analysis
approach for APT attacks detection. Cluster Comput (2019) 22(Suppl 3):7347–7358.
doi:10.1007/s10586-017-1256-y

6. Lu J, Lan J, Huang Y, Song M, Liu X. Anti-attack intrusion detection model based
on MPNN and traffic spatiotemporal characteristics. J Grid Computing (2023) 21:60.
doi:10.1007/s10723-023-09703-9

7. Peng L, WupingW, Shiyong Z. Hybrid network monitoring system based on active
networking technology. Comput Eng Des (2014) 25(9):1427–31.

8. Jun C. Network traffic management implementation via SNMP protocol. Coal
Technol (2019) 28(8):162–5.

9. Jun L, Liang X. Distributed network traffic monitoring. Traffic Manage (2017)
17(7):56–8.

10. Rosenberg I, Shabtai A, Rokach L, Elovici Y. Generic black-box end-to-end
attack against state classifiers. Intrusions (2018) 490–510. doi:10.48550/arXiv.
1707.05970

11.Wang Q, GuoW, Zhang K, Ororbia A, Xing X, Liu X, et al. Adversary resistant
deep neural networks with an applicatn to malware detection. In: Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data
mining (2017). p. 1145–53. doi:10.1145/3097983.3098158

12. Kim JY, Bu SJ, Cho SB. Zero-day malware detection using transferred generative
adversarial networks based on deep autoencoders. Inf Sci (2018) 460:83–102. doi:10.
1016/j.ins.2018.04.092

13. Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicolas C.Malware detection
by eating whole exe. Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence (2018). p. 531–3. doi:10.48550/arXiv.1710.09435

Frontiers in Physics frontiersin.org12

Zhang et al. 10.3389/fphy.2024.1350117

https://doi.org/10.3969/j.issn.1671-1122.2018.06.001
https://doi.org/10.3969/j.issn.1671-1122.2018.06.001
https://doi.org/10.1007/s10586-017-1256-y
https://doi.org/10.1007/s10723-023-09703-9
https://doi.org/10.48550/arXiv.1707.05970
https://doi.org/10.48550/arXiv.1707.05970
https://doi.org/10.1145/3097983.3098158
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.1016/j.ins.2018.04.092
https://doi.org/10.48550/arXiv.1710.09435
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1350117

	Malware traffic detection based on type II fuzzy recognition
	1 Introduction
	2 Related works
	3 Malware feature extraction
	3.1 Feature classification
	3.2 Feature extraction
	3.2.1 Feature calculation
	3.2.2 Flow characteristics

	3.3 Feature membership function

	4 Malware identification and classification
	4.1 Fuzzy recognition process
	4.2 Type I fuzzy recognition
	4.3 Type II fuzzy recognition
	4.4 Malware classification

	5 Experiments
	5.1 Data sets
	5.2 Environment and operation
	5.3 Experimental results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


