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In this research work, the Co-occurrence of superconductivity and
antiferromagnetism in Ca0.74 (1) La0.26 (1) (Fe1−xCox)As2 iron-based high-
temperature superconductors have been investigated. Based on the multi-
band nature of Ca0.74 (1) La0.26 (1) (Fe1−xCox)As2 iron-based superconductors, a
two-band model Hamiltonian that contains intra- and inter-bands is developed.
By employing the matrix form of the temperature-dependent Green’s function
formalism with the two-band Hamiltonian, the mathematical expressions of
superconducting transition temperature as functions of the superconducting
order parameter and antiferromagnetism translational temperature as a function
of the magnetic order parameter are obtained, respectively. The plotted graph of
the superconducting and magnetic temperature as a function of the magnetic
order parameter indicates a clear possibility of Co-occurrence of
superconductivity and the antiferromagnetism order parameter in
Ca0.74 (1) La0.26 (1) (Fe1−xCox)As2 iron-based superconductors in the range of
magnetic order parameters between 2.3 meV and 6.07 meV, which is in good
agreement with experimental observations. This research contributes to
understanding the complex behavior of high-temperature superconductors
and provides valuable technological applications for other fields.
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1 Introduction

Current research in the field of condensed matter physics is dedicated to characterizing
the properties of materials based on their structure and electronic behavior. While most
metal systems have weaker Coulomb interaction energies compared to electron kinetic
energies, the interaction between electrons, whether direct or indirect, significantly
influences the physical properties of strongly correlated electron systems. These systems
include unconventional superconductors, Mott insulators, and heavy fermions. On the
other hand, superconductivity is a complex phenomenon that requires extensive
experimental and theoretical efforts across a wide range of materials such as oxides,
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magnetic compounds, and organic compounds with their wide
range of modern technological and industrial applications like
MRI, Maglev train, and electronic device. This particular subfield
remains one of the most challenging areas to understand fully.

The phenomenon of superconductivity, initially observed in
high-purity mercury by H. Kamerlingh Onnes in April 1911, is
characterized by a sudden drop in electrical resistance to zero at
4.2 K [1, 2]. This discovery led to the subsequent identification of
elemental and binary superconductors with critical temperature (Tc)
values up to 23.2 K [3, 4], which remained unbeaten for over
50 years. Extensive experimental and theoretical efforts were
made to understand the underlying microscopic mechanisms and
the perfect diamagnetism exhibited by superconductors. In 1933, W.
Meissner and R. Ochsenfeld discovered that a superconductor, when
cooled in the presence of a static magnetic field, expels the magnetic
field from its interior [3–6]. The theoretical breakthrough came in
1957 with the formulation of the BCS theory by John Bardeen, Leon
Neil Cooper, and John Robert Schrieffer, which provided a
microscopic explanation for superconductivity [6–8]. In the late
1970s and early 1980s, superconductivity was discovered in heavy
fermion and nearly magnetic systems despite their lower critical
temperatures [8]. Researchers began seeking new pairing
interactions to eventually achieve high-temperature
superconductivity. The pivotal moment came in 1986 when J. G.
Bednorz and K. A. Muller discovered La(1-x) Bax CuO4 with a Tc of
30 K, sparking intense and continuous research in the field of high-
temperature superconductivity [4, 9–11].

The emergence of LaO(1-x) Fx FeAs, a novel superconductor
with a transition temperature of 26 K, marked a significant
milestone in superconductivity research [11]. This
breakthrough led to a shift in focus from high-temperature
cuprates (HTSC or CuSC) to iron-based superconductors
(FeSC), as evidenced by the redirection of researchers and
funding. Observed as the second family of unconventional
High-Tc superconductors, the FeSC exhibits several similarities
to cuprate superconductors. These similarities include a layered
crystal structure, relatively high critical temperature (Tc),
superconductivity occurring near a magnetic phase induced by
parameter adjustments like chemical doping or pressure, and
notably, a highly comparable temperature-concentration (T - x)
phase diagram. Moreover, it is commonly accepted that electronic
conduction in the FeAs/FeSe layers is linked, while cuprates have
charge carriers that are delocalized in the basal copper oxide
planes [11]. However, there are some significant differences: in the
edge-sharing tetrahedron, the pnictogen anions are arranged
above and below the Fe plane instead of at the same height as
in the copper oxide plane [12], and the superconductivity of
cuprates is derived from doping a Mott insulator. However, the
parent compound of FeSC is a poor metal due to partial gapping
around the Fermi surface (FS) at low temperatures [13–15], which
does not initiate an insulating state. Doping the two-dimensional
(2D) copper oxide plane of cuprate superconductors causes a
sharp decline in Tc. The cuprates exhibit a predominantly s-wave
gap symmetry, whereas the FeSC are generally immune to this
effect [14]. This change is reflected in the early reviews, and FeSC
research is now a major area of condensed matter physics, as
evidenced by the more than 3000 citations that show its active
pursuit [16–18].

The microscopic pairing process for superconductivity has been
the subject of extensive research since the discovery of Fe-pnictides,
a novel class of high-temperature superconductors [12, 19–22].
However, still, the microscopic pairing process of
superconductivity (SC) has to be the main issue in
unconventional high-temperature superconductors. The main
objective of this theoretical study of the co-occurrence of
antiferromagnetism (AFM) and superconductivity in a Co-doped
Ca0.73La0.27FeAs2 (Co-CaLa112) high-temperature superconductor
is to provide insight on the superconductivity pairing process. FeSC
holds great interest for several compelling reasons. Firstly, it offers
the opportunity to explore fascinating physics arising from the Co-
occurrence of superconductivity and magnetism. Secondly, the wide
range of compounds available for study, coupled with the multi-
band electronic structure, holds the potential for uncovering the
elusive mechanism behind high-temperature superconductivity and
discovering methods to enhance it (Tc). Lastly, FeSC shows promise
for practical applications due to their higher critical field (Hc)
compared to cuprates, as well as their strong and isotropic
critical currents. Based on these reasons make them appealing for
electrical power and magnetic applications, while the Co-occurrence
of magnetism and superconductivity makes them interesting for
spintronic [23, 24]. Therefore, FeSC offers a valuable opportunity to
explore the influence of structural and electronic factors on the
physical properties and pairing mechanism of high-temperature
superconductivity (Tc). In the study of FeSC, there is a significant
focus on investigating the interplay between antiferromagnetism
(AFM) and superconductivity (SC). This attention is driven by the
belief that spin fluctuations play a crucial role in the pairing
mechanism [6–8, 25].

Since the groundbreaking discovery of LaO(1-x) Fx FeAs (1111-
family), a novel superconductor with a transition temperature of
26 K [11], significant progress has been made in the field of
superconductivity research in Fe-pnictides. Includes the 1111-
family REFeAs (O, F) (RE = rare-earth elements) [19, 20], the
122 families AeFe2 As2 (Ae = alkaline earth metals such as Ca, Sr, Ba)
[21, 22], the 111-family AFeAs (A = alkali metals like Li, Na) [26,
27], the 11 family-FeSe [28, 29], and the 10-n-8 family Ca10 (Ptn As8)
(Fe2 As2)5 (A = Pt, Pd, Ir; n = 3, 4) [27]. Obtaining a deeper
understanding of the superconductivity mechanism in iron-based
compounds and striving for advancements in Tc (critical
temperature) necessitate the crucial discovery of new families of
iron-based superconductors. Recently, the 112 family of iron-based
superconductors, specifically the Ca(1-x) Ax FeAs2 (A = Rare Earth
metal, such as La, Ce, Pr, Nd, etc.), has been experimentally
confirmed [30, 31]. From this 112 family, the Ca(1-x) Lax FeAs2
(CaLa112) is one of the parent compounds with Tc up to 43K,
crystalizes in a monoclinic lattice with the FeAs − (Ca/La) − As −
(Ca/La) − FeAs layer stacking [28]. CaLa112 is distinctive in several
aspects due to the presence of zig-zag chains made of As layers
alongside the prototypical FeAs layers consisting of edge-sharing
FeAs4 tetrahedra. This combination of As chains and FeAs layers
sets CaLa112 apart from other crystals. By introducing electron over
doping in the parent compound of CaLa112 FeSC, the dual nature of
moveable and local magnetism in FeSC is exemplified. This electron-
doped CaLa112 FeSC undergoes a structural phase transition from
monoclinic to triclinic at 58K, while a paramagnetic to stripe
antiferromagnetic phase transition occurs at 54 K [32]. In
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addition to hole-like carriers introduced by Ca doping, electron-like
carriers are incorporated through Co substitution on the iron sites,
which contributes to the stabilization of superconductivity in Ca 0.73

La 0.27 FeAs2 [32]. The structure and magnetic phase transitions in
Co-doped Ca0.73La0.27 FeAs2 (Co-CaLa112) are suppressed, leading
to the emergence of bulk superconductivity with a critical
temperature (Tc) of up to 20 K [30]. Doping experiments reveal
the microscopic coexistence of AFM and SC in Co-doped samples
with doping concentrations of x = 0.025 and 0.033 [30]. To explore
the microscopic coexistence of AFM and SC in the 112 material, we
utilize a simplified two-band model commonly used in the study of
the relation between AFM and SC of FeSC [33–35]. This model
consists of a hole pocket located at the center of the Brillouin zone
(BZ) and an electron pocket situated at the corner of the Brillouin
zone as shown in Figure 1 Refs. [32, 33]. By studying the interplay
between these phenomena, their connections can be uncovered,
providing an empirical foundation for developing a comprehensive
theoretical model.

This study, which is based on an experimental perspective,
focuses on the theoretical analysis of the interplay between
superconductivity and antiferromagnetism in Ca (0.74 (1)) La (0.26

(1)) (Fe(1-x) Cox) As (2) iron-based high-temperature
superconductors by considering intra and inter bands that the
system incorporates two computing phenomena involving
electron-hole-like pairing and electron-electron pairing. The
mathematical expression for the superconducting order
parameter, magnetic order parameter, superconducting transition
temperature, and AFM transition temperature is found using the
matrix form of the temperature-dependent Green’s function
formalism with the two-band model Hamiltonian. Our research’s
findings determine that AFM and SC are established over specific
order parameter ranges, which will give clues for the mystery of
high-temperature superconductors.

2 Formulation of the problem

Clarifying the origin of superconductivity in iron-based
superconductors requires an understanding of their phase
diagram. Spin density wave (SDW) with antiferromagnetism
(AFM) is observed in parent compounds of iron-based
superconductors below the Neel temperature. Superconductivity
arises when hole or electron doping is applied, suppressing
magnetization. The close relationship between AFM and SC
phases suggests that spin fluctuation mediates the formation of a
Cooper pair, leading to s+-wave order [34], where the gap function
sign on hole Fermi surfaces (FSs) centered at momentum k = (0,0) is
opposite to that on electron FSs at k = (0,π) and (π,0). Conversely, it
is suggested that superconductivity arises from orbital fluctuation
and takes the form of s++ wave order, where the two signs are the
same [36]. s+-and s++ are possible candidates for SC symmetry in
iron-based superconductors. Given the proximity of the AFM and
SC phases, insights into the superconductivity of iron-based
superconductors may be gained from examining their boundary.

Numerous experimental and computational investigations
employing Density Functional Theory (DFT) have provided evidence
that the Fermi surface of iron-based superconductors comprises two hole
surfaces near the Γ point and two electron surfaces near the M point
within the Brillouin zone of the Fe/cell [34, 35]. Additionally, these
studies highlight themulti-band character of the band structure of FeScs.
Calculations of the band structure have further revealed that the Fe3d
orbitals make significant contributions to the spectral weight in the
vicinity of the Fermi energy. Neutron diffraction, X-ray diffraction, and
NMR investigations all support the microscopically coexisting phase of
AFM and SC orders in the Co-CaLa112 high-temperature
superconductor [30]. An exploration of the coexistence phase has
been conducted theoretically [34]. In the Co-CaLa112 high-
temperature superconductor phase, it is generally believed that

FIGURE 1
Left: modified electronic band dispersion of the two-bandmodel reflected in this paper, in the unfolded Brillouin zone. The circular hole-like FS is in
the center, with SC order parameter Δ1, and the elliptical electron-like FSs are at � (0, π) and � (π,0)with SC order parameter Δ2. Themagnetic order with
momentum Q � (π,0) hybridizes hole and electron FSs separated by Q but leaves FSs at � (± π,0) intact. Right: by doping one may adjust the size and
shape of hole and electron bands, and also magnetic order parameter can be incommensurate, with momentum Q+q Ref. [33].
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paramagnetic FSs are made up of a nearly circular hole pocket located at
k= (0,0), along with an elliptical electron pocket at k=(π,0) and (0, π) as
illustrated the model in Figure 1. The introduction of AFM order with a
wave vector Q=(π,0) combines the hole and electron dispersions,
resulting in the opening of an SDW gap [32]. There is an additional
electron pocket at the edge of the Brillouin zone and a hole-like pocket at
the center of the doped Brillouin zone, as observed experimentally in Fe
pnictides, in addition to the appearance of an elliptical electron pocket at
the corner and a circular hole pocket at the center. Since the fundamental
properties of the SC and antiferromagnetic interactions and their
interplay should not be significantly affected by the number of bands,
we investigate a simple model with one circular hole and one elliptical
electron band. In the case of pnictides, the twofold degeneracy of hole
and electron states at the center and corners of the Brillouin zone is
omitted since it seems to not affect magnetic order or superconducting
[37–41]. By utilizing 4 × 4 matrix representations of single particle
normal and anomalous thermal Green’s functions within a two-band
model Hamiltonian, along with appropriate mean-field approximations,
the simultaneous occurrence of superconductivity and
antiferromagnetism becomes a highly plausible scenario. This section
focuses on investigating the coexistence of superconductivity and
antiferromagnetism in the multi-band iron-based superconductor Ca

(0.74 (1)) La (0.26 (1)) (Fe(1-x) Cox) As (2), as well as examining the influence
of magnetic ordering on both the superconducting order parameter ( �Δ )
and the transition temperature (Tc) within the framework of the multi-
band model Hamiltonian. Based on the multi-band nature of
Ca0.74 (1) La0.26 (1) (Fe1−xCox)As2 iron-based superconductors, a two-
band model Hamiltonian which contains hole and electron bands is
developed. The two-band model Hamiltonian includes the free fermion
part H0, and the fermion interactions in superconducting and
antiferromagnetic channels,

H � H0 +HΔ +HAFM

The free fermion channel of the Hamiltonian is

H0 � ∑
kσ

ε1 k( )c+1kσc1kσ +∑
k′σ

ε2 k′( )c+2k′σc2k′σ
Where ε1(k) and ε2(k′) measured from the Fermi energy

μ(chemical potential), i.e, εik � εik − μ i � 1, 2, the k are
momentum measured from center of BZ and k′ are deviations
from Q0, we assume an inversion symmetry ε1,2(k) � ε1,2(−k).

The interaction that involves the exchange of electron pairs
between the hole and electron pockets is the dominant term in the
pairing interaction. However, there exist several other pair-
scattering interactions that also contribute to the overall pairing
mechanism [40, 42]. The pairing interactions in the
superconducting channel for band 1 is

H �Δ 1k
� −∑

kk′
VSC

11 k, k�( )c+1k ↑c
+
1−k ↓c1−k ↓c1k↑

−∑
kk′

VSC
12 k, k′( ) c+1k ↑c

+
1−k ↓c2−k↓c2k↑ + c+2k ↑c

+
2−k ↓c1−k ↓c1k↑( )

For band 2 is

H �Δ 2k
� −∑

kk′
VSC

22 k, k�( )c+2k ↑c
+
2−k ↓c2−k ↓c2k↑

−1
2
∑
kk′

VSC
21 k, k′( ) c+2k ↑c

+
2−k ↓c1−k ↓c1k ↑ + c+1k↑c+1−k ↓c2−k↓c2k↑( )

We introduce a mean-field equation with order parameter in a
self-consistent manner, in the superconducting state for band 1 and
2 as stated by;

Δ11 � ∑
kk′

VSC
11 k, k�( )〈c1−k ↓c1k↑〉 and Δ12 � ∑

kk′
VSC

12 k, k�( )〈c2−k ↓c2k↑〉

Δ22 � ∑
kk′

VSC
22 k, k�( )〈c2−k ↓c2k↑〉 and Δ21 � ∑

kk′
VSC

21 k, k�( )〈c1−k ↓c1k↑〉

where the Δ11 and Δ12 are intra and inter-band superconducting
order parameter for band 1, and Δ22 and Δ21 are intra and inter-band
superconducting order parameter for band 2, respectively

To consider the AFM state, we assume the following intra and
interband Coulomb interactions:

HAFM � −1
2
∑
kk′

αAFM
1,2 k, k′( ) c+1k+Q ↑c1−k↓c

+
1−k ↓c1k+Q ↑ + c+2k ↑ c2−k↓c

+
2−k ↑c2k+Q↑( )

− 1
2
∑
kk′

αAFM
12 k, k′( ) c+2k+Q ↓c1−k ↓c

+
1−k↑c2k+Q↑ + c+1−k ↑c2k+Q↑c

+
2k+Q ↓c1−k↓( )

where the first and second terms are intra-band and inter-bandCoulomb
repulsions, respectively. αAFM1,2 and αAFM12 are the parameters of intra and
inter-band Coulomb interaction, respectively. We solve a mean-field
equation with order parameter in a self-consistent manner, in the AFM
state with ordering vector Q, as stated by;

Δintra−AFM � ∑
kk′

αAFM11 k, k�( )〈c1−k ↓c1k+Q↑〉

� ∑
kk′

αAFM22 k, k�( )〈c2−k ↓c2k+Q↑〉

And

Δinter−AFM � ∑
kk′

αAFM12 k, k�( )〈c1−k ↓c2k+Q↑〉

� ∑
kk′

αAFM21 k, k�( )〈c2k+Q↑ c1−k↓〉
where Δintra−AFM and Δinter−AFM are intra-band and inter-band AFM
order parameters, respectively, and take wave vector Q=(π,0). Note
that in this calculation the interband AFM order parameter is
neglected because very small and insignificant [34, 43].

The two-band model mean field Hamiltonian can be
rewritten as;

H � ∑
kσ

ε1kc
+
1kσc1kσ − �Δ 1k ∑

kk′
c+1k ↑c

+
1−k ↓ +∑

kσ

ε2kc
+
2kσc2kσ−�Δ2k

∑
kk′

c+2k ↑c
+
2−k ↓ − �ΔMk ∑

kk′
c+1k+Q ↑c

+
1−k ↓ + c+1−k ↓c

+
2k+Q ↑( ) + h.c

(1)
Where ε1k and ε2k are the quasi − particle energies for bands

1 and 2, respectively, operators c+ikσ(cikσ) annihilation (creation) or
operator for hole and electron bands, respectively, and spin-σ
electron of momentum- k and band i � 1, 2, summation
represents sum over all the -k and h.c is the hopping parameters
which are insignificant for this superconducting pairing terms.
Within the fermionic basis, there are numerous approaches to
decoupling the interacting Hamiltonian, we use mean-field
approximation to decouple our assumed interacting orbitals to
develop the mean-field Hamiltonian described in Eq. 1 [44], and

Frontiers in Physics frontiersin.org04

Sherka and Shiferaw 10.3389/fphy.2024.1356768

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1356768


to define order parameters. The mean field approximation assumes
that the average interaction can be approximated by their average
values, ignoring the individual fluctuations beyond the mean field,
which helps to investigate the stability of superconductivity and
magnetism in HTSC specifically in FeBSC, and understand the
interplay between these two phenomena. As is typically practiced
in mean-field theory, one substitutes a specific operator with its
average value multiplied by a small fluctuating term. To provide a
concrete example, consider the bilinear term, c+ik ↑c

+
i−k ↓ci−k� ↓cik�↑ and

replaced by 〈ci−k� ↓cik� ↑〉 c+ik↑c+i−k ↓. From Eq. 1, the following
effective order parameters are obtained. Thus,

�Δ1k � Δ11 + Δ12 � ∑
kk′

VSC
11 k, k�( )〈c1−k ↓c1k↑〉 +∑

kk′
VSC

12 k, k�( )〈c2−k ↓c2k↑〉

(2)
�Δ2k � Δ22 + Δ21 � ∑

kk′
VSC

22 k, k�( )〈c2−k ↓c2k↑〉 +∑
kk′

VSC
21 k, k�( )〈c1−k ↓c1k↑〉

(3)
�ΔMk � ∑

kk′
αAFM11 k, k�( )〈c1−k ↓c1k+Q↑〉 +∑

kk′
αAFM12 k, k�( )〈c1−k ↓c2k+Q↑〉

(4)
Where �Δ1k( �Δ2k) are the effective superconducting order

parameters for bands 1 and 2, respectively, with their first and
second terms are intra-band and inter-band Coulomb repulsions,
respectively and �ΔMk is antiferromagnetic exchange interaction for
intra and inter-band pair hopping. In the following calculation we
use the terms as; V11

SC = V11, V12
SC = V12, V22

SC = V22, V21
SC = V21,

and α11AFM = α11, α12AFM = α12. Each band has its proper pairing
interaction. V11 and V22. While pair interchanges between the two
bands are assured by V12 = V21 term.

By introducing the τ− dependent quantum operators to study
the system, we need to transform to the Heisenberg picture [33].

ckσ τ( ) � e τHckσ e
−τH (5)

c+kσ τ( ) � e τHc+kσ e
−τH (6)

This satisfies the Heisenberg equation of motion.

∂ckσ τ( )
∂τ

� H, ckσ τ( )[ ] (7)
∂c+kσ τ( )
∂τ

� H, c+kσ τ( )[ ] (8)

Inserting Eq. 1 into the right-hand side of the equation Eq. 7 and
Eq. 8 we obtain the system of differential equations for the time-
dependent quantum operator [45].

∂c1k↑ τ( )
∂τ

� −ε1kc1k↑ + �Δ1kc
+
1−k ↓ (9)

∂c2k↑ τ( )
∂τ

� −ε2kc2k↑ + �Δ2kc
+
2−k ↓ + �ΔMkc

+
1−k ↓ (10)

∂c+1−k ↓ τ( )
∂τ

� ε1kc
+
1−k ↓ + �Δ+

1kc
+
1k ↑ + �Δ+

Mkc
+
2+Qk ↑ (11)

∂c+2−k ↓ τ( )
∂τ

� ε2kc
+
2−k ↓ + �Δ+

2kc
+
2k ↑ (12)

Using Eqs 9–12 can drive a system of differential equations for
the thermal, Green function techniques and solution for the
equation of motion for both operators. In the state of
superconductors, the Nambu-Gorkov formalism characterizes it

as a state where symmetry is broken [46, 47]. To grip these
equations handily, Nambu proposed the following a four-
component space spanned by the four-component operators;

ak τ( ) �
c1k↑ τ( )
c+1−k ↓ τ( )
c2k↑ τ( )
c+2−k ↓ τ( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (13)

And its corresponding conjugate

a+k τ ,( ) � c+1k ↑ τ ,( ) c1−k↓ τ ,( ) c+2k ↑ τ ,( ) c2−k↓ τ ,( )( ) (14)

Where ak(τ) and a+k(τ ,) are nowadays commonly called
Nambu − Gorkov operators.

2.1 Green’s functions

From the Nambu − Gorkov operators, we define the single
particle 4 × 4 matrix of Green’s functions in Nambu space.

GTS k, τ − τ ,( ) � −〈Tak τ( )a+k τ ,( )〉 (15)

Where T is the time ordering operator and the subscript TS
shows the elements of the 4 × 4 matrices by substituting Nambu
operators the explicit yields,

GTS k, τ − τ ,( )

� −

〈Tc1k ↑ τ( )c+1k ↑ τ ,( )〉 〈Tc1k↑ τ( )c1−k↓ τ,( )〉 〈Tc1k↑ τ( )c+2k ↑ τ ,( )〉 〈Tc1k↑ τ( )c2−k↓ τ ,( )〉
〈Tc+1−k ↓ τ( )c+

1k ↑ τ ,( )〉 〈Tc+1−k ↓ τ( )c1−k↓ τ ,( )〉 〈Tc+1−k ↓ τ( )c+2k ↑ τ ,( )〉 〈Tc+1−k ↓ τ( )c2−k↓ τ ,( )〉
〈Tc2k ↑ τ( )c+1k ↑ τ ,( )〉 〈Tc2k↑ τ( )c1−k↓ τ,( )〉 〈Tc2k↑ τ( )c+2k ↑ τ ,( )〉 〈Tc2k↑ τ( )c2−k↓ τ ,( )〉
〈Tc+2−k ↓ τ( )c+

1k ↑ τ ,( )〉 〈Tc+2−k ↓ τ( )c1−k↓ τ ,( )〉 〈Tc+2−k ↓ τ( )c+2k ↑ τ ,( )〉 〈Tc+2−k ↓ τ( )c2−k↓ τ ,( )〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

To study the physical properties, we must define the following
thermal Green’s functions;

Gij k, τ − τ ,( ) � −〈Tcik ↑ τ( )c+jk ↑ τ ,( )〉 (17)
Fij k, τ − τ ,( ) � −〈Tcik↑ τ( )cj−k↓ τ ,( )〉 (18)
F+
ij k, τ − τ ,( ) � −〈Tc+i−k ↓ τ( )c+

jk ↑ τ ,( )〉 (19)
And

GT
ij k, τ − τ ,( ) � −〈Tc+i−k ↓ τ( )cj−k↓ τ ,( )〉 (20)

The correlation functions Gij(k, τ − τ ,) and Fij(k, τ − τ,) are the
normal and anomalous one-particle Green functions, which are
elements of the Green function matrix GTS. i, j indicates the band
index 1 or 2. F+

ij(k, τ − τ,) implies the complex conjugate of Fij. We
will often suppress the spin index. The anomalous green functions,
F+
ij(k, τ − τ ,), and GT

ij(k, τ − τ ,) assumed that singlet pairing. As the
creation and annihilation operators of electrons are fermionic, and
with these specifications, the Green function matrix GTS(k, τ − τ ,)
can be written in a more compact form;

GTS k, τ − τ,( )

� −
G11 k, τ − τ,( ) F11 k, τ − τ,( ) G12 k, τ − τ,( ) F12 k, τ − τ,( )
F+11 k, τ − τ,( ) GT

11 k, τ − τ,( ) F+21 k, τ − τ,( ) GT
12 k, τ − τ,( )

G21 k, τ − τ,( ) F21 k, τ − τ,( ) G22 k, τ − τ,( ) F22 k, τ − τ,( )
F+12 k, τ − τ,( ) GT

21 k, τ − τ,( ) F+22 k, τ − τ,( ) GT
22 k, τ − τ,( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(21)
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Where T, s = 1,2,3,4, and G11(k, τ − τ ,), G22(k, τ − τ,) are the
intraband Green’s functions for electrons of up spin, GT

11(k, τ − τ ,),
GT
22(k, τ − τ ,), are the intraband Green’s functions for holes with

spin down while G12(k, τ − τ ,), G21(k, τ − τ ,), are interpreted to be
interband Green’s functions for electrons of up spin and
GT
12(k, τ − τ ,), GT

21(k, τ − τ,) are taken to be interband Green’s
functions for holes with spin down. F11(k, τ − τ,), F22(k, τ − τ,)
are the anomalous intraband Green’s functions while F12(k, τ − τ ,),
F21(k, τ − τ ,) represent the interband anomalous thermal Green. s
functions involving electrons in different bands and F+

11(k, τ − τ,),
F+
22(k, τ − τ ,), are the complex conjugate of the anomalous

intraband thermal Green’s function, while
F+
12(k, τ − τ ,), F+

21(k, τ − τ ,) are the complex conjugate of the
anomalous interband thermal Green’s function.

In the four-component language, the sixteen equations of
motion for the propagators lead to the energy matrix equation.

KO τ( )GTS k, τ − τ ,( ) � δO τ − τ ,( ) (22)

Where the operatorKO(τ) is 4x 4 energy matrix and δO(τ − τ ,)
is 4x 4 unit matrix given by

KO τ( ) �

− ∂
∂τ

− ε1k( ) �Δ1k 0 0

�Δ+
1k − ∂

∂τ
+ ε1k( ) �Δ+

Mk 0

0 �ΔMk − ∂
∂τ

− ε2k( ) �Δ2k

0 0 �Δ+
2k − ∂

∂τ
+ ε2k( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(23)

And

δO τ( ) �
δO τ − τ ,( ) 0 0 0

0 δO τ − τ ,( ) 0 0
0 0 δO τ − τ ,( ) 0
0 0 0 δO τ − τ ,( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (24)

Eq. 22 is obtained from the results of Eqs. 9–12 by
differentiating τ− order products. We use the common way of
Fourier transforming the correlation function, transitioning it
from k-space to momentum space according to its established
definition [48];

Gij k, τ − τ ,( ) � 1
β
∑

ωn
f−iωnτGij p, iωn( ),

Gij p, iωn( ) � ∫β

0
dτfiωnτGij k, τ − τ ,( )

(25)

Fij k, τ − τ ,( ) � 1
β
∑

ωn
f−iωnτFij p, iωn( ),

Fij p, iωn( ) � ∫β

0
dτfiωnτFij k, τ − τ ,( )

(26)

and

GT
ij k, τ − τ ,( ) � 1

β
∑

ωn
f−iωnτGT

ij p, iωn( ),
GT

ij p, iωn( ) � ∫β

0
dτfiωnτGT

ij k, τ − τ ,( )
(27)

where ωn � (2n + 1)π/β, is Matsubara frequencies, β � 1
KBT

with KB

as the Boltzmann constant, T is the temperature, summation

represent sum over all the ωn, and i, j show the band index.
These transformations to momentum-dependent make the
mathematics easily manageable. After performing the Fourier
transformations of the correlation function and for the τ � τ,, the
matrix product in Eq. 22 becomes;

iωn − ε1k( ) �Δ1k 0 0
�Δ+1k iωn + ε1k( ) �Δ+Mk 0
0 �ΔMk iωn − ε2k( ) �Δ2k

0 0 �Δ+2k iωn + ε2k( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

G11 p, iωn( ) F11 p, iωn( ) G12 p, iωn( ) F12 p, iωn( )
F+
11 p, iωn( ) GT

11 p, iωn( ) F+
21 p, iωn( ) GT

12 p, iωn( )
G21 p, iωn( ) F21 p, iωn( ) G22 p, iωn( ) F22 p, iωn( )
F+
12 p, iωn( ) GT

21 p, iωn( ) F+
22 p, iωn( ) GT

22 p, iωn( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(28)

From the matrix Eq. 28, we obtain the inverse of the Fourier
transformed 4 × 4 Green’s function matrix in momentum space as

G−1
T,S p, iωn( ) �

iωn − ε1k( ) �Δ1k 0 0
�Δ+1k iωn + ε1k( ) �Δ+Mk 0
0 �ΔMk iωn − ε2k( ) �Δ2k

0 0 �Δ+
2k iωn + ε2k( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (29)

and gives the components of the inverse Green function for
�ΔMk � M where magnetic order parameter and suppressing k.
To study the order parameters, therefore the equation of
motions is;

F11 p, iωn( ) � 〈c1−k ↓c1k↑〉 � 1
D ωn( )

�Δ1 ωn
2 + ε2

2 + �Δ2
2( ) +M2�Δ2( )

(30)
F12 p, iωn( ) � 〈c1−k ↓c2k+Q↑〉

� − 1
D ωn( ) M E K( ) − ε2( ) iωn + ε1( ) + �Δ1

�Δ2M −M3)(
(31)

And

F22 p, iωn( ) � 〈c2−k ↓c2k↑〉 � 1
D ωn( )

�Δ2 ωn
2 + ε1

2 + �Δ1
2( ) −M2�Δ1( )

(32)
F21 p, iωn( ) � 〈c2−k ↓c1k↑〉

� − 1
D ωn( ) M E K( ) − ε1( ) iωn + ε2( ) + �Δ1

�Δ2M −M3)(
(33)

D ωn( ) � ωn
2 + ε1

2 + �Δ1
2( ) ωn

2 + ε2
2 + �Δ2

2( ) + 2M2ωn
2

+ 2M2ε1ε2 +M4 − 2M2�Δ1
�Δ2

(34)

The spectrum of the excitation energies of the quasi − particles
in a superconductor is given by the poles of both the normal and
anomalous thermal Green’s functions Gij(p, iωn) and Fij(p, iωn) at
T � 0. These poles are the denominators that vanish. E (k) is the
quasi − particle excitation energy given as in Eq. 35. For the
generalized two-band model the E (k) , which does not include
the hopping parameters can be [49]; .

E K( ) � ± [1
2

ε1
2 + ε2

2 + �Δ1
2 + �Δ2

2 + 2M2( ){
± ε1

2 + �Δ1
2 − ε2

2 − �Δ2
2( )2 + 4M2 ε1

2 − ε2
2( )2 + �Δ1 + �Δ2( )2{ }[ ] 1

2}] 1
2

(35)
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It is of interest to also evaluate the parameters �Δ1, �Δ2, and �ΔM for
the case two-band model. They are related to the anomalous Green’s
functions by self-consistency conditions Eqs 2–4.

�Δ1k � Δ11 + Δ12 � ∑
kk′

V11 k, k�( )F11 p, iωn( ) +∑
kk′

V12 k, k�( )F22 p, iωn( )
(36)

�Δ2k � Δ22 + Δ21 � ∑
kk′

V22 k, k�( )F22 p, iωn( ) +∑
kk′

V21 k, k�( )F11 p, iωn( ) (37)

�ΔMk � M � ∑
kk′

α11 k, k�( )〈c1−k ↓c1k+Q↑〉 +∑
kk′

α12 k, k�( )〈c1−k ↓c2k+Q↑〉

(38)

2.2 Physical properties

2.2.1 Superconductor order parameter
The gap parameter �Δ is a superconducting order parameter,

which can be determined self-consistently from the gap equations
Eq 36 and Eq 37. In matrix form, the order parameter for the
superconducting state is given by;

�Δ i � ∑
j
VijFij p, iωn( )�Δj (39)

Where |Vij| is the pairing interaction constants and functions
Fij(p, iωn) is anomalous green functions in a superconducting state are
defined as above and D(ωn) � (ωn

2 + ε12 + �Δ1
2)(ωn

2 + ε22 + �Δ2
2),

ωn � (2n + 1)π/β and ε12 + �Δ1
2 � E2

1 and ε22 + �Δ2
2 � E2

2 energy
excitation for the band 1 and 2. Upon substitution, the equation of
motion becomes

〈c1−k ↓c1k↑〉 � ωn
2 + E2

2( )
ωn

2 + E2
1( ) ωn

2 + E2
2( ) (40)

〈c2−k ↓c2k↑〉 � ωn
2 + E2

1( )
ωn

2 + E2
1( ) ωn

2 + E2
2( ) (41)

Let ∑
k,n

( 1
(2n+1)2π2+x2) � tanh x

2
2x where x � βE1, by substituting

the result

F11 p, iωn( ) � β2 tanh βE1

2

2βE1
(42)

And

F22 p, iωn( ) � β2 tanh βE2

2

2βE2
(43)

By substituting these two equations, Eq. 42 and Eq. 43 in Eq. 36
and Eq. 37, respectively, the two gape equations in the
superconducting state become;

�Δ1 � Δ11 + Δ12 � 1
β
∑

k
V11

β2 tanh βE1

2

2βE1

�Δ1 + 1
β
∑

k
V12

β2 tanh βE2

2

2βE2

�Δ2

(44)
�Δ2 � Δ22 + Δ21 � 1

β
∑

k
V22

β2 tanh βE2

2

2βE2

�Δ2 + 1
β
∑

k
V21

β2 tanh βE1

2

2βE1

�Δ1

(45)
Where V11 and V22 are pairing interactions for 1 and 2 bands,

respectively, while the pair interchange between the two bands is

assured by the V12 term. The quantity V12 has been supposed to be
operative and constant in the energy interval for the higher band and
the lower band, keeping in mind the integration range, the gap order
parameter satisfies the system. If the intraband interactions are
missing, i.e., V11 � V22 � 0, the interband interaction solely
induces the transition is V12 � V21. Therefore, Eq. 44 and Eq.
45 Become

�Δ1 � Δ12 � ∑
k
V12

tanh βE2

2

2E2

�Δ2 (46)

�Δ2 � Δ21 � ∑
k
V21

tanh βE1

2

2E1

�Δ1 (47)

Converting the summation over k values into an integral with
the cut-off energy from ± ћωD, ωD the boson cut-off frequency
measured from the Fermi level and introducing the density of state
at the Fermi level N1(0) and N2(0), and by applying identity ∑1 �
2N1(0)∫ and ∑2 � 2N2(0)∫, then Eq. 46 and Eq. 47 become;

�Δ1 � Δ12 � 2N1 0( )V12∫ћωD

−ћωD

�Δ2
tanh βE2

2

2E2
dϵ2 (48)

�Δ2 � Δ21 � 2N2 0( )V21∫ћωD

−ћωD

�Δ1
tanh βE1

2

2E1
dϵ1 (49)

Now, let’s study these two equations by considering
different cases.

Case 1; When T → 0 β → ∞ which implies,
tanh βE2/2 → 1and tanh βE1/2 → 1, then integral becomes

�Δ1 � Δ12 � N1 0( )V12∫ћωD

0

�Δ2

ε22 + �Δ2
2( ) 1

2

dε2 (50)

�Δ2 � Δ21 � N2 0( )V21∫ћωD

0

�Δ1

ε12 + �Δ1
2( ) 1

2

dε1 (51)

Equation 50 and Eq. 51 can be

�Δ1 � Δ12 � N1 0( )V12
�Δ2 ln

2ћωD

�Δ 2
(52)

�Δ2 � Δ21 � N2 0( )V21
�Δ1 ln

2ћωD

�Δ 1
(53)

Now substitution Eq. 53 into Eq. 52

�Δ1 � Δ12 � N1 0( )V12N2 0( )V21
�Δ1 ln

2ћωD

�Δ1
ln

2ћωD

�Δ2
(54)

For the integral ∫ћωD

0
1

(ε12+�Δ1
2) 12 dε1 � ln 2ћωD

�Δ1

and ∫ћωD

0
1

(ε22+�Δ2
2) 12 dε2 � ln 2ћωD

�Δ2
,

If V12 � V21�⇒�Δ1 � Δ12 � Δ21 � �Δ2 � �Δ. From this, Eq.
54 becomes,

�Δ� N1 0( )N2 0( )V21
2�Δ ln

2ћωD

�Δ
( )2

(55)

By rearranging, 1/V21

�����������
N1(0)N2(0)

√ � (ln 2ћωD/�Δ) taking
the exponent

�Δ� 2ћωD exp − 1

V12

�����������
N1 0( )N2 0( )√∣∣∣∣ ∣∣∣∣[ ] (56)
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From the BCS theory we have,

3.5KBTC � 2�Δ

Therefore, Eq. 56 for the interband coupling constant of λ12 �
|V12

�����������
N1(0)N2(0)

√ | becomes;

KBTC � 1.14ћωD exp − 1
λ12

[ ] (57)

This expression for the superconducting transition temperature
(Tc) is like the well-known BCS [7].

Case 2: To obtain a temperature-dependent superconductivity
energy gap, we use the expression from Eq. 48 at T � Tc and �Δ � 0
it gives

1

V12

�����������
N1 0( )N2 0( )√∣∣∣∣ ∣∣∣∣ � 1

λ12
� ∫ћωD

0

1��������
ε2 + �Δ2( )√ tanh

β
��������
ε2 + �Δ2( )√
2

dϵ

(58)
By using the same techniques as above, this equation becomes

1
λ12

� ln 1.14
ћωD

KBT
−

�Δ
πKBT

( )2

1.05 (59)

From Eq. 57

1
λ12

� ln 1.14
ћωD

KBTc
(60)

By substituting Eq. 60 into Eq. 59 and by rearranging

ln
T
Tc

( ) � −
�Δ

πKBT
( )2

1.05 (61)

Using the relation ln(1 − x) � 1 − x − (x2)2 + − − −

�Δ T( ) � 3.06KBTc 1 − T
Tc

( ) 1 /

2 (62)

Equation 62 demonstrates how the superconducting order
parameter (�Δ(T)) varies with temperature when the magnetic
order parameter is zero and is analogous to the BCS model.
From Eq. 62 at T = 0, the superconducting order parameter
�Δ(0) � 3.06KBTc using the experimental values Tc � 20K for
Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 FeSC [30], the superconducting
order parameter is �Δ(0) � 3.02mev.

2.2.2 The effect of magnetism on the transition
temperature (Tc)

From Eq. 36 and Eq. 37, the interchange interaction between the
two bands in the two-band model is assured by V12 term. The
interband interaction can induce the transition temperature (TC) in
both antiferromagnetism and superconducting states. Kristoffele
et al. [43] have shown that interband pairing is very efficient in
enhancing TC. This is the characteristic feature of the band model.
Therefore, the band equations can be

�Δ1 � Δ12 � ∑
kk�

V12(k, k�)F22 p, iωn( ) (63)

�Δ2 � Δ21 � ∑
kk�

V21(k, k�)F11 p, iωn( ) (64)

From this, to study the band gap, one can write these two
equations in simultaneous equations as

�Δ1 + �Δ2 � Δ12 + Δ21 � 2�Δ� V12 ∑
k

F22 p, iωn( ) +∑
k

F11 p, iωn( )⎛⎝ ⎞⎠
(65)

Where Δ12 � Δ21, Δ12 + Δ21 � 2�Δ for V12 � V21, using the two
Green’s functions from equations Eq. 30–32 andwith energy in Eq.
34 after some mathematical steps, By applying the identity ∑1 �
2N1(0)∫ and ∑2 � 2N2(0)∫ and simplify Eq. 65 gives;

1
λ12′

� ∫ћωD

0

1�������������
ϵ2 + �Δ−M( )2( )√ tanh

β
��������������
ϵ2 + �Δ −M( )2( )√

2
dϵ

− ∫ћωD

0

M

�Δ
��������������
ϵ2 + �Δ −M( )2( )√ tanh

β
��������������
ϵ2 + �Δ −M( )2( )√

2
dϵ (66)

Where λ12′ � V12(N1 +N2) coupling constant.
At T � TC, �Δ� 0 using Laplace’s Transform, ω → ωn Matsubara

frequency and proceeding through all the necessary steps, the first
integral of Eq. 66 becomes

I1 � ∫ћωD

0

1���������
ϵ2 +M2( )√ tanh

β
���������
ϵ2 +M2( )√
2

dϵ

� ∫ћωD

0

2
β

∑∞
n�−∞

1
ωn

2 + ϵ2 +M2
dϵ (67)

Where (2n + 1)2π2/β2 � ωn
2, the Matsubara frequency Eq.

67 becomes

I1 � ∫ћωD

0

2
β∑∞

n�−∞
1

2n + 1( )2 π
β2
2 + ϵ2 +M2 dϵ

� ∫ћωD

0

1
ϵ tan h

βϵ
2
dϵ − ∫ћωD

0
M24

β∑∞
n�0

1

a4 1 + x2( )2 dϵ

I1 � ln 1.14
ћωD

KBTC
− M

πKBTC
( )2

1.05 (68)

The second integral in Eq. 66, I2 also can be evaluated as

I2 � −∫ћωD

0

M

�Δ
�������������
ϵ2 + �Δ−M( )2( )√ tanh

β
��������������
ϵ2 + �Δ −M( )2( )√

2
dϵ (69)

Applying the L’ HOPITAL rule for the �Δ→ 0 Eq. 69 can be
written as

I2 � −∫ћωD

0

× Lim
�Δ→0

M

�Δ
��������������
ϵ2 + �Δ −M( )2( )√ tanh

β
��������������
ϵ2 + �Δ −M( )2( )√

2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠dϵ

(70)
This equation also gives the limit.

I2 � −Mβ

2
∫ћωD

0

1����������
ϵ2 + M( )2( )√ sech2

β
����������
ϵ2 + M( )2( )√

2
dϵ (71)

Using sech2 x � 1 − tanh2 x
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∫ћωD

0

1����������
ϵ2 + M( )2( )√ dϵ − ∫ћωD

0

1����������
ϵ2 + M( )2( )√ tanh2

β
����������
ϵ2 + M( )2( )√

2
dϵ

(72)
By applying part techniques of integration and using Laplace’s

transformation, the Matsubara frequency Eq. 72 gives

1
2
ln
M + ћωD

M − ћωD
(73)

Substituting this result in Eq. 71 and then Eq. 66 for the value of
the two integration results (I1andI2) become

1
λ12′

� ln 1.14
ћωD

KBTC
− M

πKBTC
( )2

1.05 − Mβ
4

ln
M + ћωD

M − ћωD
(74)

Neglecting the M2 from the expression because it is very small,
the transition temperature TC is

TC � 1.14
ћωD

KB
e
− 1

λ12
′+aM[ ]

(75)

Where a � β/4 ln(M + ћωD/M − ћωD)

2.2.3 Antiferromagnetic transition temperature
We solve a mean-field equation self-consistently with an order

parameter in the antiferromagnetism (AFM) state with ordering
vector (Q), as defined above in Eq. 38 with M as the
antiferromagnetic order parameter, α11, and α12(k, k

‘ ) intraband
and interband coupling constant of the antiferromagnetic order
parameter, respectively, and in the first Brillouin zone of the
paramagnetic phase, we take the order vector Q � (π, 0). Note
that to study Co-occurrence, we neglect the inter-orbital order

parameter ∑
kk�

α12(k, k�)〈c1−k ↓c2k+Q↑〉 (1 ≠ 2). Because these values

are almost zero for the present orbital models [34]. The anomalous
green’s function for the mean-field equation of the intraband pairing
interaction from the inverse matrices;

〈c1−k ↓c1k+Q↑〉 � 1
β
∑
ωn

f−iωnτFij p, iωn( ) (76)

The green function for the antiferromagnetic order parameter

F11 p, iωn( ) � 〈c1−k ↓c1k+Q↑〉 � 1
D ωn( )

�Δ1 ωn
2 + ε2

2 + �Δ2
2( )( ) (77)

Where D(ωn) � (ωn
2 + ε12 + �Δ1

2)(ωn
2 + ε22 + �Δ2

2).
Substituting Green’s function in the mean-field equation, the
antiferromagnetic order parameter as a function of the
superconducting order parameter becomes;

M � ∑
kk‘

α11(k, k�)〈c1−k ↓c1k+Q↑〉 � α11(k, k�)
β

∑
ωn

�Δ1

ωn
2 + ε12 + �Δ1

2( )
(78)

Changing the summation into integration and introducing the
density of states, N (0), we get

M � α11(kk�)2N1 0( )
β

∫ћωD

0

�Δ1

ωn
2 + ε12 + �Δ1

2( ) dϵ (79)

Using the Matsubara frequency (2n + 1)2π2/β2 � ωn
2 and

1/(2n + 1)2π2 + x2 � tanh(x/2)/2x where x � βE1 Eq. 79 become

M � λATM∫ћωD

0

�Δ1���������
ε12 + �Δ1

2( )√ tanh
β

���������
ε12 + �Δ1

2( )√
2

dϵ (80)

Where λATM � α11(k, k�)N1 (0) coupling constant, and E1
2 �

(ε12 + �Δ1
2).

Now, let us first solve the integral.

∫ћωD

0

1���������
ε12 + �Δ1

2( )√ tanh
β

���������
ε12 + �Δ1

2( )√
2

dϵ

� ∫ћωD

0

2
β

∑∞
n�−∞

1

ωn
2 + ε12 + �Δ1

2 dϵ (81)

Using the Laplace transformation and Matsubara frequency, Eq.
81 become

∫ћωD

0

2
β

∑∞
n�−∞

1

ωn
2 + ε12 + �Δ1

2 dϵ � ∫ћωD

0

2
β

∑∞
n�−∞

1

2n + 1( )2 π
β2
2 + ϵ2 + �Δ1

2 dϵ

� ∫ћωD

0

1
ϵ tanh

βϵ
2
dϵ

− ∫ћωD

0

�Δ1
24
β
∑∞
n�0

1

a4 1 + x2( )2 dϵ (82)

The two integrations give

I1 � ∫ћωD

0

1
ϵ tanh

βϵ
2
dϵ � − ln 1.14

ћωD

KBTATM

I2 � ∫ћωD

0

�Δ1
24
β
∑∞
n�0

1

a4 1 + x2( )2 dϵ ≈
�Δ1

πKBTATM
( )2

1.05

Substituting the I1 and I2 in Eq. 82 and Eq. 80 gives

M � −λATM�Δ ln 1.14
ћωD

KBTATM
+

�Δ
πKBTATM

( )2

1.05( ) (83)

Neglecting �Δ2 because very small for �Δ � �Δ1 the
antiferromagnetic order parameter is

M � −λATM�Δ ln 1.14
ћωD

KBTATM
(84)

This equation also gives the antiferromagnetic transition
temperature (TATM)

TATM � 1.14
ћωD

KB
e

M
λATM

�Δ0( )[ ]
(85)

3 Result and discussion

In this section, we have examined the results obtained from
analyzing the normal and anomalous one-particle thermal Green’s
functions in a two-band model of superconductivity. The analysis
takes into account the potential intraband and interband
superconducting interaction terms, which decouple both bands in
the mean field approximation. We have derived expressions for the
superconducting order parameters (�Δ1 and �Δ2) for the two bands,
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the superconducting transition temperature (TC) in the pure
superconducting state, and the superconducting transition
temperature with a magnetic order parameter. Additionally, we
have obtained the antiferromagnetic transition temperature (TATM).

Using Eq. 57, we have calculated the theoretical value of TC to
be 20.35K, while the experimental value is 20 K [30] for the iron-
based superconductor Ca0.74 (1) La0.26(1) (Fe1−xCox)As2.
Additionally, we have employed reasonable approximations
for various parameters. For instance, we set the interband
coupling constant (λ12) to 0.25 and assumed a substantial
boson energy of 84meV within the multi-band model. The
electron-phonon coupling constant in FeSC is estimated to be
in the range of λ~0.17–0.21 [50]. Our theoretical prediction is in
agreement with the experimental results, providing further
evidence that supports their agreement [44, 51]. This
observation offers valuable insights into the underlying
mechanism responsible for the pairing in superconductivity.
Interestingly, it is possible to obtain TC even when all the
intraband and interband interactions correspond to repulsion
between carriers, as long as the relation (λ11λ22 − λ12λ21)> 0 is
satisfied [52]. This relation is often used for Fe-based
superconductors. To visualize the relationship between TC and
the interband coupling constant (λ12), we have plotted TC against
λ12 in Figure 2A. From the figure, it can be observed that as λ12
increases, the superconducting temperature (TC) for the
Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 superconductor exponentially
increases, and vice versa. As the interband coupling constant
increases, Tc also increases, supporting the commonly accepted
pairing scenario for iron pnictids, which involves SFs
mediating pairing.

In the study, the expression for the superconducting order
parameter as a function of temperature (Eq. 62) and magnetic
ordering was obtained (Eq. 85), and the phase diagram of the
superconducting order parameter versus temperature for

different values of the magnetic order parameter was plotted
(Figure 2B). The results showed that the superconducting order
parameter is suppressed when magnetic ordering is present, and
this suppression becomes more significant as the value of the
magnetic order parameter increases. The impact of magnetic
ordering on superconductivity depends on the details of the
magnetic structure and the electron bands. The phase diagram
of the transition temperature (Tc) versus magnetic ordering was
also plotted (Figure 3A) using Eq. 85, and it was observed that
magnetic ordering suppresses the superconducting transition
temperature. This suppression is likely due to the coupling
between localized and conduction electrons, which is strong
enough to break up the Cooper pairs. The effect of magnetic
ordering on superconductivity depends on the details of the
magnetic structure and the electron bands [34].

The quantum mechanical interaction between the spins of
localized electrons and the atomic magnetic moments of the
system is the underlying cause of magnetic ordering, suppressing
superconductivity. Below the transition temperature (TC), the
exchange interaction attempts to align the Cooper pairs,
imposing strict limits on the existence of superconductivity.
Additionally, we have plotted the phase diagram of TATM

(transition temperature to antiferromagnetism) versus M
(Figure 3B). It can be observed that magnetic ordering enhances
the Neel temperature (TATM). This implies that the
antiferromagnetic moment lies in the basal plane for all values of
M. By combining Figures 3A, B, we have identified the region
between (2.3 < M < 6.07) for M, the magnetic order parameter
where superconductivity and antiferromagnetic coexist, as depicted
in Figure 4. Our findings are broadly consistent with experimental
observations [30]. This also gives additional information for the
physics of superconductivity. Based on our discovery, we have found
that incorporating the interaction between intra-band and inter-
band terms in the two-band model Hamiltonian leads to a multi-

FIGURE 2
(A) Interband coupling constant (λ12) versus superconducting temperature (TC) for Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 Superconductor for ћωD �
84mev (B) Phase diagram of superconducting order parameter versus temperature for various values of the magnetic order parameter for
Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 Superconductor by fixing Tc
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band dispersion at the Fermi surface. This is achieved through the
utilization of the matrix form of thermal Green function formalism,
which holds significance for further comprehensive investigations.
By employing mean-field decoupling, it becomes possible to
establish the order parameters for superconductivity and
magnetism. These order parameters, along with the critical
temperatures associated with superconductivity and magnetism,
allow us to construct a phase diagram. In mean-field theory, the
absence of fluctuations can lead to an overestimation of phase
stability, allowing phases that would normally exist in

competition to coexist. It is crucial to recognize that mean-field
theory has its limits and might not precisely capture the phase
boundaries or quantitative characteristics. Still, by encapsulating the
fundamental qualitative features of the phase diagram, mean-field
theory can offer insightful information. In short, superconducting
(SC) and antiferromagnetism (AFM) phases coexist within a certain
range of increasing magnetic order parameter values. At lower
temperatures, the width of the coexistence region expands as the
magnetic order parameter increases, indicating that the coexistence
of these phases is influenced by the ellipticity of the electron bands.

FIGURE 3
(A) Phase diagram of superconducting transition temperature versus magnetic order Parameter for Ca0.74 (1) La0.26(1) (Fe1−xCox)As2
Superconductor for ћωD � 84mev and λ12 � 0.25. (B) Phase diagram of antiferromagnetic order temperature versus magnetic order Parameter (Eq. 85)
for Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 Superconductor for λ12 � 0.25, ћωD � 84mev and �Δ (0) = 3.02mev.

FIGURE 4
Phase diagram of SC transition temperature and antiferromagnetic transition temperature versus magnetic order parameter. The figure
demonstrates the Co-occurrence of superconductivity and antiferromagnetism (SC + AFM) region between (2.3<M<6.07) for M the magnetic
order parameter.
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4 Conclusion

In the present work, the possible interplay of superconductivity and
antiferromagnetic inCa0.74 (1) La0.26(1) (Fe1−xCox)As2 superconductor
was studied. Based on the electronic band structure of the iron-based
superconductor, we have developed the two-band model Hamiltonian
for the system, which consists of intra and interband pairing
interactions, and inter-orbital pair hopping. Using the normal and
anomalous thermal Green function technique with the two-bandmodel
Hamiltonian, the self-consistent gap equations and the expressions for
the transition temperatures and order parameters have been obtained.
With this mathematical expression and relevant parameters
numerically solved the results have been presented in the figure.
Figure 2A shows that the interband coupling constant increases as
the transition temperature increases for the
Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 iron base superconductor. The
superconducting order parameter ( �Δ ) gets to zero at transition
temperature (Tc), and it is suppressed when magnetic order
parameter (M) sets in and the suppression becomes more important
when the antiferromagnetic correlations grow. This is verified by
plotting the phase diagrams of the superconducting order parameter
(�Δ) versus temperature (T) by varying the value of M. Furthermore,
Figure 3A, which is plotted Tc as the function of the magnetic order
parameter of Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 system indicates that
Tc is decreasing whenM is increased. On the other hand, in the triclinic
state, magnetic ordering enhances the antiferromagnetism transition
temperature (TAFM) as indicated in the phase diagram of
antiferromagnetism order temperature (TAFM) versus
antiferromagnetic order parameter (M) which is shown in
Figure 3B. Lastly, by merging Figures 3A, B, we have found the
intersection region of superconductivity and antiferromagnetic. The
region under the two merged Figures shows the Co-occurrence of the
two states established in the magnetic order parameter range of
2.3<M< 6.07 for the system Ca0.74 (1) La0.26(1) (Fe1−xCox)As2 as
shown in Figure 4 which is seen to the broad experimental agreement.
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