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Fractal physiology and the fractional calculus: a perspective
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This paper presents a restricted overview of Fractal Physiology focusing on the complexity 
of the human body and the characterization of that complexity through fractal measures and 
their dynamics, with fractal dynamics being described by the fractional calculus. Not only are 
anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the 
brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical 
physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the 
inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown 
to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension 
turns out to be a significantly better indicator of organismic functions in health and disease 
than the traditional average measures, such as heart rate, breathing rate, and stride rate. The 
observation that human physiology is primarily fractal was first made in the 1980s, based on 
the analysis of a limited number of datasets. We review some of these phenomena herein by 
applying an allometric aggregation approach to the processing of physiologic time series. This 
straight forward method establishes the scaling behavior of complex physiologic networks and 
some dynamic models capable of generating such scaling are reviewed. These models include 
simple and fractional random walks, which describe how the scaling of correlation functions 
and probability densities are related to time series data. Subsequently, it is suggested that a 
proper methodology for describing the dynamics of fractal time series may well be the fractional 
calculus, either through the fractional Langevin equation or the fractional diffusion equation. 
A fractional operator (derivative or integral) acting on a fractal function, yields another fractal 
function, allowing us to construct a fractional Langevin equation to describe the evolution of 
a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, 
in particular, understanding and controlling physiological networks in order to ensure their 
proper operation. We emphasize the difference between homeostatic and allometric control 
mechanisms. Homeostatic control has a negative feedback character, which is both local 
and rapid. Allometric control, on the other hand, is a relatively new concept that takes into 
account long-time memory, correlations that are inverse power law in time, as well as long-
range interactions in complex phenomena as manifest by inverse power-law distributions in 
the network variable. We hypothesize that allometric control maintains the fractal character of 
erratic physiologic time series to enhance the robustness of physiological networks. Moreover, 
allometric control can often be described using the fractional calculus to capture the dynamics 
of complex physiologic networks.
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of fractal processes using the fractional calculus, and apply this 
dynamical approach to both regular and stochastic physiologic 
processes. To understand the need for such an approach a histori-
cal perspective is useful.

Homeostasis
It is not a coincidence that the modern view of how the human body 
operates mirrors our understanding of the technological society 
in which we live, where a thermostat controls the temperature of a 
home, the sound of a voice can turn the lights on and off, and cruise 
control determines the speed of a car. It is not clear when this idea 
of how the body works began to permeate society, but in medicine 
the concept was introduced by the nineteenth century scientist 
Claude Bernard (1813–1878). He developed the notion underlying 

introduction
The theme of this paper is to indicate the necessity for a fractal 
view of physiology that explicitly takes into account the complex-
ity of living matter and its dynamics. Complexity in this context 
incorporates the recent advances in physiology concerned with the 
applications of the concepts from fractal geometry, fractal statistics 
and nonlinear dynamics, to the formation of a new kind of under-
standing within the life sciences. A parallel development has been 
the understanding of the dynamics of fractal processes and how 
those dynamics are manifest in the control of physiologic networks. 
For a number of years the study of fractals and its application to 
physiology was restricted to the determination of the fractal dimen-
sion of structure, in particular, the static structure of objects and 
the scaling of time series. However, now we explore the dynamics 
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compatible. However the scaling of physiologic time series and the 
interpretation of that scaling in terms of long-term memory and 
fractal dimensions (Mandelbrot, 1977, 1982) is not consistent with 
a simple view of the world in general or of physiology in particu-
lar. Therefore we explore some of the ways fractal dynamics has 
required modification of the principle of homeostasis (Goldberger, 
2006) and how allometric control (West, 2009) may replace homeo-
static control. Consequently we hypothesize that complex physi-
ologic networks require allometric control.

Another important hypothesis that developed from this view 
of physiologic time series is that disease and aging are associated 
with the loss of complexity and not with the loss of regularity 
(Goldberger et al., 1990). This hypothesis could be a consequence 
of a loss of interactions among component networks, or as Pincus 
(1994) suggested the increased isolation of network elements can 
result in a decrease in the complexity of the network’s signal. The 
complexity hypothesis may also be related to the idea that disease 
marks a departure from normal physiologic behavior and because 
that departure may be either more or less irregular it has been called 
“dynamic disease” by Glass (2001) and is caused by modifications 
in the underlying physiologic control network.

Fractals
The fractal concept was formally introduced into the physical sci-
ences by Beniot Mandelbrot over 20 year ago in his monograph 
(Mandelbrot, 1977), which brought together mathematical, experi-
mental, and physical arguments that undermined the traditional 
picture of the physical world. It had been accepted that celestial 
mechanics and physical phenomena are, by and large, described by 
smooth, continuous, and unique functions, since before the time 
of Lagrange (1736–1813). This belief was part of the conceptual 
infrastructure of the physical sciences. The changes in physical proc-
esses were modeled by systems of dynamical equations and the 
solutions to such equations are continuous and differentiable at 
all but a finite number of points. Therefore the phenomena being 
described by these equations were thought to have these properties 
of continuity as well as differentiability.

From the phenomenological side, Mandelbrot called into ques-
tion the fidelity of the traditional perspective by pointing to the 
failure of the equations of physics to explain such familiar phenom-
ena as turbulence and phase transitions, for example, the melting 
of ice and the clotting of blood. In his books (Mandelbrot, 1977, 
1982) Mandelbrot catalogued and described dozens of physical, 
social, and biological phenomena that cannot be properly described 
using the familiar tenants of dynamics from physics. The functions 
required to explain these complex phenomena have properties that 
for a 100 years had been thought to be mathematically pathologi-
cal. Mandelbrot argued that, rather than being septic; these func-
tions capture essential properties of reality and are therefore better 
descriptors of the real world than the traditional analytic functions 
of theoretical physics.

Schrödinger (1943), using the principles of equilibrium statisti-
cal physics, laid out his understanding of the connection between 
the world of the microscopic and macroscopic. In that discussion 
he asked why atoms are so small relative to the dimension of the 
human body. The high level of organization necessary for life 
is only possible in a macroscopic network; otherwise the order 

homeostasis in his study of stability of the human body. The word 
homeostasis was popularized half a century later by Walter Cannon 
(1871–1945) in his book The Wisdom of the Body (Cannon, 1932). 
Homeostasis is what many consider to be the guiding principle 
of medicine, whereby every human body has multiple automatic 
inhibition mechanisms that suppress disquieting influences of the 
environment. Homeostasis is the evolutionary strategy selected to 
enable the human body to maintain an internal balance, although 
it is not always evident how a particular suppressing response is 
related to a specific antagonism. Biology teaches that evolution 
has, over the millennia, reduced homeostatic networks to the bare 
minimum, so that in the spirit of parsimony, every internal mecha-
nism of a physiological network is necessary to maintain either the 
structural or functional integrity of the organism.

But why should physiologic networks be homeostatic? Why has 
nature determined that this is the “best” way to control the various 
complex networks in the human body? In part, nature’s choices 
have to do with the fact that no physiologic network is isolated; 
these networks are, in fact, made up of a mind-numbing number 
of subnetworks, the cells. The task of a cell is simple and repetitive, 
but that of an organ is not. Therefore a complex network like the 
cardiovascular is made up of a variety of cell types, each type per-
forming a given different function. If responses to changes in the 
external environment were at the cellular level, physiology would 
be much more complicated than it is already, and organs would no 
doubt be unstable. But nature has found that if the immediate envi-
ronment of the cells is kept within certain narrowly defined limits, 
then the cells can continue to perform their specific tasks and no 
others, even while organs respond to sometimes extravagant exter-
nal disturbances. As long as the internal environment stays within 
a certain operational range the cells continue to function without 
change. Thus, homeostasis is the presumed strategy that nature has 
devised to keep the internal state of the body under control.

The level of sophistication of control mechanisms was brought 
to light with the centrifugal fly-ball governor (1788) constructed 
by J. Watt for regulating the speed of the rotary steam engine. This 
artificial control mechanism heralded the onset of the Industrial 
Revolution. The first mathematical description and consequent 
understanding of Watt’s governor was constructed by the English 
physicist J. C. Maxwell in 1868, when he linearized the differen-
tial equations describing the governor’s dynamics. The solutions 
to the linearized differential equations (control) are stable when 
the eigenvalues have negative real parts (stabilizing feedback) and 
in this way the language for the control of dynamical networks 
was introduced.

The homeostatic control of physiologic networks classifies the 
dynamics as negative feedback, because such homeostatic networks 
respond in ways to dampen environmental disturbances includ-
ing fluctuations. However the control of certain networks has the 
opposite behavior, that is, they have a positive feedback, because the 
networks respond in ways to amplify perturbations. Of course, such 
responses lead to unstable behavior in general, but such instability 
is sometimes useful. Consequently feedback can either amplify or 
suppress disturbances depending on the network’s dynamics.

The picture of reducing the variability in the size of widgets 
coming off an assembly line to meet specifications and the sup-
pression of physiologic variability by homeostatic control remains 
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greatly enriched those that could follow the arguments (Rosen, 
1991). Herein we view our efforts as being midway between the 
two since Fractal Physiology is itself a hypothesis that is continu-
ally being tested.

maniFestations oF variability
Healthy physiologic network give rise to time series that display 
erratic fluctuations not unlike those found in dynamical systems 
driven from the vicinity of a set point, or from an equilibrium state 
(Stanley et al., 1999). The statistical properties of physiological fluc-
tuations, such as found in the time series for heartbeat dynamics, 
respiration, human locomotion, and posture control (Collins and 
DeLuca, 1994), have been the focus of interdisciplinary research 
on complex networks for more than two decades (West, 1999). 
The rationale for this persistent interest is related in part to the 
idea that unlike the thermal fluctuations found in physics, which 
perturb a system but do not contain useful information, physiologic 
fluctuations are often the result of internal control and therefore 
frequently contain useful information. The goal here is to better 
understand self-regulatory control systems for complex physiologic 
phenomena that produce such fluctuations and to describe the 
dynamics of such phenomena with tools capable of capturing their 
nonlinear and often exotic statistical character (Bassingthwaighte 
et al., 1994).

One outcome of the research into the properties of these fluc-
tuations has been a profound change in our understanding of the 
significance of homeostasis and as suggested by Stanley et al. (1999) 
the possibility of their existing a “non-homeostatic physiologic 
variability”. The discovery of fractal and multifractal properties in 
physiological time series has lead to the suggestion that the intrinsic 
variability of many physiological phenomena reflects the adapt-
ability of the underlying control networks (West and Goldberger, 
1987). Consequently, the statistical properties, including correla-
tions of physiological fluctuations, may be more important in the 
control of health and disease than are the average properties, such 
as those under homeostatic control.

Power laws
Scale invariance is the property that relates the elements of time 
series across multiple time scales and has been found to hold empir-
ically for a number of complex physiologic phenomena including 
the inter-beat intervals of the human heart (Ivanov et al., 1999; 
West et al., 1999a), switching times in vision (Gao et al., 2006), 
inter-stride intervals of human gait (Jordan et al., 2006), brain 
wave data from EEGs (West et al., 1995) and inter-breath intervals 
(Szeto et al., 1992), to name a few. One way to understand scaling in 
these and other experimental data is by means of a renormalization 
group approach. Consider an unknown function Z(t) that satisfies 
a relation of the form

Z bt aZ t( ) ( ).=  (1)

We solve this equation in the same manner that differential 
equations are solved, by assuming a trial solution, inserting the trial 
solution into the equation of motion and solving for the appropri-
ate constants. In the present case we assume a trail solution

Z t A t t( ) ( ) .= µ
 (2)

would be destroyed by microscopic (thermal) fluctuations. A living 
network must be sufficiently large to maintain its integrity in the 
presence of thermal fluctuations that randomly disrupt its consti-
tutive elements. Thus, macroscopic phenomena are characterized 
by averages over ensemble distribution functions characterizing 
microscopic fluctuations. The dynamics of macroscopic variables 
therefore generally do not contain thermal fluctuations; the fluctua-
tions typically observed in physiologic time series are macroscopic 
not microscopic. Consequently any strategy for modeling physiol-
ogy must be based on an understanding of the statistical properties 
of complex macroscopic phenomena, and as we shall see, on our 
understanding of fluctuating phenomena that lack characteristic 
scales and are therefore fractal.

There are three types of fractals that appear in the life sciences: 
geometrical fractals, that determine the spatial properties of the 
tree-like structures of the mammalian lung, arterial and venous 
systems, and other ramified structures (West and Deering, 1994); 
statistical fractals (Mandelbrot, 1982), that determine the properties 
of the distribution of intervals in the beating of the mammalian 
heart (Peng et al., 1993), breathing (Altemeier et al., 2000), walk-
ing (Hausdorff et al., 1995; West and Griffin, 1998, 1999; Griffin 
et al., 2000) and in the firing of certain neurons (Das et al., 2003) 
and finally dynamical fractals (West et al., 2003a), that determine 
the dynamical properties of networks having a large number of 
characteristic time scales. In complex physiologic networks the 
distinctions between these three kinds of fractals often blur, and 
herein we focus our attention on the dynamics rather than on the 
geometry of fractals; although in this journal we fully expect to 
entertain studies involving all three types of fractals.

summary
We have made three interrelated hypotheses in this Introduction. 
This first is that complex physiologic networks require allometric 
control; the second is that disease is the loss of complexity; and 
finally that the fractal dimension is a significantly better indicator of 
organismic functions in health and disease than are traditional aver-
ages. These hypotheses are interrelated due to the fact that complex 
physiologic time series have 1/f variability, manifest in an inverse 
power-law spectrum, an inverse power-law probability density or 
both. The power-law index is related to the fractal dimension, which 
is a measure of the complexity of the underlying process.

In support of these hypotheses we briefly review how such 
concepts as complexity, fractals, diverging moments, nonlinear 
dynamics, and other related mathematical topics along with their 
experimental testing are used to understand physiologic networks. 
Of course, a number of books have been written about any one of 
these ideas – books for the research expert (Meakin, 1998), books 
for the informed teacher (Schroeder, 1991), books for the struggling 
graduate student (West, 1999), and books for the intelligent lay 
person (Prigogine and Stengers, 1984). Different authors stress dif-
ferent characteristics of complex phenomena, from the erratic data 
collected by clinical researchers (Dewey, 1997) to the fluctuations 
generated by deterministic dynamical equations used to model 
such networks (Ott, 1993). Some authors have painted with broad 
brushstrokes, indicating only the panorama that these concepts 
reveal to us (Briggs and Peat, 1971), whereas others have sketched 
with painstaking detail the structure of such phenomena and have 
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process is stationary. The autocorrelation function is an inverse 
power law in time because 0 ≤ H ≤ 1 implying that the correla-
tion between data points decreases in time with increasing time 
separation. Note that inverse power law loss of memory is much 
slower than the exponential decay that is often assumed. This scal-
ing behavior is also manifest in the spectrum, which according to 
Eq. 6 is a power law in frequency f :

S f
f H

( ) ,∝ −

1
2 1

 
(9)

and is inverse power law for H > 0.5, a superdiffusive process.
These three properties, the algebraic increase in time of the 

mean-square signal strength (Eq. 7), the inverse power law in 
time of the stationary autocorrelation function (Eq. 8) and the 
inverse power law in frequency of the spectrum (Eq. 9), are typical 
of observed physiologic time series. These properties are usually 
assumed to be the result of long-time memory in the underly-
ing statistical process. Beran (1994) discusses these power-law 
properties of the spectrum and autocorrelation function, as well 
as a number of other properties for discrete and continuous time 
series. In particular he points out that the interpretation in terms 
of how to generate long-time memory in complex networks is 
not unique and reviews the use of fractional difference random 
walks. Herein we extend the discussion to fractional stochastic 
differential equations (West, 1999) and the dynamics of fractals. 
But first we note the long history associated with the 1/f spec-
trum (Eq. 9).

The phenomenon of 1/f noise was discovered by Schottky 
(1918) at the turn of the last century in his study of electrical 
conductivity. Between then and now this spectral form has been 
found in biological, economic, linguistic, medical, neurological, 
and social phenomena as well as in physics (West et al., 2008). The 
spectra of such complex phenomena are given by Eq. 9 and the 
spectral index falls within the interval 0.5 < α < 1.5. Complex phe-
nomena span the dynamic range from the macroscopic behavioral 
level down to the microscopic level. It is evident that 1/f variability 
appears in body movements such as walking, postural sway, and 
movement in synchrony with external stimulation such as a met-
ronome; also such variability resides in physiologic networks as 
manifest in heart rate variability (HRV, Task Force of the European 
Society of Cardiology and the North American Society of Pacing 
and Electrophysiolgy, 1996), human vision (Alvarez-Ramirez et al., 
2008), the dynamics of the human brain (Gilden, 2001; Grigolini 
et al., 2009), and in human cognition (Van Orden et al., 2005; Kello 
et al., 2007); also 1/f noise is measured at the level of single-ion 
channels (Liebovitch and Krekora, 2002; Roy et al., 2008) and in 
single neuron adaptation to various stimuli (Das et al., 2003). 
Each of these psychophysical phenomena manifests 1/f variability 
(West et al., 2008). The original assertion that α = 1 was shown 
in these subsequent studies to extend the spectral index to the 
broader range indicated.

allometric relations
The term scaling denotes a power-law relation between two vari-
ables x and y

y Ax= α ,  (10)

Substituting Eq. 2 into both the lhs and the rhs of Eq. 1 yields 
the condition that the function A(t) is periodic in the logarithm of 
the time with period log b, that is, A(bt) = A(t), and the power-law 
index has the value

µ = log

log
.

a

b  
(3)

In the literature Z(t) is called a homogeneous function 
(Barenblatt, 1994). Note that the parameter a scales the ampli-
tude of the function being measured and the parameter b scales 
the resolution of the time scale. The power-law index is the ratio 
of the logarithms of these two scaling parameters, indicating how 
the amplitude of the function is modified as the units of time 
are modified.

The homogeneous function Z(t) is now used to define the scaling 
observed in the moments calculated from the experimental time 
series with long-time memory. The second moment of a time-
dependent stochastic process is assumed to be Z(t) = 〈X(t)2 〉 so 
that it has a long-time memory is given by (Bassingthwaighte et al., 
1994)

X bt b X tH( ) ( ) .2 2 2=
 

(4)

For the same process a different scaling is given for the station-
ary autocorrelation function Z(τ) = 〈X(t)X(t + τ)〉 = C(τ) yielding 
(Bassingthwaighte et al., 1994)

C bt b C tH( ) ( ).= −2 2

 (5)

Finally, the spectral density for this time series, given by the Fourier 
transform of the autocorrelation function and therefore in terms of 
the frequency f as Z(f ) = S(f ) is (Bassingthwaighte et al., 1994)

S bf b S fH( ) ( ).= −1 2

 (6)

The solutions to each of these three scaling equations are of 
precisely the algebraic form implied by Eq. 2, and in the simplest 
case the modulation amplitude A(t) is fixed at a constant (time-
independent) value.

The above renormalization scaling yields a mean-square signal 
level that increases nonlinearly with time according to Eq. 4 as

X t t H( ) ,2 2∝
 

(7)

and the exponent H is a real constant, often called the Hurst expo-
nent (Mandelbrot, 1977). In a complex physiologic network the 
response X(t) is expected to depart from the entirely random con-
dition of a simple random walk model, because real fluctuations 
are expected to have memory and correlation quantified by H. 
In the physics literature anomalous diffusion (H ≠ 0.5) is associ-
ated with phenomena with long-time memory such that the two-
time autocorrelation function is (Bassingthwaighte et al., 1994; 
Beran, 1994)

C t t X t X t t t1 2 1 2 1 2, .( ) = ( ) ( ) ∝ − β

 
(8)

Here the power-law index is given by β = 2H - 2 in agreement 
with Eq. 5. Note that the two-point autocorrelation function is 
assumed to depend only on the time difference, thus, the  underlying 
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any one plot being independent of the number of species in any 
other plot. If, however, the slope of the curve was less than unity, 
the number of new species appearing in the plots was interpreted 
to be quite regular. The spatial regularity of the number of species, 
in this case, was compared with the trees in an orchard and given 
the name evenness. Finally, if the slope of the variance versus mean 
curve was greater than 1, the number of new species was interpreted 
as being clustered in space, like disjoint herds of sheep grazing in a 
meadow. This clustering is a form of spatial intermittency.

Of particular interest to us here was the mechanism that Taylor 
and Taylor (1977) postulated to account for the experimentally 
observed allometric relation:

We would argue that all spatial dispositions can legitimately be 
regarded as resulting from the balance between two fundamental 
antithetical sets of behavior always present between individuals. These 
are, repulsion behavior, which results from the selection pressure for 
individuals to maximize their resources and hence to separate, and 
attraction behavior, which results from the selection pressure to make 
the maximum use of available resources and hence to congregate 
wherever these resources are currently most abundant.

Consequently, they postulated that it is the tension between 
the attraction and repulsion, migration and congregation, which 
produces the interdependence (scaling) of the spatial variance and 
the average population density. We suggest that this mechanism is 
generic and may underlie a number of natural phenomena includ-
ing those in complex physiologic networks.

We can now reinterpret Taylor’s observations because the kind of 
clustering he observed in the spatial distribution of species number, 
when the slope of the power curve is greater than 1, is consistent 
with an asymptotic inverse power-law distribution of the underly-
ing data set. Furthermore, the clustering or clumping of events is 
due to the fractal nature of the underlying dynamics. Willis, some 
40 years before Taylor, established the inverse power-law form of 
the number of species belonging to a given genera (Willis, 1922). 
Willis used an argument associating the number of species with 
the size of the area they inhabit. It was not until the decade of the 
1990s that it became clear to more than a handful of experts that 
the relationship between an underlying fractal process and its space 
filling character obeys a scaling law (Mandelbrot, 1977, 1982). It is 
this scaling law that is manifest in the allometric relation between 
the variance and mean.

It is possible to test the allometric relation of Taylor using 
 computer-generated data. But before we do so, we note that Taylor 
and Woiwod (1980) were able to extend the discussion from the 
stability of the population density in space, independent of time, 
to the stability of the population density in time, independent of 
space. Consequently, just as spatial stability, as measured by the 
variance, is a power function of the mean population density over 
a given area at all times, so too the temporal stability, as measured 
by the variance, is a power function of the mean population density 
over time at all locations. With this generalization in hand we apply 
Taylor’s Law to time series.

scaling time series
Allometric relations such as Eq. 10 have been extended to include 
measures of time series. In this extended view y is interpreted to be 
the variance and x the average value of the quantity being measured 

and as Barenblatt (1994) explained such scaling laws are not 
merely special cases of more general relations; they never appear 
by accident and they always reveal self-similarity. In biology Eq. 10 
is historically referred to as an allometric relation between two 
observables. Such relations were introduced into biology in the 
nineteenth century. Typically an allometric equation relates two 
properties of a given organism. For example, the total mass of a 
deer y is proportional to the mass of the deer’s antlers x raised to 
a specific power α. Huxley summarized the experimental basis for 
this relation in his 1931 book (Huxley, 1931) and developed the 
mathematics to describe and explain allometric growth laws. He 
reasoned that in biological systems two parts of an organism grow at 
different rates, but the growth rates are proportional to one another. 
Consequently, how rapidly one part of the organism grows can be 
related to how rapidly the other part of the organism grows and 
the ratio of the two rates is constant. Another such application has 
y as the body’s metabolic rate with x the body’s mass and recent 
theory in terms of fractal transport of material within the body 
purports to explain the observed value of the power-law index 
α ≈ 0.75(West et al., 1997).

The notion of an allometric relation has been generalized to 
include measures of time series. In this view y is interpreted to be 
the variance and x the average value of the quantity being measured. 
The fact that these two central measures of a time series satisfy 
an allometric relation implies that the underlying time series is a 
fractal random process and therefore scales. It was first determined 
empirically that certain statistical data satisfy a power-law relation 
of the form (Eq. 10) by Taylor (1961) and this is where we begin our 
discussion of the allometric aggregation method of data analysis.

Taylor was interested in biological speciation. For one thing, he 
was curious about how many species of beetle can be found in a 
given area of land and he therefore sectioned off a large field into 
plots. In each plot he sampled the soil for the variety of beetles 
that were present. This enabled him to determine the distribution 
in the number of new species of beetle spatially distributed across 
the field. From the distribution he could then extract the average 
number of new species X  and the variance in the number of new 
species VarX. After this first calculation he partitioned his field into 
smaller plots and redid the sampling, again determining the mean 
and variance in the number of species at this increased resolution. 
This process was repeated a number of times, yielding a set of values 
for the mean and variance. In the ecological literature a graph of 
the logarithm of the variance versus the logarithm of the average 
value is called a power curve, which is linear in the logarithms of 
the two variables and b is the slope of the curve. The algebraic form 
of the relation between the variance and mean is

VarX aX b= ,  (11)

where the two parameters a and b determine how the variance and 
mean are related to one another.

Taylor (1961) exploited the curves obtained from data in a 
number of ways using the slope and intercept parameters. If the 
slope of the curve and the intercept are both equal to 1, a = b = 1, 
then the variance and mean are equal to one another. This equality 
is only true for a Poisson distribution, which, when it occurred, 
allowed him to interpret the number of new species as being ran-
domly distributed over the field, with the number of species in 
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the allometric  relation between the mean and variance, reveals an 
underlying property of the time series. The increase in the variance 
with increasing average values for increasing aggregation number 
shown in the figure is not an arbitrary pattern. The curve indicates 
that the aggregated data points are interconnected. The original 
computer-generated data points are not correlated, but the adding 
of data points in the aggregation process induces a correlation, one 
that is completely predictable. The induced correlation is linear if 
the original data is uncorrelated, but the induced correlation is not 
linear if the original data is correlated.

The aggregated variance versus the aggregated mean falls along 
a straight line in Figure 1 with a slope of 1 for the uncorrelated 
random process with computer-generated Gaussian statistics. 
Therefore, in the case of Gaussian statistics, we obtain from the 
slope of the curve b = 1, so that the fractal dimension is given 
by D = 2 - b/2 = 1.5 corresponding to the fractal dimension of 
Brownian motion (Suki et al., 2003). In the same way a completely 
regular time series would have b = 2, so that D = 1. The fractal 
dimension for most time series fall somewhere between these two 
extremes; the closer the fractal dimension is to 1, the more regular 
the process; the closer the fractal dimension is to 1.5, the more it is 
like an uncorrelated random process. The data analyzed in Figure 1 
certainly have a single fractal dimension characterizing the entire 
computer-generated time series. If the power-law index, the slope of 
the above curve, is 1 then the data are from an uncorrelated random 
process. If the index is greater than 1 then the data cluster, indicating 
correlations in the random process as interpreted by Taylor.

We emphasize that the allometric aggregation approach is just 
one of many procedures designed to take advantage of the scaling 
properties of the central moments of time series. We refer to such 
methods collectively as finite variance statistical methods (FVSM). 
However, it should be emphasized that not all time series that scale 
have finite variance. Time series having Lévy α-stable statistics 
exemplify processes with diverging variance, but they are described 
by probability density functions that scale (West, 1999). We review 
these matters after some discussion of the scaling properties of 
physiological time series.

Fractal time series
Let us consider the time series from a number of complex physi-
ologic networks such as the cardiovascular, the respiratory, and 
the motor control. In each case a time series associated with the 
particular physiologic network is found to be a random fractal as 
determined by scaling behavior. We have applied the allometric 
aggregation approach to these time series and others as reviewed by 
West (2006a) and here we begin the discussion with the observed 
variability of the inter-beat intervals of the heart.

The mechanisms producing the observed variability in the size 
of a human heart’s inter-beat intervals apparently arise from a 
number of sources. The sinus node (the heart’s natural pacemaker) 
receives signals from the autonomic (involuntary) portion of the 
nervous system that has two major branches: the parasympathetic, 
whose stimulation decreases the firing rate of the sinus node, and 
the sympathetic, whose stimulation increases the firing rate of the 
sinus node pacemaker cells. The influence of these two branches 
produces a continual tug-of-war on the sinus node, one decreasing 
and the other increasing the heart rate. It has been suggested that it 

as in Taylor’s Law (Eq. 11). The fact that these two central meas-
ures of the time series satisfy an allometric relation implies that 
the underlying time series is a fractal random process. The scaling 
of time series data is here determined by grouping the data into 
aggregates of two, three, and more of the original data points and 
calculating the mean and variance at each level of aggregation. The 
idea is that if the data are fractal in nature then we need not increase 
the resolution as Taylor did. We should be able to determine the 
scaling behavior by coarse graining or aggregating the data. In this 
spirit the variance, for a monofractal random time series, is given 
by (Bassingthwaighte et al., 1994)

VarY a Yn n H( ) ( ) ,=  
2

 
(12)

where the superscript on the variable indicates that it is determined 
using the aggregation of n-adjacent data points. It is well established 
(Mandelbrot, 1977; Bassingthwaighte et al., 1994) that the exponent 
in a scaling equation such as Eq. 12 is related to the fractal dimen-
sion D of the underlying time series by the relation D = 2 - H.

The allometric aggregation approach has been applied to a 
number of data sets implementing linear regression analysis to 
the logarithms of the variances and the averages as follows:

log log log .( ) ( )VarY a H Yn n= +  2
 

(13)

Consequently the processed data from self-similar data would 
appear as straight lines on log–log graph paper. For example, in 
Figure 1 we apply Eq. 13 to one million computer-generated data 
points with Gaussian statistics. The far left dot in this figure con-
tains all the data in the calculation of the aggregated mean and 
variance so that n = 1 in Eq. 13. The next point to the right in the 
figure contains the nearest-neighbor data points added together 
to define a data set with a half million data points from which 
to calculate the mean and variance and so on moving from left 
to right. Consequently, this process of aggregating the data is 
equivalent to decreasing the resolution of the time series and as 
the resolution is systematically decreased, the adopted measure, 

Figure 1 | The logarithm of the variance is plotted versus the logarithm 
of the mean for the successive aggregation of 106 computer-generated 
random data points with gaussian statistics. The slope of the curve is 
essentially one, determined by a linear regression using Eq. 13, so the fractal 
dimension of the time series is D = 1.5.
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the variance but there is no essential difference in the discussion. 
At the left-most position the data points indicates the standard 
deviation and mean using all the data points. Moving from left to 
right the next data point is constructed from the time series with 
two nearest-neighbor data points added together and the procedure 
is repeated moving right until the right-most data point has 20 
nearest-neighbor data points added together. The solid line seg-
ment is the best linear representation of the scaling obtained using 
a mean-square minimization procedure that intercepts most of the 
data points with a positive slope of 0.76. We can see that the slope 
of the HRV data is midway between the dashed curves depict-
ing an uncorrelated random process (slope = 1/2) and one that is 
deterministically regular (slope = 1).

We emphasize that the conclusions we draw here are not from 
this single figure or set of data presented, but are representative of 
a much larger body of work. The conclusions are based on a large 
number of similar observations (West, 1999; Glass, 2001; Suki et al., 
2003) made using a variety of data processing techniques, all of 
which yield results consistent with the scaling of the HRV time series 
indicated in Figure 2. So we conclude that the heartbeat intervals do 
not form an uncorrelated random sequence. Instead we see that the 
HRV time series is a statistical fractal, indicating that the heartbeats 
have long-time memory. The implications of this long-time memory 
concerning the underlying physiological control system are taken up 
in the subsequent discussion of the mathematical models.

Scaling phenomena, such as shown for the HRV time series data 
in Figure 2, are said to be self-similar. The fact that the standard 
deviation and mean values change in a certain way as a function of 
aggregation number implies that the magnitudes of these measures 
depend on the size of the ruler used to measure the time interval. 
Recall that this is one of the defining characteristics of fractal curves; 
the length of the curve becomes infinite as the size of the ruler goes 
to 0. The dependence of the mean and standard deviation on the 
ruler size, for a self-similar time series, implies that the statistical 
process is fractal and consequently defines a fractal dimension for 
the HRV time series.

The average scaling exponent obtained by Peng et al. (1993) for 
a group of 10 healthy subjects having a mean age of 44 years, using 
10000 data points for each subject, was b = 0.19 for the difference 
in heartbeat interval time series, not the heartbeat intervals them-
selves. They interpreted this value to be consistent with a theoreti-
cal value of b = 0, which they conjectured would be obtained for 
an infinitely long time series. The latter scaling implies that the 
scaling exponent for the heartbeat intervals themselves would be 
1.0. However, all data sets are finite and it was determined that 
the asymptotic scaling coefficients for the heartbeat interval time 
series of healthy young adults lie in the interval 0.7 ≤ b ≤ 1.0. The 
value of the scaling coefficient obtained using much shorter time 
series and the relatively simple processing technique of allometric 
aggregation is consistent with these results.

We also investigate in the same way the dynamics of breath-
ing; the apparently regular breathing as you sit quietly reading this 
paper. Here evolution’s design of the lung may be closely tied to 
the way the lung carries out its function. It is not by accident that 
the cascading branches of the bronchial tree become smaller and 
smaller, nor is it good fortune alone that ties the dynamics of our 
every breath to this physiologic structure. We argue that, like the 

is this tug-of-war that produces the fluctuations in the heart rate of 
healthy subjects in direct analogy with the observations of Taylor and 
Woiwod (1980), but alternate suggested mechanisms are pursued 
subsequently. Consequently, HRV provides a window through which 
we can observe the heart’s ability to respond to normal disturbances 
that can affect its rhythm. The clinician focuses on retaining the bal-
ance in regulatory impulses from the vagus nerve and sympathetic 
nervous system and in this effort requires a robust measure of that 
balance (West et al., 2008). A quantitative measure of HRV time 
series, such as the fractal dimension, serves this purpose.

Heart rate variability time series have been used as a quantitative 
indicator of autonomic activity. Physicians became interested in 
developing this indicator of variability because experiments indi-
cated a relationship with lethal arrhythmias. A task force was formed 
and charged with the responsibility of developing the standards of 
measurement, physiological interpretation and clinical use of HRV. 
They published their findings (Task force of the European Society of 
Cardiology the North American Society of Pacing Electrophysiolgy, 
1996) in 1996 after which time the importance of HRV to medicine 
became more widely apparent.

When an individual’s heart rate is not typical it is evident that 
quantifying the variation in heart rate is consequential. There are 
a number of ways to calculate measures of HRV, some sixteen at 
last count, each related to scaling in one way or another and most 
being in the FVSM category. However it would not be productive 
to review them all here. Instead we identify the scaling index as the 
most revealing of the characteristics of HRV and use the allometric 
aggregation approach relating the variance and mean of empiri-
cal data to determine the scaling index or equivalently the fractal 
dimension. We apply the allometric aggregation approach to the 
heart’s RR-intervals for a healthy young adult male in Figure 2.

In Figure 2 the logarithm of the standard deviation is plotted 
versus the logarithm of the mean value for a typical HRV time 
series. Note that we use the standard deviation in the figure and not 
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Figure 2 | The logarithm of the standard deviation is plotted versus the 
logarithm of the average value for the heartbeat interval time series for a 
young adult male, using sequential values of the aggregation number 
(West, 2006a). The solid line segment is the best fit to the aggregated data 
points and yields a fractal dimension D = 1.24 midway between the curve for a 
regular process (D = 1) and that for an uncorrelated random process (D = 1.5) 
as indicated by the dashed curves.
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Altemeier et al. (2000) measured the fractal characteristics of 
ventilation and determined that not only are local ventilation and 
perfusion highly correlated, but they scale as well. Finally, Peng 
et al. (2002) analyzed the BRV time series for 40 healthy adults 
and found that under supine, resting, and spontaneous breathing 
conditions, the time series scale. This result implies that human 
BRV time series have: “long-range (fractal) correlations across 
multiple time scales.”

Another exemplar of the many fractal time series is that for walk-
ing. Applying the allometric aggregation approach to stride rate vari-
ability (SRV) time series (West and Griffin, 1998, 1999; Griffin et al., 
2000) determines the scaling index as shown in Figure 4. Note the 
similarity of these last three figures. So, as in the cases of HRV and 
BRV time series, we again find an erratic physiological time series 
to represent a random fractal process (West, 2006b). In the SRV 
context, the implied clustering indicated by a slope greater than the 
random dashed line means that the intervals between strides change 
in clusters and not in a uniform manner over time. This result sug-
gests that the walker does not smoothly adjust his/her stride from step 
to step. Rather, there are a number of steps over which adjustments 
are made followed by a number of steps over which the changes in 
stride are completely random. The number of steps in the adjustment 
process and the number of steps between adjustment periods are not 
independent. The results of a substantial number of stride interval 
experiments support the universality of this interpretation.

The SRV time series for sixteen healthy adults were downloaded 
from PhysioNet and the allometric aggregation approach carried 
out. Each of the curves looked more or less like that in Figure 4, with 

heart, the lung is made up of fractal processes, some dynamic and 
others now static. As with the heart, the variability of the breathing 
rate using breath-to-breath time intervals is denoted by breath-
ing rate variability (BRV), to maintain a consistent notation. We 
present a BRV plot in Figure 3 and obtain a figure similar to that 
in Figure 2. Both kinds of processes lack a characteristic scale and a 
simple argument establishes that such lack of scale has evolutionary 
advantages (West, 1990). Here again we observe that the data fall 
on a line segment midway between the regular and the random 
with a fractal dimension of D = 1.14, perhaps tilting more toward 
the regular. It is also observed that as we age the fractal dimension 
increases and our breathing becomes increasingly random – a loss 
of regularity with age (West, 2006a).

Such observations regarding the self-similar nature of breathing 
time series have been used in a medical setting to produce a revolu-
tionary way of utilizing mechanical ventilators. Historically ventila-
tors have been used to facilitate breathing after an operation and 
have a built-in frequency of ventilation. The single-frequency ven-
tilator design has recently been challenged by Mutch et al. (2000), 
who have used an inverse power-law spectrum of respiratory rate 
to drive a variable ventilator. They demonstrated that this way of 
supporting breathing produces an increase in arterial oxygenation 
over that produced by conventional control-mode ventilators. This 
comparison indicates that the fractal variability in breathing is not 
the result of happenstance, but is an important property of respi-
ration. A reduction in variability of breathing reduces the overall 
efficiency of the respiratory system.
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Figure 3 | A fit to the aggregated standard deviation versus the 
aggregated mean for a typical BrV time series (West, 2006a) is depicted. 
The points are calculated from the data and the solid curve is the best 
least-square fit to the processed BRV data and yields a fractal dimension 
D = 1.14 midway between the curve for a regular process (D = 1) and that for 
an uncorrelated random process (D = 1.5) as indicated by the dashed curves.
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Figure 4 | A fit to logarithm of the aggregated standard deviation versus 
the logarithm of the aggregated mean of SrV data for a typical walker 
(West, 2006a) is depicted. The points are calculated from the data and the 
solid curve is the best least-square fit to the processed SRV data and yields a 
fractal dimension D = 1.3 midway between the curve for a regular process 
(D = 1) and that for an uncorrelated random process (D = 1.5) as indicated by 
the dashed curves.
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negative feedback. Classical control theory has been the backbone 
of homeostasis, but it is not sufficient to describe the full range of 
variability in HRV, SRV, and BRV time series, and the variability 
in other physiologic networks, since it cannot explain how the 
statistics of these time series become fractal, or how the fractal 
dimension changes over time (West and Deering, 1994; Ivanov 
et al., 1998; West et al., 2008).

The issue we address in this section is control of variability. Such 
control is one of the goals of medicine, in particular, understand-
ing and controlling physiological networks in order to insure their 
proper operation. We distinguish between homeostatic control and 
allometric control; the former is familiar and has a negative feed-
back character, which is both local and rapid; the latter is a relatively 
new concept that can take into account long-time memory (West, 
2009). The long-time memory is manifest in correlations that are 
inverse power law in time, as well as, long-range interactions in 
complex phenomena as manifest by inverse power-law distribu-
tions in the network variable. Allometric control introduces the 
fractal character into otherwise featureless random time series to 
enhance the robustness of physiological networks. We introduce 
the fractional calculus as one way to describe the control of physi-
ologic networks (West and Griffin, 2003).

It is not only a new kind of control that is suggested by the 
scaling of physiologic time series. Scaling also suggests that the 
historical notion of disease, which has the loss of regularity at its 
core, is inadequate for the treatment of dynamical diseases. Instead 
of loss of regularity, we identify the loss of variability with disease 
(Goldberger et al., 1990), so that disease not only changes average 
measures, such as heart rate, which it does in late stages, but is 
manifest in changes in HRV at very early stages. Loss of variability 
implies a loss of physiologic control and this loss of control is 
reflected in the changing of the scaling index of the corresponding 
time series (Mutch and Lefevre, 2003; West and Griffin, 2003), that 
is, in the change of fractal dimension.

The well-being of the body’s network of networks is measured 
by the fractal scaling properties of the various dynamic networks 
and such scaling determines how well the overall harmony is main-
tained. Once the perspective that disease is the loss of variability 
(complexity) has been adopted the strategies presently used for 
combating disease must be critically examined. For example, recent 
experiments (Yu et al., 2005) show a preference in the response of 
physiologic networks to 1/f signals over that of white noise indicat-
ing a sensitivity of physiologic networks to scaling control.

Fractional random walks and scaling
Let us begin the discussion of the dynamics of fractals with a 
brief review of the formal generation of discrete time series. We 
define the variable of interest as X

j
 where j = 0,1,2,… indexes the 

time step. In the simplest random walk model a random step is 
taken in each increment of time and for convenience we set the 
time increment to 1. The shift operator B lowers the index by one 
unit such that

BX Xj j= −1,
 

(14)

so that a simple random walk can be formally written

( ) ,1 1− = −B X j jξ
 

(15)

the experimental curve being closer to the indicated regular or the 
random limits (dashed curves). On average the 16 individuals have 
fractal dimensions for gait in the interval 1.2 ≤ D ≤ 1.3 (West and 
Griffin, 2003). The fractal dimension obtained from the analysis of 
an entirely different dataset, obtained using a completely different 
protocol, yields consistent results (Jordan et al., 2006). The nar-
rowness of the interval around the fractal dimension suggests that 
this quantity may be a good quantitative measure of an individual’s 
dynamical variability. We suggest the use of the fractal dimension 
as a quantitative measure of how well the motor control system 
is doing in regulating locomotion. Furthermore, excursions out-
side the narrow interval of fractal dimension values for apparently 
healthy individuals may be indicative of hidden pathologies.

It should not go unnoticed that people use pretty much the same 
control system when they are standing still, maintaining balance, 
as they do when they are walking. This observation would lead one 
to suspect that the body’s slight movements around the center of 
mass of the body, would have the same statistical behavior as that 
observed during walking. These tiny movements are called postural 
sway in the literature and have been interpreted using random 
walks (Collins and DeLuca, 1994). It has been determined that 
postural sway may well be chaotic (Blaszczyk and Klonowski, 2001), 
so one might expect that there exists a relatively simple dynamical 
model for balance regulation that can be used in medical diagnosis. 
Here again fractal dynamics can be determined from the scaling 
properties of postural sway time series and it is determined that 
a decrease of postural stability is accompanied by an increase of 
fractal dimension. Consequently, it has been conjectured that the 
control of human movement and postural behaviors occurs as a 
scaling process (Hong et al., 2006).

control oF variability
The physiological time series processed in the previous section 
clearly show that the complex phenomena supporting life, although 
they may appear to be random, do in fact scale in time and therefore 
contain information about the underlying dynamic process. This 
scaling indicates that the fluctuations that occur on multiple time 
scales are tied together and the way we understand such interde-
pendency in the physical sciences is through underlying mecha-
nisms that are coupled one to the other. This coupling is typically 
done through the equations of motion governing the dynamical 
description of the process. Unfortunately we generally do not have 
available such dynamic equations to describe physiologic phenom-
ena. Therefore we must take a more phenomenological approach 
and develop mathematical models to explain the patterns in the 
data based on heuristic reasoning.

The individual mechanisms giving rise to the observed statisti-
cal properties in physiological networks are very different, so we 
do not attempt to find a common source to explain the observed 
scaling in walking, breathing, thinking, and the heart beating. 
On the other hand, the physiological time series in each of these 
phenomena scale in the same mathematical way; they have 1/f 
variability, so that at a certain level of abstraction the separate 
mechanisms cease to be important and only the relations matter 
and not those things being related. Consider that traditionally 
such relations have been assumed to be linear, and their control 
was assumed to be in direct proportion to the disturbance through 
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fluctuations on the present time network response is determined 
by the relative size of the coefficients in the series. Using Stirling’s 
approximation on the gamma functions determines the size of 
the coefficients in Eq. 19 as the fluctuations recede into the past, 
that is, as k → ∞

X
kj

j k

k
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−

−
−

=
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1 1
0( )!
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α

ξ
α

 
(20)

since k >> α. Thus, the strength of the contributions to Eq. 20 
decreases with increasing time lag as an inverse power law in the 
time lag as long as α < 1. The spectrum of the time series (Eq. 20) 
is obtained in the low-frequency limit to be (West, 1999)

S( ) ,ω
ω α∝ 1

2
 

(21)

where unlike the white noise spectrum that is flat, the fractal walk 
spectrum is inverse power law.

Thus, since the fractional-difference dynamics are linear the 
network response is Gaussian and from these analytic results we 
conclude that X

j
 is analogous to fractional Gaussian noise. The 

analogy is complete if we set α = H - 1/2 so that the spectrum 
(Eq. 21) can be expressed as

S
H

( ) .ω
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1
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(22)

Taking the inverse discrete Fourier transform of the exact 
expression for the spectrum yields the correlation coefficient 
(West, 1999)

r
X X

X

H

H
kk

j j k

j

H≡ ≈ −
−

+ −
2

2 21 5

0 5

Γ
Γ

( . )

( . )
,

 

(23)

as the lag time increases without limit. It is clear that for the power-
law index in the interval 1 ≥ H ≥ 1/2 then both the spectrum and 
the correlation coefficient are inverse power law.

The probability density function (pdf ) for the fractional-
 difference diffusion process in the continuum limit satisfies the 
scaling condition

p x t
t

F
x

t
( , ) ,= 





1
δ δ

 
(24)

where δ = H = α - 1/2. The manifestation of complexity is indicated 
by two distinct quantities. The first indicator of complexity is the 
scaling parameter δ departing from the familiar value δ = 0.5, which 
it would have for a simple diffusion process. But for fractional dif-
fusive motion considered here the value of the scaling index can be 
quite different. A second indicator of complexity is the function F(·) 
in Eq. 24 departing from the conventional Gaussian form, although 
in the argument presented so far it does not.

The scaling index δ is usually determined by calculating the sec-
ond moment of a time series. This method of analysis is reasonable 
only when F(y) has the Gaussian form, or some other distribution 
with a finite second moment, that is, the process is a member of 
the FVSM class. If the scaling condition (Eq. 24) is realized it is 
convenient to measure the scaling parameter δ by the method of 
diffusion entropy analysis (DEA, Scafetta and Grigolini, 2002) that, 

where ξ
j
 is +1 or -1 and the choice of values is made by flipping a 

coin. The solution to the discrete Eq. 15 is given by the position of 
the walker after N steps, the sum over the sequence of steps

X N j
j

N

( ) .=
=

∑ξ
1  

(16)

The total number of steps N can be interpreted as the total 
time t over which the walk unfolds, since we have set the time 
increment to 1. Note that Eq. 16 is also equivalent to coarse grain-
ing a sequence of discrete measurements by aggregating the data. 
For N sufficiently large the sum in Eq. 16 can be replaced by an 
integral and the central limit theorem proves that the statistics of 
the dynamic variable X(t) are Gaussian. Consequently such sums 
of empirical data are often assumed to be Gaussian when closer 
analysis shows they are not. This is not a contradiction because the 
real world often does not satisfy the assumptions necessary for the 
proofs of mathematical theorems.

In the simple random walk the steps are statistically independent 
of one another. The most direct generalization of this model is to 
make each step dependent on the preceding steps in such a way 
that the second moment of the walker displacement is

X t Dt H( ) .2 22=
 

(17)

The brackets in Eq. 17 denote an average over an ensemble of 
realizations of the walk, D is the strength of the fluctuations (diffu-
sion coefficient) and when H ≠ 1/2 the underlying process is called 
anomalous diffusion in the physics literature (West and Deering, 
1994). A value of H < 1/2 is interpreted as an anti-persistent proc-
ess in which case a random step in one direction is preferentially 
followed by a reversal of direction. A value of H > 1/2 is interpreted 
as a persistent process in which case a random step in one direction 
is preferentially followed by another step in the same direction. 
A value of H = 1/2 is interpreted as the random walk model of clas-
sical diffusion in which case the steps are statistically independent 
of one another (West, 1999).

One way of introducing long-term memory into a random walk 
model is by means of fractional differences. Following Hosking 
(1982) we define a fractional difference process as

( ) ,1− =B X j j
α ξ

 
(18)

and the exponent α is not an integer. As it stands Eq. 18 is just a 
formal definition without physiologic content to make it inter-
esting. To make this equation usable we must determine how to 
represent the operator acting on X

j
 as reviewed by West (1999) to 

obtain the formal solution
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A formulation of this process in terms of fractional autoregres-
sive integrated moving average models (FARIMA) applied to tem-
poral physiologic signals yields similar results (Eke et al., 2002). 
The solution to the fractional random walk is clearly dependent on 
fluctuations that have occurred in the remote past; note the time 
lag k in the index on the fluctuations in Eq. 19 and the fact that it 
can be arbitrarily large. The extent of the influence of these distant 
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and the initial value becomes an inhomogeneous term in this frac-
tional relaxation equation of motion. Note that the dissipation 
parameter is positive definite and is λα has the same units as the 
fractional derivative. Equations of the form (Eq. 27) are mathemati-
cally well defined, and strategies for solving such equations have been 
developed by a number of investigators, particularly the book by 
Miller and Ross (1993) that is devoted almost exclusively to solving 
such equations when the index is rational. Here we allow α to be 
irrational and consider the Laplace transform of Eq. 27 to obtain

ˆ( )
( )

,Y s
Y

s

s

s
=

+
0 α

α αλ  
(28)

whose inverse Laplace transform is the solution to the fractional-
differential equation. Nonnenmacher and Metzler (1995) inverted 
the Laplace transform in Eq. 28 using Fox functions. The solu-
tion to the initial value problem for the fractional relaxation 
equation is given by the series for the standard Mittag-Leffler 
function (MLF)
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which in the limit α → 1 yields the exponential function

lim ,
α α

α λλ
→

−−( )( ) =
1
E t te

as it should, since under this condition Eq. 27 reduces to the usual 
relaxation rate equation. Note that in this limit the initial value 
term on the rhs of Eq. 27 vanishes because the gamma function 
of zero diverges.

The MLF has interesting properties in both the short-time 
and the long-time limits. In the short-time limit it yields the 
Kohlrausch–Williams–Watts Law from stress relaxation in rheol-
ogy (West et al., 2003a) given by

lim ,( )

t

tE t
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also known as the stretched exponential. In the long-time 
limit it yields the inverse power law, known as the Nutting Law 
(West et al., 2003a),

lim ( ) ,
t

E t t
→∞

−−( )( ) =α
α αλ λ

 
(31)

clearly an inverse power law in time. Figure 5 displays the MLF as 
well as its two asymptotes, the dashed curve being the stretched 
exponential and the dotted curve the inverse power law. What is 
apparent from this figure is that the long-time memory associated 
with fractional relaxation processes is inverse power law rather than 
being the exponential of ordinary relaxation. The MLF smoothly 
joins these two empirically determined asymptotic distributions.

We can now generalize the fractional-differential equation to 
include a random force ξ(t) and in this way obtain a fractional 
stochastic differential equation, such as we did in the last section. In 
physics nomenclature such a fractional stochastic differential equa-
tion is a called a fractional Langevin equation (West et al., 2003a)
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in principle, works independently of whether the second moment is 
finite or not. The DEA method affords many advantages, including 
that of being totally independent of a constant bias.

Fractional rates
Fractal functions often describe complex phenomena characterized 
by fractal time series. Such functions are known to have divergent 
integer-valued derivatives, and consequently traditional control 
theory, involving integer-valued differentials and integrals, cannot 
be used to determine feedback in fractal phenomena. However a 
fractional operator of order α acting on a fractal function of fractal 
dimension D yields a new fractal function with fractal dimension 
D + α, where α > 0 for a derivative and α < 0 for an integral. 
Therefore it seems reasonable that one strategy for modeling 
the dynamics and control of complex physiologic phenomena is 
through the application of the fractional calculus (West, 2009). 
The fractional calculus has been used to model the interdepend-
ence, organization and concinnity of complex phenomena ranging 
from the vestibulo-oculomotor system, to the electrical impedance 
of biological tissue to the biomechanical behavior of physiologic 
organs, see, for example Magin (2006) for an excellent review of 
these applications and many more. Such descriptions can also be 
obtained from the continuum limit of the fractional difference 
equations of the previous section.

We can relate the allometric aggregation approach to this 
recently developed branch of control theory involving the fractional 
calculus. The generalization of control theory to include fractional 
operators enables the designer to take into account memory and 
hereditary properties that are traditionally neglected in integer-
order control theory (Podlubny, 1999), such as in traditional home-
ostasis. A fractional time integral is defined (West et al., 2003a; 
West, 2006b)
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and the corresponding fractional time derivative is defined
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where [α] + 1 ≥ n ≥ [α] and the bracket denotes the integer value 
n closest to α. Consequently for α < 1 we have n = 0 and Eq. 25 
is the Riemann–Liouville (RL) formula for the fractional integral 
operator when α > 0 and Eq. 26 is the corresponding RL-fractional-
differential operator.

Fractional Langevin equation
Of course, the fractional calculus does not in itself constitute a physi-
cal/biological theory, but requires such a theory in order to interpret 
the fractional derivatives and integrals in terms of physical/biologi-
cal phenomena (West et al., 2003a). For example how is the nega-
tive feedback, so central to homeostasis, included in the fractional 
calculus modeling? The generalization of a relaxation equation to 
fractional form is given by (Nonnenmacher and Metzler, 1995)
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et al., 2003a). However it is useful to point out that Eq. 35 is the 
kind of formal expression that is necessary to investigate when the 
physiologic phenomenon is not stationary.

Monofractal solutions
A somewhat simpler problem than Eq. 32 is the fractional Langevin 
equation without dissipation, that is, the solution to the fractional-
dynamic stochastic equation with λ = 0. The solution to this equa-
tion expressed in terms of the fractional integral is
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and the kernel can also be interpreted as a filter. Here we see that if 
the stochastic driver has fractal Gaussian statistics it scales as

ξ γ γ ξ( ) ( ),t th=  (37)

which for a Wiener process would have h = 1/2, but for a more 
general fractal statistical process 1 ≥ h > 0. This property can 
be used to express the scaled-time solution to the fractional-
 dynamical  equation as
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which given its linear form also has Gaussian statistics. Using the 
strategy of writing the scaling parameter as γ = 1/t we can express 
the solution (Eq. 38) in the scaling form

Y t Y t Y Yh( ) ( ) ( ) ( ) ,− = −[ ]+0 1 0α

 (39)

so that the second moment can be expressed as

Y t Y Y Y t h( ) ( ) ( ) ( ) .−( ) = −( ) +0 1 0
2 2 2 2α

 
(40)

The time-dependence of the second moment (Eq. 40) agrees 
with that obtained for anomalous diffusion where we identify 
H = α + h. If the stochastic force is that of classical diffusion, that 
is, h = 1/2 and 1 ≥ H > 0 then the interval of values for the frac-
tional operator in Eq. 36 is given by -1/2 ≤ α ≤ 1/2. Consequently 
the process described by the dissipation-free fractional Langevin 
equation can cover the full range of values 1 ≥ H > 0.

The interval 1/2 ≥ H > 0 has in the past been interpreted in terms 
of an anti-persistent random walk. An anti-persistent explanation 
of time series was made by Peng et al., (1993). for the differences 
in time intervals between heart beats. They interpreted their time 
series, as did a number of subsequent investigators, in terms of ran-
dom walks with H < 1/2. In this model the anti-persistent behavior 
lead to an avoidance of the extremes, so that the time intervals did 
not become too large nor too small. However, we can see from 
Eq. 40 that the fractional Langevin equation without dissipation is 
an equivalent description of the underlying dynamics. The scaling 
behavior alone cannot distinguish between these two models, what 
is needed is a complete statistical distribution and not just the time-
dependence (scaling behavior) of the central moments.

There are a number of ways to test the interpretation of the 
scaling behavior observed in Eq. 40. Podlubny (1999 showed that 
if reality has the dynamics of a fractional-differential equation, 
then attempting to control it with an integer-order feedback leads 

The average response of the network is given by the fractional 
relaxation equation for a random force that is zero-centered, which 
is to say, by averaging over Eq. 32 we obtain Eq. 27 for the average 
network response. The solution to Eq. 32 is obtained using Laplace 
transforms as done previously
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Note the difference in the s-dependence of the two coefficients 
of the rhs of Eq. 33. The inverse Laplace transform of the first term 
yields the MLF as found for the homogeneous fractional relaxation 
equation, whereas the inverse Laplace transform of the second term 
is the convolution of the random force and a stationary kernel. The 
stationary kernel is given by the series (West et al., 2003a)
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which is a generalized MLF. The function defined by Eq. 34 reduces 
to the usual MLF when β = 1, so that both the homogeneous and 
inhomogeneous terms in the solution to the fractional Langevin 
equation can be expressed in terms of these series.

The explicit inverse of Eq. 33 yields the solution (West et al., 
2003a)
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In the case α = 1, the MLF becomes the exponential, so that the 
solution to the fractional Langevin equation reduces to that for an 
Ornstein–Uhlenbeck process

Y t Y t dtt t t
t

( ) ( )= +− − −∫0
0

e e ( )( )λ λ ′ ξ ′ ′

as it should. The analysis of the autocorrelation function of Eq. 35 
can be quite daunting and so we do not pursue it further here, but 
refer the reader to the literature (Kobelev and Romanov, 2000; West 
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Figure 5 | The solid curve is the MLF, the solution to the fractional 
relaxation equation (eq. 29). The dashed curve (Eq. 30) is the stretched 
exponential (Kohlrausch–Williams–Watts Law) and the dotted curve (Eq. 31) is 
the inverse power law (Nutting Law).
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series. The function f (h), called the multifractal or singularity 
spectrum, describes how the local Hölder (fractal) exponents 
contribute to such time series. Here h and f are independent 
variables, as are q and τ. The general formalism of Legendre 
transform pairs interrelates these two sets of variables by the 
relation (Feder, 1988),

f q qh q( ) = + τ( ).  (43)

The local Hölder exponent h varies with the q-dependent mass 
exponent through the equality

h q
d q

dq
q( ) ( ),= − = −τ τ( ) ′

 
(44)

so the singularity spectrum can be written as

f h q q q q( ) ( ) ,( ) = − +τ τ′ ( )
 

(45)

where the mass exponent τ(q) and its derivative are determined by 
data or from theory as in Eq. 42.

To determine the mass exponent in Eq. 45 we assume the sta-
tistics of the parameter μ are generated by a stable Lévy process 
with index β the structure function exponent can be shown to be 
(Feder, 1988)

ρ β
( ) ( ) .q q H b q= + −1

 
(46)

Therefore the solution to the fractional Langevin equation cor-
responds to a monofractal process only in the case β = 1 and q > 0, 
otherwise the process is multifractal. We restrict the remaining 
discussion to positive moments.

Thus, we observe that when the exponent in the memory kernel 
in the fractional Langevin equation is random, the solution consists 
of the product of two random quantities giving rise to a multifractal 
process. We apply this approach to the SRV time series data previ-
ously discussed and observe, for the statistics of the multiplicative 
exponent given by Lévy statistics, the singularity spectrum as a 
function of the positive moments shown by the points in Figure 6. 
The solid curve in this figure is obtained from the analytic form of 
the singularity spectrum

f q H bq( ) ( ) ,= − − −2 1β β

 (47)

which is determined by substituting Eq. 46 into the equation for 
the singularity spectrum (Eq. 45), through the relationship between 
exponents (Eq. 42). It is clear from Figure 6 that the data are well 
fit by the solution to the fractional Langevin equation with the 
parameter values β = 1.45 and b = 0.1, obtained through a mean-
square fit of Eq. 47 to the SRV time series data.

The nonlinear form of the mass exponent obtained from the 
fit in Figure 6 is evidence that the inter-stride interval time series 
are multifractal. This analysis is further supported by the fact that 
the maxima of the singularity spectra coincide with the fractal 
dimensions determined using the scaling properties of the time 
series using the allometric aggregation approach.

Of course, different physiologic processes generate different 
fractal time series, because the long-time memory of the underly-
ing dynamical processes can be quite different. Physiological sig-
nals, such as cerebral blood flow (CBF), are typically generated by 

to extremely slow convergence, if not divergence, of the network 
output. On the other hand, a fractional-order feedback, with the 
indices appropriately chosen, leads to rapid convergence of output 
to the desired signal. Thus, we anticipate that dynamic physiologic 
networks with scaling properties, because they can be described by 
fractional dynamics, would have fractional-differential, which is to 
say, allometric controls (West, 2009).

Mulifractal solutions
The solution to the fractional Langevin equation (Eq. 37) is monof-
ractal if the fluctuations are monofractal, which is to say, the time 
series given by the trajectory Y(t) is a fractal random process if 
the random force is a fractal random process. However, the model 
presented is not adequate as it stands for describing multifractal 
statistical processes. A number of investigators have recently devel-
oped multifractal random walk models to account for the multiple 
fractal character of various physiological phenomena and here we 
introduce a variant of those discussions based on the fractional 
calculus. The most recent generalization of the Langevin equa-
tion incorporates memory into the network’s dynamics and has 
the simple form of Eq. 33 with the dissipation parameter set to 
0. Equation 37 could also be obtained from the construction of 
a fractional Langevin equation by Lutz (2001) for a free particle 
coupled to a fractal heat bath, when the inertial terms is negligible. 
The analysis of the previous section provides us with Eq. 40 as the 
starting point for the present discussion.

One way to make the solution to the fractional Langevin equa-
tion a multifractal is to assume that the parameter η = 1 - α in the 
kernel of Eq. 36 is a random variable. To construct the traditional 
measures of multifractal stochastic processes we calculate the qth 
moment of the solution (Eq. 40) by averaging over both the random 
force ξ(t) and the random parameter η to obtain
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The scaling relation in Eq. 41 determines the qth order structure 
function exponent ρ(q). Note that if ρ(q) is linear in q the underly-
ing process is monofractal, whereas, when it is nonlinear in q the 
process is multifractal. We can relate the structure function to the 
mass exponent (Rajagopalon and Tarboton, 1993)

ρ τ( ) ( ).q q= −2  (42)

Consequently we have that ρ(0) = h so that τ(0) = 2 - h, as 
it should because of the well known relation between the fractal 
dimension and the global Hurst exponent D

0
 = 2 - H.

A monofractal time series is characterized by a single fractal 
dimension. In general, time series have a local Hölder exponent 
h that varies over the course of the trajectory and is related to 
the fractal dimension by D = 2 - h (Falconer, 1990). Note that 
for an infinitely long time series the Hölder exponent h and 
the Hurst exponent H are identical, however, for a time series 
of finite length they need not be the same. We stress that the 
fractal dimension and the Hölder exponent are local quantities, 
whereas the Hurst exponent is a global quantity, consequently 
the relation D = 2 - H is only true for an infinitely long time 
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In Figure 7 we compare the multifractal spectrum for middle 
cerebral artery blood flow velocity time series for a healthy group of 
five subjects and a group of eight migraineurs (West et al., 2003b). 
A significant change in the multifractal properties of the blood flow 
time series is apparent. Namely, the interval for the multifractal dis-
tribution on the local scaling exponent is greatly constricted. This is 
reflected in the small value of the width of the multifractal spectrum 
for the migraineurs 0.013, which is almost three times smaller than 
the width for the control group 0.038 for both migraineurs with 
and without aura the distributions are centered at 0.81, the same 
as that of the control group, so the average scaling behavior would 
appear to be the same.

However, the contraction of the spectrum for migraineurs sug-
gests that the underlying process has lost its flexibility. The bio-
logical advantage of multifractal processes is that they are highly 
adaptive, so that in this case the brain of a healthy individual adapts 
to the multifractality of the inter-beat interval time series. Here 
again we see that disease, in this case migraine, may be associated 
with the loss of complexity and consequently the loss of adapt-
ability, thereby suppressing the normal multifractality of CBF time 
series. Thus, the reduction in the width of the multifractal spectrum 
is the result of excessive dampening of the CBF fluctuations and is 
the manifestation of the significant loss of adaptability and overall 
hyperexcitability of the underlying regulation system. West et al. 
(2003b) emphasize that hyperexcitability of the CBF control system 

complex self-regulatory systems that handle inputs with a broad 
range of characteristics. Ivanov et al. (1999) established that healthy 
human heartbeat intervals, rather than being fractal, exhibit mul-
tifractal properties and uncovered the loss of multifractality for a 
life-threatening condition of congestive heart failure. West et al. 
(2003b) similarly determined that CBF in healthy humans is also 
multifractal and this multifractality is severely narrowed for people 
who suffer from migraines.

Migraine headaches have been the bane of humanity for cen-
turies, afflicting such notables as Caesar, Pascal, Kant, Beethoven, 
Chopin, and Napoleon. However, its etiology and pathomecha-
nism have to date not been satisfactorily explained. It was dem-
onstrated (West et al., 2003b) that the characteristics of CBF time 
series significantly differs between normal healthy individuals and 
migraineurs. Transcranial Doppler ultrasonography (TCD) ena-
bles high-resolution measurement of middle cerebral artery blood 
flow velocity. Like the HRV, SRV, and BRV time series data, the 
time series of CBF velocity consists of a sequence of waveforms. 
These waveforms are influenced by a complex feedback system 
involving a number of variables, such as arterial pressure, cerebral 
vascular resistance, plasma viscosity, arterial oxygen, and carbon 
dioxide content, as well as other factors. Even though the TCD 
technique does not allow us to directly determine CBF values, it 
helps clarify the nature and role of vascular abnormalities associ-
ated with migraine.

The dynamical aspects of CBF regulation were recognized 
by Zhang et al. (1999). Rossitti and Stephensen (1994) used the 
relative dispersion, the ratio of the standard deviation to mean, 
of the middle cerebral artery flow velocity time series to reveal 
its fractal nature; a technique closely related to the allometric 
aggregation approach. West et al. (1999b) extended this line or 
research by taking into account the more general properties of 
fractal time series, showing that the beat-to-beat variability in the 
flow velocity has a long-time memory and is persistent with the 
average scaling exponent 0.85 ± 0.04, a value consistent with that 
found earlier for HRV time series. They also observed that CBF 
was multifractal in nature.
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been used to model the interlinking of elements and harmony 
of complex phenomena ranging from the electrical impedance 
of biological tissue to the biomechanical behavior of physiologic 
organs; see, for example, Magin (2006) for an excellent review of 
such applications.

The empirical evidence supports the interpretation that physi-
ologic time series are described by fractal stochastic networks. 
Furthermore, the fractal nature of these time series is not constant 
but may change with the vagaries of the interaction of the network 
with its environment and internal dynamics; therefore, physiologic 
phenomena are often weakly multifractal. The scaling index or 
fractal dimension marks a physiologic network’s response and can 
be used as an indicator of the state of health.

We reiterate that controlling physiological networks in order 
to ensure their proper operation is one of the goals of medicine. 
We have emphasized the difference between homeostatic and 
allometric control. Homeostatic control is familiar and has as 
its basis a negative feedback character, which is both local and 
relatively fast. Allometric control, on the other hand, can take 
into account long-time memory, correlations that are inverse 
power law in time, as well as long-range interactions in complex 
phenomena as manifest by inverse power-law distributions in 
network variables. An allometric control network achieves its 
purpose through scaling, enabling a complex network such as 
one performing physiologic regulation to be adaptive and accom-
plish concinnity of its many interacting subnetworks. Allometric 
control is a generalization of the idea of feedback regulation 
implicit in homeostasis. The basic notion is to take part of the 
network’s output and feed it back into the input, thus making the 
network self-regulating by minimizing the difference between the 
input and the sampled output. More complex networks, such as 
autoregulation of the heartbeat variation, human gait variability, 
and cognition have more intricate feedback arrangements. In 
particular, because each sensor responds to its own characteristic 
set of frequencies, the feedback control must carry signals appro-
priate to each of the interacting subnetworks. The coordination 
of the individual responses of the separate subnetworks is mani-
fest in the scaling of the time series in the output and the separate 
subnetworks select that aspect of the feedback to which they are 
the most sensitive. In this way an allometric control network not 
only regulates, but also adapts to changing environmental and 
biophysical conditions.

It is not merely a new kind of control that is suggested by the 
scaling of physiologic time series. Scaling also implies that the his-
torical notion of disease, which has the loss of regularity at its core, 
is inadequate for the treatment of dynamical diseases. Instead of 
loss of regularity, the loss of variability is identified with disease, so 
that a disease not only changes an average measure, such as heart 
rate or breathing rate, but is manifest in changes in variability at 
very early stages. Loss of variability implies a loss of physiologic 
control, and this loss of control is reflected in the change of fractal 
dimension, that is, in the scaling index of the corresponding time 
series. The change in fractal dimension with age and with disease 
suggested the new definition of disease as a loss of complexity, 
rather than the loss of regularity (Goldberger et al., 1990; West, 
1990, 2009; Van Orden et al., 2005). However this new definition 
has not been universally embraced (Shiau, 2008).

seems to be physiologically consistent with the reduced activation 
level of cortical neurons observed in some transcranial magnetic 
simulation and evoked potential studies.

Regulation of CBF is a complex dynamical process and remains 
relatively constant over a wide range of perfusion pressure via a 
variety of feedback control mechanisms, such as metabolic, myo-
genic, and neurally mediated changes in cerebrovascular impedance 
response to changes in perfusion pressure. The contribution to 
the overall CBF regulation by different areas of the brain is mod-
eled by the statistics of the fractional derivative parameter, which 
determines the multifractal nature of the time series. The source 
of the multifractality is over and above that produced by the car-
diovascular system.

The multifractal nature of CBF time series is here modeled using 
a fractional Langevin model. We again implement the scaling prop-
erties of the random force and the memory kernel to obtain Eq. 41 
as the scaling of the solution to the fractional Langevin equation. 
Here when we calculate the qth moment of the solution we assume 
Gaussian, rather than the more general Lévy statistics. Consequently 
we obtain the quadratic function for the singularity spectrum

f q H bq( ) ,= − −2 2

 (48)

which can be obtained from Eq. 47 by setting β = 2. Another way 
to express Eq. 48 is

f h f H
b

h H( ) ( ) ( ) ,= − −
4

2

 
(49)

where we have used the fact that the fractal dimension is given by 
2 - H, which is the value of the function at h = H.

It seems that the changes in the cerebral autoregulation associ-
ated with migraine can strongly modify the multifractality of mid-
dle cerebral artery blood flow. The constriction of the multifractal 
to monofractal behavior of the blood flow depends on the statistics 
of the fractional derivative index. As the distribution of this param-
eter narrows down to a delta function, the nonlocal influence of the 
mechanoreceptor constriction disappears. On the other hand, the 
cerebral autoregulation does not modify the monofractal properties 
characterized by the single global Hurst exponent, presumably that 
produced by the cardiovascular system.

conclusions and summary
We now draw a number of conclusions. First of all, physiologic 
time series are often erratic and have scaling properties. The sec-
ond moment is determined to scale algebraically in time, the auto-
correlation function is found to be an inverse power law in time 
and the power spectrum is an inverse power law in frequency. The 
power-law nature of these second-order measures is the signature 
of fractal random processes. So we surmise that HRV is a fractal 
random point process, as are SRV and BRV, among dozens of other 
complex physiologic phenomena. Consequently, the dynamics of 
traditional stochastic processes described by differential equations 
for the dynamic variables, or in phase space for the probability 
densities, are not sufficient to describe the properties of complex 
physiologic networks. The fractional calculus can describe at least 
one class of complex phenomena for which other, more traditional, 
methods do not suffice. As mentioned the fractional calculus has 
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