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a regime of criticality, as understood in statistical physics (Chialvo, 
2004; Chialvo et al., 2008; Kitzbichler et al., 2009; Fraiman et al., 
2009; Werner, 2007b, 2009a,b). Like in other physiological systems 
manifesting fractal patterns (see for instance: Bassingthwaighte 
et al., 1994; West and Deering, 1995; Iannacone and Khokha, 1995; 
West, 2006) the question of ubiquity of power-law scaling needs 
to be addressed in relation to other features of brain organiza-
tion. Similarly, is there a relation between fractal organization and 
the propensity for phase transitions of critical systems? Is there a 
bridge between coarse graining (including renormalization group 
transformation) and fractality? And, most importantly, can fractal 
properties be viewed as playing a role for the functional integration 
among different levels of neuronal organization as Andersen (2000) 
suggests in an article entitled “From Molecules to Mindfulness”. 
Generalizing from a comprehensive theory of organization and 
interactions at the molecular level, Agnati et al. (2004, 2009) view 
the Central Nervous System as a nested network at all levels of 
organization, in the image of the Russian Matryoshka dolls: self-
similar structures being embedded within one another. The authors 
elaborated this theory in great detail, with a “Fractal (self-similarity) 
Logic” operating on a set of identical rules which would govern the 
relation between successive levels of the nested system.

Although primarily concerned with chaotic dynamics in the 
Nervous System, King (1991) foresaw in an extensive review that 
“….fractal dynamics may be of functional utility in central nerv-
ous system cognitive processes”. Gisiger’s (2001) comprehensive 
overview of scale invariance in Biology provides the background 
of this review, as do the insights gained in Physics through the 
work of Wilson (1979) and Kadanoff (1990), among many others. 
In addition, Turcotte (1999) discussed at great length the relation 
between aspects of self-organized criticality and fractal scaling from 
the points of view of “avalanche” behavior and systematic proper-
ties of correlation length, specifically directing attention to inverse 
cascade and site-percolation models of the well-known forest fire 

IntroductIon
Fractals, introduced by Mandelbrot in 1977, are signals which 
display scale-invariant, self-similar behavior. Their signature is 
power-law scaling. In the spatial domain, fractals are self-similar 
geometric objects with features on an infinite number of scales. 
In the analysis of time series, they can constitute a hierarchy of 
temporal and spatial scales that may cover the wide range between 
coarse-scale long-term and high-frequency fine-scale fluctuations. 
The statistical analysis of Dynamical Fractals can provide access to 
understanding the dynamics of complex systems. Random Fractals 
refer to the participation of a stochastic process in their generation. 
If the relationship of the property under consideration is simple 
with respect to change of scale, the process is considered monof-
ractal. The process can then be characterized by a single scaling 
exponent which is related to the fractal dimension or the spectral 
exponent of the process. It can be expressed as the Hurst exponent 
of the process (Mandelbrot and van Ness, 1968; Koutsoyiannis, 
2002). However, in some instances the scaling behavior may not 
be adequately characterized by a single, stationary scaling expo-
nent. In such cases, several scaling exponents may be required, each 
exponent locally pertaining to some portion of the data stream. 
Such multifractal signals are represented by the histogram of the 
Hoelder exponents, also known as the singularity spectrum (Muzy 
et al., 1993).

Power-law scaling and other manifestations of fractal and 
self-similar patterns in space and/or time can be identified at all 
levels of neural organization. With few exceptions, these observa-
tions remained largely islands in the otherwise rapidly advancing 
theoretical Neuroscience with different priorities. However, recent 
advances in methodology of measurement of fractal connectivity 
at higher levels of brain organization have led to a proliferation 
of new data. This now calls for integrating fractality with other 
insights into brain organization and complexity, notably in the light 
of the substantial evidence for the brain being a complex system in 
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illustrated with examples by Thurner et al. (1997). Note also that the 
distinction between mono- and multifractal scaling is sometimes 
difficult to draw (Kadanoff et al., 1989).

Conceivably, some of the variations among the reports reviewed 
in subsequent sections may be attributable to procedural differences 
among studies; other reports may not meet the rigorous statistical 
criteria of Clauset et al. Nevertheless, I submit that the majority of 
experimental data on fractals in neural structures give collectively 
adequate reason for ascribing to them widespread functional signif-
icance. At least the results based on wavelet analysis appear immune 
to methodological criticism (see The macroscopic level).

 neuronal morphology
In the foundational work “The fractal geometry of Nature”, 
Mandelbrot (1977) wrote “it would be nice if neurons – he men-
tioned specifically Purkinje cells in the cerebellum – turned out to 
be fractal”: Nature obliged abundantly as the following sample of 
findings with dendrites, neuron cell bodies and glia cells indicates. 
Studying the branching pattern of dendritic trees of retina neurons, 
Caserta et al. (1990) identify by box-counting fractal shapes with 
a fractal dimension of approximately 1.7, which can be explained 
by a diffusion-limited aggregation model (Witten and Sander, 
1981); but fractal dimension measured by different methods (for 
instance comparing box counting with cumulative mass method) 
gives appreciably different values (Caserta et al., 1995). A fractal 
structure was observed by Kniffki et al. (1994) for the branching 
dendrite patterns of thalamic neurons in Golgi impregnated speci-
mens. In a separate series, a scaling relation for bifurcations within 
the dendrite trees was ascertained (Kniffki et al., 1993). Significant 
species differences in fractal dimensions of dendrite arborizations 
in dorsal horn spinal cord neurons (Milosevic et al., 2007) may be 
attributable to species differences in peripheral somesthetic sensi-
bility (the dorsal horn neurons being the first receiving station of 
this type of afferent input). Fractal analysis also reveals a distinct 
differentiation of neuron types in the different laminae of the dorsal 
horn (Milosevic et al., 2005). Differences in regional connectivity 
and functional capacity among different regions in visual cortex 
pyramidal neurons are also associated with marked variation in 
the fractal dendrite branching structure (Zietsch and Elston, 2005). 
Fractal analyses provide a measure of space filling of dendrite arbors 
which, in a study by Jelinek and Elston (2001), differentiates in the 
macaque visual cortex the two known processing streams between 
primary and secondary visual area by differences in fractal proper-
ties. These investigators had undertaken a meticulous examination 
of criteria for ‘quality control’ in studies of this nature, from the stage 
of pre-processing of tissue specimens to comparative evaluation of 
methods for determining fractal dimension (Jelinek et al., 1995).
Examining the connectivity repertoire of basal dendrite arbors 
of pyramidal neurons, Wen et al. (2009) determined a universal 
power-law scaling for dendrite length and radius, suggesting that 
the dendrite arbors are constructed by statistically similar proc-
esses; moreover, fragments of an arbor are statistically similar to the 
entire arbor, thus displaying self-similarity. These design features are 
thought to maximize functionality for a fixed dendrite cost.

Additional evidence comes from digital image analysis which 
enabled Smith et al. (1989) to determine the fractal dimension of 
neuron contours. Results obtained with conventional methods of 

paradigm. While none of the issues discussed in the following will 
receive a definitive answer, I will aim at an explicit formulation of 
the network of interrelated factors that constitute the territory in 
which new perspectives and potential solutions may lie.

With the agenda set forth in the foregoing, the organization 
of the presentation is as follows: I will first briefly review the 
neuroscience literature on fractals, organized by level of neuro-
nal organization, from ion channels to cortical networks, and to 
psychological and behavioral functions. Criticality of brain states, 
Allometric control, and the origin of fractals by phase transitions 
of complex systems will be addressed in more detail. This will be 
followed by a brief overview of the essentials features of the theory 
of fractal generators, including random walk theory and fractional 
differential operators. Having laid out the background in this man-
ner, I will consider relations between renormalization group trans-
formation and fractals as having some potential bearing on the 
apparent ubiquity and universality of power-law scaling in neural 
structures and processes, and its relation to criticality. Finally, I 
will direct attention to the amazing consequence of self-similarity 
which assures the telescoping of different levels of structural and 
functional organization to constitute a fractal object or time series. 
This will lead me to posing the ultimate question: is there a process 
for unpacking interactions between different levels of the fractal 
object, responsive to circumstances and conditions, which eludes us 
entirely? If it existed, fractals would surely be a most extraordinary 
design principle for operational economy in complex systems.

power-law scalIng In neuronal structures and 
processes
This section is intended to summarize essential aspects of fractal 
properties at each of the conventionally designated organizational 
levels, as the basis for conceptual consideration of relations across 
these levels. However, a word of caution is in order: the sketches 
of observational data in this section encompass a vast variety of 
biological substrates, conditions of observation, and methods of 
measurement. This heterogeneity imposes limits on generaliza-
tions, as do the differences of criteria for identifying fractal or 
self-similar features in the data. Potential pitfalls were discussed 
and illustrated in LaBarbera’s (1989) useful (largely pedagogic) 
publication. More recently, Eke et al. (2002), Delignieres et al. 
(2006), and Clauset et al. (2009) set forth stringent criteria for 
design, collection, and interpretation of data for identifying and 
categorizing fractal properties. The latter authors are very spe-
cific in formulating a principled statistical framework, combining 
maximum likelihood fitting methods with goodness of fit tests; 
they demonstrate examples of data that had been conjectured to 
represent power-law fits, but did not withstand the rigor of their 
tests. The statistical properties of fractal time series as solutions 
of differential equations of fractal order or as responses of a frac-
tional system are reviewed by Li (2010). Touboul and Destexhe 
(2009) also suggest that apparent power-law scaling may in some 
instances not be supported by more stringent statistical criteria. 
Of particular relevance to the topic of Section “The mesoscopic 
level” is their claim that experimentally observed power-law scaling 
must not considered proof of self-organized criticality, lest there 
be other supporting evidence available. The analysis, synthesis and 
estimation of fractal-rate stochastic point processes is reviewed and 
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algorithms. On the same self-similarity principle, Pellionisz (1989) 
envisages a fractal growth model of dendritic arbors by iterated 
code repetition as process for global construction of fractals (see 
for instance: Barnsley and Demko, 1985): the essential underlying 
theme is to both reduce complexity of generating, and at the same 
time conserving the full richness of the dendrite arbor. I will expand 
on this principle in later section of this essay. Among the not yet 
explored implications of dendrite fractal arborizations are the effect 
they may induce on the dynamics of processes and critical phenom-
ena in dendrite spines for which they are a supporting platform: 
In Statistical Physics, such effects obtain when the neighborhood 
relations among interacting elements [for instance: Ising spins or 
coupled maps (Cosenza and Kapral, 1992)] are themselves provided 
by a self-similar fractal lattices, such as the Sierpinski Gasket (Gefen 
et al., 1980), rather than an Euclidean geometric base.

In an extension of fractal analysis to features of complex neu-
ral structures, Zhang (2006) determined the Magnetic Resonance 
image-based fractal dimension of white matter of the human brain. 
This method was shown to accurately quantify white matter struc-
tural complexity in three dimensions, and detect age-related degen-
erative changes. Tractography based on Diffusion Tensor Imaging 
enabled Katsaloulis and Verganelakis (2009) to determine fractal 
dimension, self-similarity, and lacunarity of neuron tracts in the 
human brain. The lacunarity analysis is understood to indicate 
the distribution of fractal neuron tracts of different length scales, 
as evidence of connections between different neuron ensembles. 
Another extraordinary technical advance made it possible to deter-
mine the fractal properties of receptor density and distribution 
in human brain, using Positron Emission Tomography (PET) 
and Single-photon Emission Tomography (SPET) (Kuikka and 
Tiihonen, 1998).

the perIpheral nervous system: Ion channels, poInt process 
analysIs of actIvIty In perIpheral nerves and  
IndIvIdual neurons
Ion channels
Turning to primarily functional aspects of fractality in neural sys-
tems, attention focuses in this section on temporal aspects of ion 
channel gating and its relation to time series of neuronal discharge 
patterns. The following collage of data obtained with different 
experimental conditions as well as modeling studies consistently 
supports the dominant presence of fractal features in the functional 
manifestations at the levels under consideration. The kinetics of 
Ion transport across neuronal membranes occurs, in part, via ion 
channels. Application of the Patch Clamp Technique made it pos-
sible to follow the time course of channel opening and closing 
precisely. Typically, the rate of channel opening and closing open-
ing fluctuates, changing at times suddenly from periods of great 
to periods of slow activity. This pattern served as clue to surmise 
an underlying fractal process with infinite variance. On this basis 
Liebovitch et al. (1987, 2001) asked how the switching probabilities 
at one time scale of observation are related to those at another 
time scale. It turned out that these probabilities (defined as effec-
tive kinetic rate) at a given time scale are characterized by fractal 
scaling, and that effective kinetic rates for different time scales of 
observation display self-similarity: there are bursts within bursts 
of openings and closings. The suggestion is that energy  barriers 

scaling analysis are corroborated by Wavelet Packet fractal analysis 
(Jones and Jelinek, 2001). Multifractals were identified for cortical 
pyramidal cells while, in comparison, neurons of synRas trans-
genic mice display less complex arborization patterns (Schierwagen, 
2008.). Shape complexity of neurons and elements of microglia in 
human brain can be classified over a range for fractal dimensions 
which is different for normal and pathological brains (Karperien 
and Jelinek, 2008). The sequence of developmental stages of oli-
godendrocytes, tracked the basis of their immunoreactivity, par-
allels changes in fractal dimension (Bernard et al., 2001). Fractal 
analysis of cell ramification and space filling patterns differentiate 
microglia cells into two categories, depending on whether their 
fractal dimension did, or did not increase after brain injury (Soltys 
et al., 2001).

The scaling law for the cortical magnification factor in primate 
visual cortex is an illustrative example with functional significance: 
as is well known, the part of the visual scene corresponding to the 
eye center is represented densely at the cortex, becoming progres-
sively sparser towards the periphery. It turns out that the scaling 
law for the sampling density away from area centralis is a power-
function which assures locating a peripheral target in the shortest 
time (Koulakov, 2010). As brain size increases, the cortex thick-
ens only slightly, but the degree of sulcal convolution increases 
dramatically, indicating that human cortices are not simply scaled 
versions of one another (Im et al., 2008). Changizi (2003) infers 
several organizing principles of Neocortex from scaling relations 
among its components: e.g. scaling of diameters of neural structures 
would predispose for efficient transport through neuron arboriza-
tions; economical wiring reflects well-connectedness within given 
volumes of neural tissue. These relations are viewed to represent 
a universal law for scaling that applies to hierarchical complexity 
and combinatorial systems, generally (Changizi, 2001b; see also: 
West et al., 1997b; West and Brown, 2004).

As one among several instances of scaling in the cerebral cor-
tex, Changizi (2001a) also shows that axon cross sectional area 
increases in Phylogeny with brain size, presumably compensating 
increase of conduction distances with increase of conduction veloc-
ity (see Symbol processing and fractals). A synthesis of compara-
tive Neuroanatomy with biophysics leads Harrison et al. (2002) to 
conclude that scaling trends in morphological specializations at 
the cellular level may constitute functional adaptations. One of the 
examples in support of their thesis is the role of component scaling 
for managing the conflicting developmental trends of increasing 
brain size and surface folding on the one hand, and the require-
ment for optimizing energy requirements and processing speed, on 
the other. The role of scaling relations for brain growth becomes 
evident when its scaling relation is disrupted by preterm birth in a 
dose-dependent, sexually dimorphic fashion; it directly parallels the 
incidence of neuro-developmental impairments in preterm infants 
(Kapellou et al., 2006).

Taken together, the observations surveyed in the foregoing two 
paragraphs suggest that fractal dimension of neuronal and glia ele-
ments bear some relations to developmental, functional, and patho-
logical conditions of neural tissue. This warrants a few conceptual 
considerations: Bieberich (2002) attaches neural- computational 
significance to the self-similarity of dendritic branching as a 
platform for economical information compression and recursive 
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structures serves to extend their dynamic range. The  significance 
of this function is discussed in Section “Linking across many scales 
of space and time”.

The statistics of action potential trains recorded from single neu-
rons in the cochlear nucleus of anaesthetized cats formed the basis 
of a mathematical analysis by Gerstein and Mandelbrot (1964). The 
principal result was that a random walk model towards an absorb-
ing and a reflecting barrier can account for a wide range of frac-
tal neuronal activity patterns, assuming no more than the known 
physiological mechanisms of a threshold for membrane depolariza-
tion, and the summation of excitatory and inhibitory postsynap-
tic potentials. Except for a Thesis by Johannesma in 1969, it took 
almost 20 years of hegemony of Poisson and Gaussian distributions 
until fractal approaches to spike train statistics were resumed: this 
time by Wise (1981) in a study of spike interval distributions of 
data that had been recorded primarily by Bloom (1969) in the 
cerebral cortex, and in respiratory neurons recorded by Smolders 
and Folgering (1977). Wise found that plots of the spike interval 
histograms on log–log scales showed negative powers on time with 
long tails, which he attributed to the neuron membrane potential 
undergoing a random walk while the firing threshold fluctuates. 
Re-working some of Wise’s data, West and Deering (1994) iden-
tified fractal (hyperbolic) spike interval distributions. Taking an 
entirely different approach to conceptualizing irregular behavior 
in neuron spike trains led Shahverdian and Apkarian (1999) to 
discuss self-affinity, power-Law dependence, and computational 
complexity of spike trains in terms of a multidimensional Cantor 
space with zero Lebesgue measure as attractor.

The turning point in the history of identifying fractal neuronal 
firing is associated with the work of Teich and Lowen, beginning 
in the early 1980s (Chapter 22, in McKenna, 1992) with invalidat-
ing the then prevalent notion of Poisson point processes. More 
recently, the shortcoming of Poisson spike interval statistics was 
also pointed out by Kass and Ventura (2001) and by van Vreeswijk 
(2001) who criticized experimental (Richmond et al., 1990) and 
theoretical (Ohlshausen and Field, 1997) reports for unwarrant-
edly assuming either Poisson neurons or rate based neurons with 
rate independent Gaussian noise; instead he considered a renewal 
model as biologically more plausible.

Teich and Lowen’s essential realization was that determining 
long-time correlations in spike trains requires sample sizes to be 
appreciably larger than conventionally used. On this basis, Teich 
et al. (1990) identified the following essential features of the time 
series of neural spikes recorded from cat auditory nerve fibers and 
the lateral superior olivary nucleus: discharge rates determined with 
different averaging times can exhibit self-similarity; the variance-
to-mean ratio of spike number increases with sufficiently large 
counting time in a fractional power-law fashion, with the expo-
nent in the power-law varying with the stimulus level. With these 
data in hand, Lowen and Teich (1993) suggested that the fractal 
action potential patterning in auditory nerve may be related to 
fractal activity in the ion channels of the sensory organs feeding 
into the auditory nerve: that is, the hair cells in the cochlea. This 
idea required to show that ion channel gating and neuronal spiking 
patterns are indeed causally related. Lowen et al. (1999) succeeded 
with demonstrating this causal dependence in computational mod-
els, thus adding for the special case of the cochlear hair cells some 

in stochastically switching protein conformational states are the 
underlying mechanism (for a detailed account, see Chapter 8 in 
Bassingthwaighte et al., 1994). A different version that also accounts 
for the power-law relationship of ion channel gating kinetics 
assumes that ion channel proteins have a very large number of 
states, all of similar energy, making the gating process more akin 
to a diffusion (Millhauser et al., 1988). Recent theoretical modeling 
defined more precisely the conditions that give rise to the power-
law distributions in relation to the activation barriers, compatible 
with the known Physics of proteins (Goychuk and Hanggi, 2002). 
Roncaglia et al. (1994) developed on theoretical grounds a strin-
gent criterion for ascertaining the validity of the fractal theory by 
evaluating the experimental distribution of channel closing times 
in terms of the Hurst phenomenon. A few years thereafter, Varanda 
et al. (2000) delivered the evidence for Ca-activated K channels in 
the form of long-term correlations of open and closed dwell times, 
expressed as Hurst coefficients of the order of 0.6, which alternative 
Markovian models failed to satisfy.

Before proceeding to discuss the implication of channel kinet-
ics for the patterning of trains of neuron spikes, a brief remark 
on the fractal activity at the site of neural impulse transmission 
at the neuromuscular junction. As is well known from the work 
of DelCastillo and Katz (1954), the neural transmitter substance 
acetylcholine is released from the nerve terminal in small packages: 
the miniature end potentials (MEPP) are considered manifestations 
of the exocytosis of humoral transmitters. In departure from initial 
textbook accounts of the MEPP release reflecting a set of homo-
geneous stationary Bernoulli trials, Perkel and Feldman (1979) 
categorically reject a purely binomial model of (quantal) trans-
mitter release. For the frog neuromuscular junction, Rotshenker 
and Rahamimoff (1970) could show that excocytosis can exhibit 
correlations (memory) extending over periods of seconds, sug-
gesting self-similar characteristics. When sampled over prolonged 
periods, Lowen et al. (1997) collected conclusive data at the neu-
romuscular junction and synapses in hippocampal tissue culture 
that frequency and amplitudes of MEPP’s display fractal scaling. 
Takeda et al. (1999) also reported comparable findings for the ver-
tebral neuromuscular junction. The detailed analysis of quantitative 
features of the recorded data led Lowen et al. (1997) to conclude that 
traditional renewal models of vesicular exocytosis as a memoryless 
stochastic process are entirely inadequate for representing many 
of its salient features. Instead, their recommendation is that a new 
class of models should be considered that relies on fractal-rate 
stochastic point processes: fractal-rate activity represents a kind 
of memory in that occurrence of an event at a given point in time 
increases the likelihood of another event to occur at a later point 
in time, with that likelihood persisting for some time.

 Point process analysis in peripheral nerves and neurons
In this section, neuron discharge trains are viewed as mathematical 
objects, belonging to the class of point processes (Thurner et al., 
1997; Lowen and Teich, 2005): events occurring at a point in time or 
space. Werner and Mountcastle (1963, 1964) determined scaling of 
neural responses in primary cutaneous afferent nerve fibers with the 
magnitude of mechanical stimuli applied to receptors. The implica-
tions of their findings in Psychophysics will be taken up in Section 
“Psychological and behavioral processes”. Adaptation in neural 
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a study of retina ganglion cells, Teich and Saleh (1981) suggest a 
shot-noise driven self-exciting point process; in a later study of 
the same experimental object, Teich found a modulated gamma-
renewal process satisfactory, while Grüneis et al. (1993) favored 
a clustering Poisson process. Electronic shot-noise was recently 
re-introduced by Milstein et al. (2009) for modeling power-law scal-
ing within the power spectrum of LFPs. Mandelbrot and van Ness 
(1968) considered Fractal Brownian motion as candidate. Clearly, 
the goal of determining whether a common principle governing 
spike train variability could be identified, and if not then for what 
reason, eluded this group of investigators.

Without examining specifically for manifestations of fractality, 
a number of investigators attempted statistical characterization of 
neural point processes, primarily motivated to reconcile irregu-
larity of spike trains with their presumptive function as “code” of 
neural signals. But recall that Harris (2005) attributes irregularity 
of spike train discharges to cell assembly organization. In various 
modifications, the general approach chosen by Sakai et al. (1999), 
Cateau and Reyes (2006), and Feng and Zhang (2001) consisted in 
designing model neurons to generate spike trains whose statistics 
would match that of “real” neurons recorded in animal experiments. 
Shinomoto et al. (2003) recorded spike sequences from different 
cortical areas in awake macaques which they classified phenomeno-
logically into different groups. Salinas and Sejnowski (2002) and 
Stevens and Zador (1998) assigned the principal source of discharge 
variability to correlations in the input feeding the examined neu-
ron. None of these results warranted the allocation of observed or 
simulated spike train data to one of the probability distributions 
in the conventional repertoire of statistics, but Maimon and Assad 
(2009) at least excluded Poisson – like randomness from being a 
universal feature of spike time distributions in primate parietal 
cortex. In an exquisitely elegant experiment, Evarts (1967) followed 
the changes of inter-spike interval (ISI) histograms in premotor 
cortex pyramidal neurons in wakefulness, sleep, and the phase of 
sleep associated with low-voltage fast EEG. Regrettably, his charac-
terization of the ISI histograms is only limited to rejecting Poisson 
distributions, but inspecting the histograms displayed in Figure 12 
of his publication arouses one’s suspicion of a long-tail distribution 
for sleep activity.

In a notable and very extended comparison of cortical neu-
ron discharges in alert macaques, Shadlen and Newsome (1998) 
attributed to single neurons the ability to perform simple algebraic 
operations resembling averaging by combining inputs from several 
sources, but they cautiously concluded that irregularity of the ISI 
distribution precludes them from reflecting information about the 
actual temporal structure of the synaptic input. They rejected ran-
dom walk models of the kind applied by Gerstein and Mandelbrot 
as inadequate for capturing the statistical features of spike interval 
distributions, and found Poisson and various renewal processes 
likewise failing to yield satisfactory and consistent correspondence 
with recorded data.

If there is one conclusion that can be drawn from the extant 
data on the statistics of spike interval distributions, then it is that 
demonstrating fractal properties in spike trains requires care-
fully selected conditions. Multiple convergences from incoming 
pathways appears to obscure characteristic statistical properties 
of discharges in the recipient neurons. Thus, a neuron’s intrinsic 

credence to their proposal that gating patterns in sensory organ ion 
channels can affect discharge patterns in the sensory nerve tracts 
they feed. In an elegant experimental design, Teich et al. (1997) 
not only ascertained a power-function for the activity in retina 
ganglion cells and neurons in the lateral geniculate body when 
studied independently, but also succeeded with recording from 
synaptically connected pairs of retina ganglion cells and geniculate 
neurons. In this situation, fractal exponents for retina and target 
neurons in the lateral geniculate body were nearly identical. This 
was interpreted to mean that fractal behavior is either transmitted 
across synapses, or has a common origin for the synaptically con-
nected pre- and postsynaptic structure. On the other hand, fractal 
activity of medullary sympathetic premotor and the synaptically 
connected pregangionic sympathetic neurons is apparently gener-
ated independently (Orer et al., 2003).

More support for the notion that ion channel properties play an 
important role for determining neuron performance comes from 
demonstrating a kind of memory mechanism for traces of prior 
activity in voltage-gated Na channels (Toib et al., 1998): time con-
stants of channel recovery stand in a power-function relation to 
duration of prior activation. The question of primary interest is of 
course how the dynamics of ion channels relates to the functional 
characteristics of a whole neuron. Gilboa et al. (2005) addressed 
this question in a computational model of an ensemble of ion 
channels. In analogy to a “real” neuron, this model neuron exhibits 
various dynamics at different time scales: a power-law recovery time 
scale after stimulation, temporal modulation of discharge pattern 
during maintained stimulation, and the dependence of adaptation 
to a stimulus step on the duration of the priming stimulus. The 
suggestive implication is that the ensemble of ion channels can 
exhibit properties on many scales, comparable to “real” neurons, 
thus supporting the notion that the “macroscopic behavior” of the 
“real” neuron is, in fact, the result of cooperative fractal channel 
kinetics.

In addition to the studies cited in foregoing paragraphs, there are 
numerous reports documenting fractal-rate behavior in single neu-
ronal point processes. However, these data were generally obtained 
for examining spike trains for encoding stimulus properties, and 
they are quite heterogeneous as regards species, neural structure 
examined, use of anesthetics and experimental conditions. Although 
this imposes serious limitations on drawing inferences on general 
principles, I select here a few studies which applied several of the 
commonly agreed upon and typical indicators of fractal properties, 
such as self similarity of firing rate with different averaging time, 
increase of spike number variance-to-mean ratio with counting 
time, and power-law scaling relating the variable of interest to the 
resolution of measurement. In a series of publications, Grüneis 
et al. (1993) reported fractal properties in spike trains recorded 
under various conditions including REM sleep of cats. In visual 
cortical areas of cats and macaques, Baddeley et al. (1997) observed 
consistently non-Poisson spike train statistics, with some displaying 
self-similarity. Other neural structures examined included medul-
lary sympathetic neurons (Lewis et al., 2001) and dorsal horn of 
the spinal cord (Salvadori and Biella, 1994). A common feature 
of these and other reports not cited here, was the lack of agree-
ment on a consistent mathematical model that would satisfactorily 
describe the fractal process underlying the experimental data. In 
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negative local field potentials (NLFP), apparently occurring prefer-
entially in cortical layers 2/3 (Gireesh and Plenz, 2008). The peaks 
of NLFP were considered indicative of synchronized population 
discharges occurring near the recording electrode tip (Plenz and 
Aertsen, 1996), on the rational that bursts of multiunit activity are 
more likely to generate large NLFP’s than are single neuron discharges 
(Plenz and Thiagarajan, 2007). Accordingly, brief bursts of synchro-
nized action potentials were the units of analysis in their experiments. 
Intracranially recorded LFP in human brain show ubiquitous power-
law scaling within the power spectrum (Milstein et al., 2009).

With the alternation between brief burst of NLFP activity and 
quiescent periods remaining stable with a high degree of temporal 
precision over periods of many hours, Beggs and Plenz set out to 
examine the idea that these cascades of neural activity may constitute 
a special mode of network activity, possibly of the character of “ava-
lanches”, indicative of SOC (Bak et al., 1987). They had specifically 
in mind the kind of self-organizing branching process discussed 
by Zapperi et al. (1995) and de Carvalho and Prado (2000). To 
examine this idea required determining the statistical properties of 
the observed activity patterns. For carrying out this analysis, they 
defined the spatial pattern of signal-carrying electrodes during one 
time bin as a frame; a sequence of consecutively active frames, pre-
ceded and ended by a blank period was called an avalanche. The 
NLFP did not propagate in the network in a spatially contiguous 
manner, thus excluding wave-like propagation. With these defini-
tions and precautions in place, distributions of avalanche size and 
lifetimes were found to scale in cultures and acute cortex slices with a 
power-law exponent −3/2, this value being resilient to various choices 
of scales (Plenz and Thiagarajan, 2007). The branching parameter 
was determined as sigma = 1.04. Being statistically indistinguish-
able from the ideal value of 1.0, it signifies a critical state in the 
sense that activity starting at one electrode would initiate activity in 
one other electrode, on the average, keeping the network at the edge 
of criticality (Harris, 1989). Critical branching also maximizes the 
number of metastable states in living neural networks (Haldeman 
and Beggs, 2005). This complements the evidence for fractal prop-
erties and supports the validity of the working hypothesis Beggs 
and Plenz started out with: to view avalanches as manifestations 
of the collective critical dynamics of SOC. More recently, fractal 
scaling of patterned neural activity was reported to also occur in 
cultivated neurons of leech ganglia and rat hippocampus (Mazzoni 
et al., 2007); and Pasquale et al. (2008) describe avalanches in dis-
sociated neuronal cultures of cortex from embryonic rats.

Avalanches were subsequently also studied in superficial layers 
of rat prefrontal cortex (Stewart and Plenz, 2006) and during devel-
opment of cortical layer 2/3 where they display nested theta- and 
beta/gamma oscillations (Gireesh and Plenz, 2008). The theory of 
critical states predicts (see Significance of Brain Criticality) and 
experiments confirm that neuronal avalanches display a maxi-
mized dynamic range of responses to stimuli (Shew et al., 2009). 
Functional architecture of avalanches conformed to Small World 
Topology (Pajevic and Plenz, 2009). Comparing NLFP activity in 
vitro cortex preparations with in vivo activity of awake macaque 
monkey cortex, Petermann et al. (2009) established that high 
fidelity propagation of local synchronized scale-invariant  activity 
patterns is a robust and universal feature of cortex in awake mon-
keys. Furthermore, large amplitude negative field potentials (like 

connection pattern carries the burden of discharge variability. This 
view is reminiscent of Harris’s (2005) view that spike discharge 
variability may be a signature of cell assembly organization. This 
is perhaps also the source of futility of assigning any information 
bearing capacity to discharge patterns of individual neurons in 
labeled-line information transmission (see for instance: Werner, 
2007a). On the other hand, the more direct a neuron’s connection 
pattern to peripheral sensors is, the more distinctly are fractal dis-
charge properties demonstrable. But the opposite also seems to be 
the case when neurons are embedded in a network, as the observa-
tions of El Boustani et al. (2009) in Section “The mesoscopic level” 
show. The place to look for consistent fractal properties is appar-
ently the macroscopic, global level of brain organization (see The 
mesoscopic level). Whether and how the mesoscopic level of the 
next Section bridges the gap is the subject of the next section.

the mesoscopIc level of organIzatIon
Despite their relative simplicity, in vitro cultured neuronal networks 
are here viewed as mesoscopic in the sense of representing neuron 
ensembles which exhibit rich spontaneous dynamical activity in 
the form of periodic bursting (Robinson et al., 1993; Nakanishi 
and Kukita, 1998; van Pelt et al., 2004; earlier references are cited in: 
Beggs and Plenz, 2003, 2004). At superficial inspection, brief bursts 
of activity lasting tens of milliseconds are separated by quiescence 
lasting up to several seconds (Corner et al., 2002; Tateno et al., 2002). 
The spontaneous emergence of patterns in the discharge trains was 
also noted by Giugliano et al. (2004) and replicated in computational 
models. In extension of earlier work that led to identification of scale 
invariant Levy distributions and long-range correlations in cultured 
neuronal networks (Segev et al., 2002; see Processes that generate 
power-law distributions), Segev et al. (2004) attributed the activity 
bursts to be associated with the formation of statistically distinguish-
able subgroups of neurons, each with its own distinct pattern of 
interneuronal spatiotemporal correlations. Wagenaar et al. (2006a) 
emphasized the extremely rich repertoire of bursting patterns during 
the development of cortical cultures. The cultured cortical networks 
spontaneously generated a hierarchical structure of periodic activity 
with a stereotyped population-wide spatiotemporal structure. These 
recurring patterns (called by the authors ‘superburst’) converged 
periodically to a dynamic attractor orbit, and were taken to imply 
large-scale self-organization of neurons in vitro, refuting the com-
monly held view of having random connectivity (Wagenaar et al., 
2006b). The recorded data of these authors are available for distri-
bution to interested investigators. Departing from the practice of 
focusing on spontaneous activity, Breskin et al. (2006) explored the 
propagation of stimulus evoked activity in neuron cultures. A graph 
theoretic analysis of their data attributed the dynamic evolution of 
the network connectivity to a percolation transition with power-law 
characteristics, while the degree distribution of the grown network 
failed to meet power-law criteria.

Working with mature organotypical cultures and acute slices of 
rat cortex, Beggs and Plenz (2003, 2004) concluded that the cascades 
of propagating neuron discharges they observed were indicative of 
the neural culture being in a state of self-organized criticality. The 
importance of this claim, and a recent disputes of its validity (see 
below), warrant close attention to methodological details: Beggs and 
Plenz based their analysis on recording spontaneously appearing 
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at criticality. Critical avalanche networks can be computation-
ally constructed by simple network growth models (Abbott and 
Rohrkemper, 2007). An exponent of the experimentally determined 
value −1.5 of avalanche size and lifetime scaling is predicted by the 
neural field theory of Buice and Cowan (2007).

A field-theoretic approach was also investigated by Freeman 
(2005): analysis of high-resolution electroencephalograms of rab-
bits revealed neural fields in the form of spatial patterns in ampli-
tude and phase modulation of gamma and beta carrier waves which 
distinguished positive and negative conditioning stimuli. The goal 
of applying field theory was in these experiments to model states 
and state transitions as large-scale spatial patterns of neural activity 
for quick changes in adjustment to different behavioral situations. 
The cortical states were viewed as “wave packets”, resembling frames 
in motion picture, stabilized in a scale-free state of self-organized 
criticality. Recall, however, the reservations raised by Touboul and 
Destexhe (2009) that substantiating interdependence of fractality 
and self-organization requires additional evidence. In an entirely 
different context (namely fossil extinction), Newman (1996) shows 
that fractality need not be a unique indicator of SOC and criticality 
since an alternative simple model can account for the empirical 
power-law relation (for an extended discussion of this, see Processes 
that generate power-law distributions and Fractals in Action).

Seeking to strengthen the conjecture of self-organized criticality 
of avalanches, Plenz and Chialvo (2010) acquired experimental 
evidence that the neural avalanches in superficial layers of cortex 
exhibit five additional quantitative aspects of their dynamics which 
are consistent with critical dynamics. These were: separation of 
time scales between triggering and the avalanching event itself; 
stationarity of size distribution; temporal clustering prior to and 
following large avalanches, resembling Omori’s law; power-law 
decay for avalanche size in the wake of preceding large avalanches; 
and a fractal dimension for scaling spatial spread. The importance 
of these results lies first, in affirming evidence for avalanches dis-
playing robust critical behavior; and second, in suggesting that 
their scale-invariant (fractal) properties do in fact reflect cortical 
networks being in a state of criticality. This is also supported by 
the observation that the exponents of simulated branching proc-
esses at near-critical branching are similar to scaling exponents 
characterizing oscillations in the MEG recorded alpha frequency 
band of humans at rest (Poli et al., 2008).

It may be revealing to contrast the failure of consistently finding 
fractal activity patterns in individually sampled neurons (other than 
those receiving relatively direct input, see Point process analysis 
in peripheral nerves and neurons) with the abundance of fractal 
patterns of (mesoscopic) neuron ensembles. It raises the ques-
tion whether the origin of the latter may be a matter of assembly 
organization: note that in the records of neuron cultures, it is the 
concurrent activity of interconnected neurons sampled by differ-
ent electrodes that forms the fractal pattern; this is of course quite 
different from the sampling of neurons in point process analysis, 
guided by chance encounters of a microelectrode with one active 
neuron at the time. The puzzle posed at the end of Section “Point 
process analysis in peripheral nerves and neurons” thus finds per-
haps its resolution in network architecture: Teramae and Fukai 
(2007) describe a model that shows how the fractal property of a few 
individual neurons can turn into an organized communal property 

those constituting the avalanches) spread in a cascade-like fashion 
through the cortical network without distortion, much like action 
potentials: Thiagarajan et al. (2010) described these stereotypical 
waveforms as “coherence potentials”. They occur often in rapid suc-
cession as a stream of dynamical associations, suggesting the switch-
ing of the cortical network from one dynamical state to another.

The reason for viewing neuronal avalanches as manifestation of 
self-organized criticality was based on their fractal scaling proper-
ties for size and duration. Here just a brief reminder of the amply 
documented ‘family resemblance’ of fractality and SOC, to which 
the publications of Grinstein (1995), Chen et al. (1995), Paczuki 
et al. (1996), Tebbens and Burroughs (2003), and Cessac (2004) 
speak, as do the model computations of Papa and da Silva (1997), 
da Silva et al. (1998), de Arcangelis et al. (2006), and Levina et al. 
(2007). However, despite the ‘avalanche’ of research on mechanisms 
leading to scale invariance, there exist questions about the necessary 
conditions for establishing the self-organized critical state (Kinouchi 
and Prado, 1999). A non-conserving critical branching model was 
proposed by Juanico et al. (2007) to demonstrate that SOC can occur 
in mean-field sand piles, provided the branching process is coupled 
to a background activity of spontaneous switching between refracto-
riness and quiescence among system components; in the stationary 
state, this system can undergo a transition from a subcritical to a 
critical state. In an elaborate recent study, Bonachela and Munoz 
(2009) claim that non-conserving (dissipative) dynamics does not 
lead to bona fide criticality. Accordingly, non-conserving systems 
are in their view not truly critical models. Instead, non-conserving 
systems (such as the brain) would just hover around a critical point 
(presumably after some form of fine-tuning) with broadly distrib-
uted fluctuations which do not disappear at the thermodynamic 
limit. Such systems could be fluctuating in the vicinity of the critical 
point, but not at it. The authors call this condition “self-organized 
quasi-criticality”. Whether this is the last word in the long stand-
ing debate of conditions for criticality in SOC remains yet to be 
seen. The earlier work of Kinouchi and Prado (l.c.) seems to offer 
a compromise in the form of a distinction between “true” criticality 
occurring at a special point, and a region of almost critical behavior. 
A novel aspect is  presented by the neural model of Levina et al. 
(2009): it attains criticality in an Extended region of the parameter 
space, where, it can display Classical first- and second-order phase 
transitions as well as an SOC phase, depending on regulatory mecha-
nisms at the level of synaptic connections. In any case, however, the 
dynamic regime leading to avalanche behavior may be considered 
a manifestation of a generic and persistent critical state, similar to 
that postulated by Coordination Dynamics: this will be pursued in 
Section “Fractals and Criticality of Brain States”.

Conditions for universality of 1/f scaling in dissipative self-
organized criticality models were established by De Los Rios and 
Zhang (1999). Models predicting avalanches of neural activity 
include the work of Herz and Hopfield (1995) and were noted 
by Eurich et al. (2002) in a network of globally coupled nonlin-
ear threshold elements. Models of neural networks of non-leaky 
integrate-and-fire neurons exhibit over a wide range of connectivity 
patterns power-law avalanches with an exponent closely approxi-
mating that reported by Beggs and Plenz for tissue cultures (Levina 
et al., 2007). In a comment to this paper, Beggs (2007) gives a lucid 
account of how neural networks could self-organize to operate 
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at high detection thresholds. But, positive NLFP and surrogate 
data (randomly shuffled peak times – essentially equivalent to a 
threshold stochastic process – can also show power-law distributed 
amplitude distributions. The conclusion of this study, then, was 
that apparent power-law scaling cannot be considered as proof of 
self-organized criticality.

At this point, a comment seems in order: the publication of 
Gireesh and Plenz (2008) seems to suggest that cortical layers 2/3 
are the preferential site of avalanche occurrence. The data analyzed 
in the Touboul and Destexhe study were obtained in earlier work 
of Destexhe et al. (1999) in parietal cortex of awake cats; there is 
no indication that a possible role of cortical layer was considered. 
Whether layer specific patterns of neuronal arborization (Callaway, 
2002) could be a source of the discrepancy can at this point not 
be determined.

The discrepancy between presence of 1/f scaling in ensemble 
neural activity (EEG and LFP) and, yet, 1/f scaling not being an 
intrinsic property of the individual neuron itself, that Bedard and 
El Boustani et al. claimed to have identified, motivated El Boustani 
et al. (2009) to adopt yet another experimental approach: to this end, 
they measured the scaling properties of the power-spectrum of the 
intracellularly recorded membrane potential of individual neurons. 
The experiments were conducted in cat primary visual cortex in 
vivo, the animals being anesthetized and paralyzed. Full-field visual 
stimuli of varying characteristics were presented to the dominant 
eye to drive the cortical region under study to states with different 
firing characteristics. The remarkable result was that the frequency 
scaling of individual cells was largely determined by the visual stimu-
lus statistics. There was no consistent relation between individual 
neurons’ scaling exponent and the visual stimuli, neither was there 
any correlation between membrane potential and the spiking scaling 
exponents. Various control tests and a computer model corroborate 
the authors’ conclusion that statistical correlations in a neuron’s input 
(i.e. its presynaptic activity) can modify the power-law exponent of 
its spiking activity. Hence, it appears that modulation in a neuron’s 
power-law exponent may reflect changes in the correlation state of 
the network activity. According to these findings, intrinsic cellular 
properties do not seem to play a major role for its scaling which 
reflects in the authors’ s view primarily the network context.

Regarding self-organization, El Boustani and Destexhe (2009) 
follow the lead taken in Destexhe’s Doctoral Thesis of 1992 and 
observations of Korn and Faure (2003), and present new evidence in 
support of chaotic dynamics in EEG: sensitivity to initial conditions 
is of course prominent; it is also associated with broadband power-
spectra and a fractal attractor dimension. The authors confront 
at length the puzzle that coherence and low dimensionality at the 
macroscopic level of EEG is associated with stochastic neuronal 
dynamics at the microscopic level. Is this comparable to conditions 
obtaining in thermodynamics?

Whence criticality? In peripheral neurons, it seems to be favored 
by closeness to input from peripheral receptors (see Point process 
analysis in peripheral nerves and neurons). At the mesoscopic level, 
Plenz and Chialvo’s (2009) analysis of avalanches in primate cortex 
seem to assure legitimate criticality at the mesoscopic level; yet, the 
work of Bedard et al. (2006a,b) and El Boustani et al. (2009) raises 
the possibility that scaling properties of neuron activity may not be 
of intrinsic neuronal origin, but a consequence of network activity. 

of an ensemble. This lesson can also be learned from  models of 
dynamic pattern formation in neuron populations, forming frac-
tal power-spectra and power-law pulse distribution (Usher and 
Stemmler, 1995). Similarly, network amplification of local fluctua-
tions causes fractal firing patterns and oscillatory field potentials 
in two-dimensional models of leaky Integrate-and-Fire neurons; 
feedback connectivity of local excitation and surround inhibition 
being the essential prerequisites (Usher et al., 1994).

Bedard et al. (2006b) accept existing claims for 1/f scaling 
of global variables of neural activity (e.g. EEG: Freeman et al. 
(2003); EMG: Novikov et al. (1997); see The mesoscopic level), 
and acknowledge them as evidence for self-organized critical states 
with power-law distributions, much as the models of de Arcangelis 
et al. (2006) and Levina et al. (2007) suggest. They also accept the 
validity of claims for fractality discussed in Section “Point process 
analysis in peripheral nerves and neurons” for various point process 
analyses. But they contest the legitimacy of generalizing from these 
disparate sources of data. The connection between 1/f frequency 
scaling of global variables and critical states of neural activity is, in 
their mind, far from firmly established. Moreover, they emphasize 
that the association of 1/f spectra with criticality may not be obliga-
tory (for a review: see Newman, 1996; Giesinger, 2001).

Having raised this warning flag, Bedard et al. (2006a) not only 
confirmed in their own investigations the presence of 1/f frequency 
scaling in EEG of cat parietal cortex (in absence of anesthesia), but 
showed in addition 1/f frequency scaling in bipolar records of local 
field potentials (LFP). That bipolar LFP recordings sample rela-
tively localized populations of neurons was shown by Destexhe et al. 
(1999). They then turned their attention to investigating whether 
this 1/f scaling reflects self-organized critical states with the result 
that avalanche size distributions in their experiments did not fol-
low power-law scaling, nor did inter-spike interval distributions 
of concurrently recorded single neuron activity show 1/f scaling; 
rather, the distributions were consistent with a Poisson process. 
Accordingly, Bedard et al. reject the evidence for critical state 
dynamics. Instead, they proposed a model that would account for 
1/f frequency scaling without being associated with critical states. 
Their model shows that the observed 1/f scaling can indeed be 
produced by a band pass filtering effect of extracellular media. This 
means that extracellular field potentials (such as LFP) can show 
power-law scaling while the underlying neuronal activity per se 
need not be critical. El Boustani et al. (2007) found in experimen-
tal data and models of cortical “activated” states also evidence for 
Poisson spike distributions, and absence of avalanche dynamics. 
The irregular states of cortical networks are thought to stem from a 
very high-dimensional deterministic chaos. However, as alternative, 
it is worth recalling that Harris (2005) views spike train irregularity 
as one of the signatures of cell assembly organization.

Investigating further the discrepancy between the Beggs–Plenz 
and the Bedard et al. observations, Touboul and Destexhe (2009) 
recorded avalanches in cortex of (awake) cats, paying careful atten-
tion to the conditions of data collection: avalanche statistics of 
negative peaks LFP (linked to neuronal firing), positive peaks (unre-
lated to neuron firing) and surrogate data (obtained by random 
shuffling experimental data) were analyzed; avalanche criteria were 
those of the Beggs–Plenz studies. Essentially, time and amplitude 
distributions of NLFP showed power-law distributions, preferably 
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In the absence of deliberate external stimulation, neuronal 
cortical dynamics displays complex spatial and temporal patterns 
of activity. In simulations of networks that mimic the large-scale 
inter-areal connection patterns of cortex, activity takes place 
spontaneously at multiple time scales, punctuated by episodes of 
inter-regional phase locking of oscillations (Honey et al., 2007). 
Significantly, the connections link neural populations of multiple 
levels of scale, from whole brain regions to local cell columns: this 
suggests that cortical connections may be arranged in fractal, pos-
sibly self-similar patterns. Statistical measures of a computational 
model of a fractal connection pattern did in fact resemble those of 
a real neuroanatomical data set (Sporns 2006). The computational 
models also show that varying fractal patterns induce strongly cor-
related changes in several structural and functional measures of 
network properties, as evidence of their interdependence.

In general, scale-free complex networks display self-similarity 
under length-scale transformations (Song et al., 2005) but not 
necessarily with regard to degree distribution (Kim et al., 2007), 
but models of scale-free networks need not necessarily be fractal. 
How, then, can the fractality of many naturally occurring networks 
come into being? Song et al. (2006) account for the simultaneous 
emergence of fractality, modularity and small-world effect, as well 
as the scale-free property of real world networks by a multiplicative 
growth process: the network growth dynamics is conceived as the 
inverse of a renormalization procedure, whereby the network hubs 
accrete connections by linking with less connected nodes, which 
leads to a robust fractal topology.

Within the small-world network clusters, functional magnetic 
imaging (fMRI) identifies a scale-free connection pattern inasmuch 
as the number of links per network node (the node degree) satisfies 
a power-law relationship (Eguiluz et al., 2005). Likewise, van den 
Heuvel et al. (2008) find in an imaging study of the resting brain, 
that inter-voxel connections follow power-law scaling as evidence 
for scale-free network topology, possibly associated with a small-
world organization. This form of organization is associated with 
conserved wiring length and conducive to synchronization of activ-
ity across the network (Zhou et al., 2007; see also Changizi, 2003; 
see Neuronal morphology).

Although citing merely a small fraction of the numerous pub-
lications concerned with relations between network topology and 
dynamics, this section underscores two points of relevance for the 
objective of this review: first, the presence of, and effect on network 
dynamics of hierarchic network organization (itself being of sev-
eral types); and, second, effects of network fractality on network 
dynamics; but the functional implications of the latter, notably for 
criticality, require further investigation, as does the possibility of 
self-similar modularity in brain networks. In the case of metabolic 
networks, the latter is shown to affect path connections for diffusion 
and resistance of flows (Gallos et al., 2007).

Fractals and criticality of brain states
Critical activity patterns in brain were cited earlier as the second 
notable feature in current thinking about global brain function. 
Brain criticality has a distinguished history. As early as 1950, Turing 
(1950) postulated that the brain as a dynamical system would 
operate near a critical state as the prerequisite for instantaneous 
reaction to novelty. Sudden transitions between stable states of 

Section “Fractals and criticality of brain states” will resume asking: if 
and where in the nervous system, and under what conditions, does 
fractality and criticality in the brain originate? What is the nature 
of their relation? And, how to conceptualize critical behavior?

the macroscopIc level of neural organIzatIon
Fractals in brain networks
Fractality at the macroscopic brain level should be viewed in the 
context of, and in reference to, the two major conceptual and obser-
vational frameworks that have come to guide neuroscience research: 
the network structure of cortical connectivity, and the brain’s state 
of criticality resulting from the complexity of nonlinear dynamic 
interactions among its constituents. Advances in network theory 
(Albert and Barabasi, 2002; Dorogovtsev and Mendes, 2001; Park 
and Newman, 2004) influenced the application of computational 
and graph-theoretical methods for characterizing structural brain 
connectivity in accord with statistical and topological criteria 
(Hilgetag et al., 2002). Examining the columnar organization of 
neocortical cortex in detail, Roerig and Chen (2002) found that 
the number of connections to a central neuron has the shape of a 
long-tailed histogram, fitting a power-law. On the basis of this “bio-
power-law connection probability function”, Stoop and Wagner 
(2007) tested a range of network types for spread of synchroni-
zation among cortical columns: the superiority of the power-law 
connection was evident. In general, interaction among neurons and 
neuron ensembles by synchronization is constrained by network 
topology (Arenas et al., 2008), hence the relevance of network archi-
tecture for Neurodynamics. The potential role of neural synchrony 
for perceptual organization and conscious experience is a subject 
of a recent review by Uhlhaas et al. (2009). There is considerable 
evidence that anatomical and functional connections between dif-
ferent cortical areas possess an intricate organization in the form 
of “small world networks” (Watts and Strogatz, 1998), forming 
clusters of nearby cortical areas with short links, which in turn have 
long-range connections to other clusters (Hilgetag and Kaiser, 2004; 
Sporns and Zwi, 2004; Sporns et al., 2004; Stam, 2004; Stam and 
Reijneveld, 2007). Neuroanatomical data sets permit identifying 
a repertoire of characteristic structural building blocks (motifs) 
(Sporns and Koetter, 2004).

A hierarchical cluster architecture is thought to provide the 
structural basis for stability and diversity of functional patterns in 
cortical networks (Kaiser et al., 2007; Kaiser, 2007). Moreover, hier-
archical modular topologies assure sustained activation in neural 
networks, intermediate between rapid fading and generalized activ-
ity spread. This can be considered a prerequisite for the occurrence 
of criticality (Kaiser and Hilgetag, 2010). Hierarchical graphs can 
switch between different dynamic activity patterns, depending on 
the level of ongoing (spontaneous) background activity (Müller-
Linow et al., 2008; Hütt and Lesne, 2009). In terms of hierarchy the-
ory, these investigations do not specifically address the implications 
of nested hierarchies which, however, are suggested by the find-
ing of inter- and intra-cluster network hubs (Sporns et al., 2007). 
Moreover, fMRI data obtained from subjects in resting state identify 
strong functional connections between regions for which no direct 
structural connections are known (Honey et al., 2009). This finding 
may be an indicator of nested clustering (see Significance of brain 
criticality and Summary and final thoughts).
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unresolved) question to what extent, if any, they can be shown to 
be shared with, or differ from those that would be implicit in the 
generic brain state view of criticality.

Measuring the fractal dimension of EEG records, Babloyantz 
(1986) related different values with differences in sleep states. With 
subjects acting as their own controls, inhalation anesthesia causes a 
noticeable increase in EEG dimensionality (Mayer-Kress and Layne, 
1987). Multichannel MEG records, obtained with a SQUID show 
scaling with varying degrees of scale similarity, decreasing with 
the distance between recording channel locations (Novikov et al., 
1997). Studying dynamical synchronization in the brain, Gong et al. 
(2002) find scale invariant fluctuations of dynamical synchroni-
zation in human EEG. Linkenkaer-Hansen et al. (2001) report 
long-range temporal correlations and scaling with 10–20 Hz brain 
oscillations. Pursuing this observation in more detail, Linkenkaer-
Hansen (2003) and Linkenkaer-Hansen et al. (2004a) suggest that 
the long-term spatial-temporal structure of the complex ongo-
ing EEG activity may reflect a memory of the system’s dynamics 
extending beyond just a few seconds, possibly by a continuous 
modification of functional brain networks in the sense of SOC. In 
these tests, somatosensory stimuli attenuate temporal correlations 
and power-law scaling behavior, suggesting that stimuli degrade 
the network memory of its past. The relationship to SOC was also 
the subject of the work of Freeman et al. (2003) in measurements 
of temporal and spatial power-spectral densities that identify EEG 
phenomena as fractal. Moreover, Freeman (2005) proposed a field-
theoretic approach to account for scale-free neocortical dynamics. 
The Power Spectral Density of background Electrocorticogram 
was found to follow a power-law with exponents between 2 and 
4, reflecting variations in the level of background activity which is 
thought to be homeostatically regulated by the refractory periods 
of excitatory neurons (Freeman and Zhai, 2009). In five frequency 
ranges (extending from 0.5 to 48 Hz), detrended fluctuation analy-
sis of EEG show global synchronization time series with scale-free 
features (Stam and de Bruin, 2004); the scaling exponent differs for 
conditions of eye open and eye closed. Stam (2005) also reviewed 
the nonlinear dynamical analysis of EEG and EMG at great length. 
Positive and negative feedback affect the scaling exponent of EEG 
differentially; this was determined in a detrended fluctuation anal-
ysis (Buiatti et al., 2007). Performance in Stimulus detection of 
weak stimuli is best accounted for by modulation of the power-law 
component in the power-spectrum of MEG record: Shimono et al. 
(2007) attribute this phenomenon to the brain operating in a state 
of self-organized criticality which modulates the power-spectral 
exponent to optimize responsiveness to external stimuli.

Transients in EEG records can be detected as differences in 
fractal dimension of EEG (Arle and Simon, 1990), as can be neu-
ropathological conditions (Paramanathan and Uthayakumar, 
2008), and differences in age and gender (Nikulin and Brismar, 
2005). Nonlinear spectral analysis enabled Kulish et al. (2006) to 
determine in EEG a set of generalized fractal dimensions and fractal 
spectra which reveal differences in subjects when replying to ques-
tions with either YES or NO. In a study of human development 
from infancy to 16 years of age, Thatcher et al. (2009) measured 
phase shift duration and phase locking intervals of the EEG for 
computing instantaneous phase differences between pairs of elec-
trodes; the log–log spectral plots showed 1/f distributions. The 

motor behavior are well known since the pioneering observations 
of Haken et al., 1985; Kelso, 1995). The transitions were interpreted 
as manifestations of metastability in the self-organizing nonlinear 
dynamic system of the brain, along the theoretical lines formulated 
in Synergetics (Haken, 1983). Criticality in brain and behavior was 
first mentioned by Kelso (1984) in a brief note. Using a super-
conducting quantum interference device (SQUID) sensor array, 
Kelso et al. (1992) reported a few years later their observations 
of spontaneous transitions in neuromagnetic field patterns which 
occur at a critical value of a behavioral parameter: coherent states 
of both brain and behavior were captured by the spatiotemporal 
pattern of phase relations among participating components. This 
was considered evidence for the brain being a pattern forming 
system that can switch flexibly from one coherent state to another. 
Chialvo credits also Varela et al. (2001) with the vision of brain 
large-scale dynamical properties. This is also discussed by Le Van 
Quyen (2003). Locating cortical regions associated with such phase 
transitions of motor behavior, Meyer-Lindenberg et al. (2002) 
showed that TMS can induce switches between two clearly defined 
and distinct motor behavior patterns. Additional new evidence of 
aspects of critical brain behavior accrued in rapid sequence in the 
following years in several forms: as the scale-free connection pattern 
of cortical networks (Chialvo, 2004; Eguiluz et al., 2005; Chialvo 
et al., 2008); as result of the avalanche analysis of Beggs and Plenz 
(2003, 2004) at the mesoscopic level; as coordination dynamics 
of large-scale neural circuits subserving rhythmic sensorimotor 
behavior (Jantzen et al., 2008); and finally from two fMRI studies 
at the macroscopic level, which will be reviewed near the end of 
this Section.

At this point, it seems appropriate to clarify the distinction 
between the notion of a generic critical cortical state underlying 
avalanche behavior on the one hand (see The mesoscopic level), 
and the view of criticality in Critical Theory of Statistical Physics, 
on the other: both versions of ‘criticality’ occur in the current 
Neuroscience discourse. The former is generally viewed as persist-
ent cortical state subject to dynamic transitions associated with the 
formation and dissolution of attractors (see for instance: Tognoli 
and Kelso, 2009), related to the notions of Coordination Dynamics. 
In contrast, critical dynamics in the framework of Critical Theory 
of Statistical Physics stipulates that the brain is poised to undergo 
sudden second order phase transitions to new macroscopic configu-
rations with distinctly novel properties. This dynamics is considered 
universal in its independence of details at the microscopic level 
(Stanley, 1987; Sornette, 2000). Early-stage activity in the develop-
ing retinal network can be cited as an illustrative example (Hennig 
et al., 2009) of this concept of critical dynamics: rhythmic bursts of 
action potential in retina ganglion cells, propagating as wave-like 
events across the retina surface, arise at a very specific network 
state which meets the criteria of the classical percolation model 
of Statistical Physics (Essam, 1980). A phase transition consists 
then in transforming states of purely local into global functional 
connectedness, the latter displaying long-range correlations and 
conspicuous fractal properties (Stauffer and Aharony, 1991/1994). 
Criticality in the framework of Statistical Physics is generally associ-
ated with a particular set of ontological implications. Their discus-
sion in Sections “Significance of brain criticality” and “Summary 
and final thoughts” will leave us with the intriguing (and as yet 



www.frontiersin.org July 2010 | Volume 1 | Article 15 | 11

Werner Fractals in the nervous system

Long-range temporal correlations in spontaneous discharge 
patterns of hippocampal–amygdala complex neurons show a 
power-law relation in epileptic patients (Bhattacharya et al., 2005): 
activity of individual neurons was in this study recorded by means 
of micro-wire electrodes that had been implanted for localization of 
epileptic foci, and records were taken in inter-ictal periods, with the 
subjects being awake. Neuronal activity in substantia nigra exhibits 
fractal activity in anaesthetized rats, but was strikingly absent in 
the dopaminergic nigrostriatal neurons with relatively constant 
discharge rate (Rodriguez et al., 2003). The authors consider the 
possibility that pathological rhythmic discharges and tremor onset 
may be associated with loss of the fractal pattern of nigrostriatal 
neurons. During paradoxical sleep and in the attentive state, neu-
rons in the mesencephalic reticular formation of unanesthetized 
cats exhibit firing patterns with 1/f spectral profile (Yamamoto 
et al., 1986). Kodama et al. (1989) extended this observation to 
discharge properties of neurons in Hippocamus and ventrobasal 
thalamic neurons, and suggest that 1/f structured patterns in dis-
charge trains are indicative of spatial and temporal summation of 
convergence. Variations in 1/f spectra in cortical and subcortical 
brain structures of monkeys are apparently related to differences 
in emotional states (Andersen et al., 2006).

In a very detailed and thorough study, Bianco et al. (2007) iden-
tify the EEG time series as a (non-ergodic) renewal non-Poisson 
process, reflecting strong deviation from exponential decay. This 
startling claim is based on two premises: one, the comparison 
with the statistics of an entirely different physical process, namely 
the fluorescence intermittency in blinking quantum dots (Bianco 
et al., 2005); and, second, on the conjecture of the brain operating 
at or near a self-organized critical state. The implication is that 
neuron synchronization can be viewed as a kind of phase transi-
tion involving the close cooperation among many constituents of 
a neuron set, each individual neuron in essence losing its identity. 
Furthermore, the absence of exponential truncation would violate 
the ergodic condition (Bel and Barkai, 2005). The authors then 
proceed to show that compositional music belongs to the same 
category of processes. They finally claim that the effect of music 
on the human brain is in fact based on the essential identity of 
their respective fractal dynamics, ensuing a kind of complexity 
matching of the interacting brain–music systems. This aspect will 
be further pursued in Section “Complexity matching effect” Equally 
consequential are the inferences drawn by Allegrini et al. (2008) 
from their EEG data. The thrust of their analysis is on measuring 
the time distribution of recorded events occurring simultaneously 
at two or more electrodes (in their terminology: coincidences); they 
find that the time interval between two consecutive coincidences 
has a waiting time distribution corresponding to perfect 1/f noise. 
The theoretical analysis of this finding leads these authors to infer 
that the coincidences are driven by a renewal process.

The electroencephalographic findings in support of 1/f scaling 
are supplemented by observations with brain imaging: In 1997, 
Zarahn et al. (1997) reported BOLD time series data obtained from 
normal subjects at rest that exhibited a fractal power-spectrum and 
self-similar signal contributions, with disproportionate contribu-
tion of power in the spectrum for low frequencies. The temporal 
variability of brain activity in time series of fMRI data in com-
bination with a voxel-wise analysis of scaling exponents enabled 

data revealed increased phase stability in local systems, paralleled 
by lengthened periods of unstable phase relation between distant 
connections. These results were taken to reflect progression towards 
self-organized criticality, accompanying the growth spurts from 
infancy to adolescence. When Listening to music Bhattacharya and 
Petsche (2001) find homogeneous scaling in the gamma band EEG 
over distributed brain areas, whereas the homogeneity is reduce 
at rest, or when reading text or during spatial imagination. As is 
well known, music has been under scrutiny for fractal properties 
for quite some time, see for instance: Voss and Clarke (1975), Hsu 
and Hsu (1991), Boon and Decroly (1995); see also below: Bianco 
et al. (2007).

The important observations of Lakatos et al. (2005) and their 
theoretical implications for optimizing the processing of rhythmic 
stimulus input are of relevance in this context. The laminar analysis 
of oscillatory field potentials and neuron cluster activity in audi-
tory cortex is the basis for identifying a hierarchical structure in 
the EEG, with the amplitude at each oscillatory frequency being 
modulated by the phase of a lower frequency oscillation, whereby 
higher frequency oscillations reflect excitability variations in neu-
ron clusters. Entrainment of neuronal oscillations is then identified 
as a mechanism for auditory attention selection, associated with 
the rhythmic shifting of excitability in local neuronal ensembles 
(Lakatos et al., 2008).

Two aspects of EEG activity have remained essentially “blind 
spots” as victims of artificial filtering of brain activity records: 
Logothetis (2002) and Freeman and Zhai (2009) pointed out that 
arrhythmic brain activity constitutes a major part of EEG and LFP, 
about which little is known. For arrhythmic brain activity, this gap 
is now being remedied by the work of He et al. (2010), demon-
strating a power-law relationship in the temporal power spectrum. 
Moreover, this study reveals extensive nesting of frequencies, with 
the phase of lower frequencies modulating the amplitude of higher 
frequencies, in a progression across the frequency spectrum. The 
power-law exponent varies with brain region and activity. The other 
neglected dimension of EEG also harbors its surprises: Monto et al. 
(2008) report that very slow EEG fluctuations in the frequency 
range of 0.01–0.1 Hz affect the trial-to-trial behavioral perform-
ance and oscillation dynamics, reflecting the excitability dynamics 
of cortical networks. Cross-frequency synchrony observed by Palva 
et al. (2005) in Human MEG extends to these very low frequency 
ranges, as does the scale-free characteristics of cycle length. The 
phase of ongoing oscillatory EEG activity affects visual perception 
(Busch et al., 2009), not unlike the enhancement of psychophysi-
cal performance by pre-stimulus oscillatory (Linkenkaer-Hansen 
et al., 2004). Taken together, these observations and those of Lakatos 
et al. (l.c) show that psychophysical performance or states are sen-
sitively dependent on features of cortical oscillations across a much 
wider range of frequency and amplitudes than commonly consid-
ered. What is of immense interest is that the dynamics of cortical 
oscillations appears to entail a nested hierarchy of frequency and 
amplitude interdependencies. Could this relation be a reflection of 
a cascading functionality, comparable to the principles of linking 
actions across many scales, discussed in Section “Linking across 
many scales of space and time”? It would afford the capacity for 
swiftly shifting between different scales of stimuli on demand and 
with economy of processing.
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 exponents. Following expenditure of cognitive effort, the brain’s 
fractal  oscillations require several minutes for returning to baseline 
activity, this time depending on the task’s cognitive load; this is taken 
to signify the relevance of fractal scaling for adaptive task processes, 
in addition to the role it plays for the “resting” brain (Barnes et al., 
2009). The substantial evidence for modular organization of brain 
networks is reviewed by Bullmore and Sporns (2009), and was 
subsequently further refined by Meunier et al. (2009), applying a 
method for rapid, high-resolution modular decomposition of brain 
functional networks (Blondel et al., 2008). Differences between low 
frequency BOLD signal spectral power in task and rest periods 
also support the notion of fMRI reflecting meaningful brain states 
(Duff et al., 2008), as do the emotional task-dependent fractal fluc-
tuations in fMRI of the cerebellar vermis (Andersen et al., 2006). 
Brain imaging in Neuropathology has revealed significant differ-
ences between patients suffering from unawareness of ownership 
of one arm (Asomatognosia) and those with additional confabula-
tions (Somatoparaphrenia): the latter patients display lesions in the 
medial and orbitofrontal regions, in addition to the multiple large 
lesions including temporo-parietal sectors which are common to 
both groups of patients (Feinberg et al., 2010). For the distinction 
of stimuli related to the self (i.e. self-referential stimuli) from those 
not so related, Northoff et al. (2006) identify processes mediated 
by cortical midline structures.

Two virtually simultaneously published recent studies, using 
different experimental strategies, deliver seemingly firm evidence 
for brain criticality. Kitzbichler et al. (2009) based their approach on 
the widely accepted view that many behavioral and cognitive states 
are related to coherent or phase-locked oscillations in transient neu-
ronal assemblies (for a recent summary: Womelsdorf et al., 2007). 
The measures for determining phase synchronization between 
component processes were in their study the phase lock intervals 
(estimating the length of time a pair of bandpass filtered oscilla-
tions remain in phase synchronization), and the lability of global 
synchronization (informally analogous to the previously discussed 
avalanches). Applying these measures to functional MRI and MEG 
data recorded from normal volunteers at resting state demonstrated 
power-law scaling of both pair wise and global synchronization. 
They then evaluated the performance of two models, both typically 
being used in nonlinear dynamics: the Ising and the Kuramoto 
(1984) model. Observed and model generated data were identical, 
provided the model system was in a critical state. Hence, the authors 
conclude that the brain must be in a critical state. Moreover, the 
critical brain dynamics obtained at frequency intervals ranging 
from 0.05–0.11 to 62.5–125 Hz, confirming criticality of the human 
brain network organization across its functional bandwidth. They 
consider therefore “Broadband Criticality” as a characteristic prop-
erty of the resting brain network functional organization.

Although also using the Ising model as reference point for 
determining brain criticality, Fraiman et al. (2009) followed an 
entirely different approach: the issue at stake in their study was 
to determine whether and to what extent the dynamics of the 
paradigmatic two-dimensional Ising model at criticality displays 
features that correspond to patterns encountered in the imaging 
of (resting) brain networks. However, unlike most prior studies of 
brain dynamics cited in this Section, no prior assumptions on struc-
tural connectivity of brain regions were made. Instead, network 

Thurner et al. (2003) to distinguish different physiological states of 
the brain. In non-active brain regions, the voxel-profile activity is 
described by a random walk model; in contrast, stimulus activated 
brain activity is characterized as correlated fractional Brownian 
noise. The same group of investigators (Shimizu et al., 2004) exam-
ined fMRI time series with a multifractal method to extract local 
singularity (fractal) exponents: the range of Hoelder exponents 
in voxels with brain activation is close to 1, whereas exponents 
in white matter and voxels in the absence of brain activation are 
close to 0.5.

Without further discussing at this point the far reaching impli-
cations of the non-ergodicity claim (Tsallis et al., 1995; Tsallis, 
2009), I merely alert to two publications which interpret human 
EEG signals in terms of a Tsallis Entropy measure (Capurro et al., 
1998, 1999).

The common theme of studies surveyed in the following is 
 wavelet-based representations of functional magnetic imaging 
(fMRI) time series. Among others, Wornell (1993) explicated in 
detail the role of wavelet-based representations for the power-law 
family of processes. The remarkable feature of wavelet analysis is 
that it can be viewed as matching self-similar processes since the 
wavelet coefficients exactly reproduce, from scale to scale, the self-
replicating statistical structure of such processes (Abry, 2003).

Publishing with various associates since 1994, Bullmore gath-
ered extensive experience with fractal analysis of human brain 
activity which led eventually to the suggesting that wavelet-based 
fMRI time series estimates (Bullmore et al., 2001) can be viewed 
as realizations of Fractional Brownian Motion, i.e., a class of frac-
tals described by Mandelbrot and van Ness (1986), characterized 
by zero-mean, and non-stationary and non-differentiable time 
functions (see Power-law scaling in neuronal structures and proc-
esses). Extolling further the virtues of wavelet techniques for the 
purposes on hand, Bullmore et al. (2004) and Maxim et al. (2005) 
give a meticulous account of their use of the “discrete wavelet 
transform” approach to fMRI time series evaluation. In normal 
subjects at rest, the time series is most parsimoniously described 
as Fractional Gaussian Noise, signifying a persistent long-memory 
fractal processes of which the Hurst Exponent is a defining param-
eter. Interestingly, the value of this parameter in Alzheimer subjects 
differs from the norm (Maxim et al., 2005). Several results from the 
same laboratory contribute additional facets to the notion of the 
active brain displaying fractal properties: Achard et al. (2006, 2008) 
applied discrete wavelet transform analysis to fMRI time series 
to estimate the frequency dependence of functional connectivity 
between some ninety cortical and subcortical brain regions; the 
functional networks is dominated by a neocortical core of highly 
connected hubs with an exponentially truncated power-law degree 
distribution. Dynamical analysis of brain at wavelet scales from 2 to 
37 Hz show the emergence of long-range connections with execu-
tion of motor tasks (Bassett et al., 2006). Under certain conditions 
(e.g., age, cognitive performance, certain pharmacologic interven-
tions) brain dynamics requires a more comprehensive description 
than is captured by the monofractal analysis applied in the studies 
cited thus far (Suckling et al., 2008). In such cases, a more com-
prehensive description must make allowance for scaling behavior 
that is governed by several local scaling exponents. Multifractal 
analysis can then be characterized by the histogram of the Holder 
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phase transitions in the  framework of Critical Theory of Statistical 
Physics. When Kitzbichler et al. (l.c.) and Fraiman et al. (l.c.) con-
sider the Ising dynamics as reference points for identifying brain 
criticality, they invoke the framework of equilibrium phase transi-
tions in Statistical Physics; on the other hand, and in line with a 
related comments in Section “The mesoscopic level”, “critical corti-
cal state” may be more closely related to Kelso’s evocative notion of 
‘exploring the space of possibilities’ among competing (conflicting) 
dynamic regimes (Kelso, 2010; see also: Kelso and Engstrøm, 2006) 
than to “critical phase transitions” of Statistical Physics. I raise this 
issue to alert to the need for making the distinction between two 
kinds of dynamical regimes under discussion: one, conceptually 
related to the theory of ‘Coordination Dynamics’ (see Kelso and 
Tognoli, l.c), the other aligned with Critical Theory of Statistical 
Physics. The latter implies a distinct ontological commitment, com-
monly associated with the Renormalization Group Framework. 
The next section will develop a view of Brain Criticality in terms 
of the Critical Theory. It then remains an important question to 
what extent, if any, the ontological implications of Critical Theory 
would also apply to critical brain states as persistent and generic 
brain features, or what their intrinsic nature is.

Significance of brain criticality
In statistical Physics, systems operating at the critical point of tran-
sition between ordered and random behavior are metastable with 
respect to a set of control parameters, and are capable of rapid 
qualitative change in response to fluctuations of external input. For 
systems far from equilibrium most of the analytical and numerical 
methods of the ‘classical’ (equilibrium) theory appear to remain 
valid (Sornette, 2000). Moreover, dissipative (open) Hamiltonian 
System, such as the brain, have the capacity to form “strange” attrac-
tors whose boundaries and bases have fractal properties (Aguirre 
et al., 2009; see Processes that generate power-law distributions). At 
or near the point of phase transition, the systems exhibit complex 
patterns of fluctuations on all scales of space and time, this being 
one of the indicators of an impending phase transition; another 
indicator is the slowing down of relaxation processes, associated 
with forming long-range correlations for efficient functional cou-
pling among system components: both events are anticipatory 
signals of impending critical transitions (Scheffer et al., 2009). 
Fractal clusters formed by phase transitions can be characterized 
in terms of correlation length (Antoniou et al., 2000) which is 
associated with fractal scaling of clusters of correlated elements 
on all scales; as a result, any intrinsic scale before phase transition 
is de facto ‘forgotten’ (Stinchcombe, 1989). As a corollary, the sys-
tem presents at the critical transition qualitatively new properties, 
requiring new macroscopic descriptors. The important feature of 
the organization following the phase transition is to form new 
objects with distinct properties. In physics, this is manifest as, for 
instance, the phase transition from ferro- to para-magnetism, or 
from water to ice (Stanley, 1999). Typically, one deals with a large 
collection of ‘microscopic’ constituents which, at phase transitions, 
arrange to a macrostate which displays qualitatively novel features 
and properties. The macrostate’s new properties have no referent 
at the microscopic level, and require new descriptors: by way of 
illustration, think of hardness or liquidity in the ice-water exam-
ple as descriptors of new physical properties, originating de novo 

 connectivity was extracted from voxel correlations: thus, networks 
were here defined in terms of correlations among the activity at 
each location (voxel in the case of the brain, and lattice site in the 
Ising model). Prior investigations showed that the so called “resting 
state” (absence of overt external stimulation) is subject to a Default 
Network Dynamics, reflecting balanced positive and negative cor-
relations between activity in component brain regions (Fox and 
Raichle, 2007; Baliki et al., 2008); this is not the case under certain 
abnormal conditions (Baliki et al., 2008). The result was that the 
dynamics of the Ising model at criticality, as captured by the cor-
relation networks, exhibits average statistical properties which are 
identical to those observed in the brain networks at resting con-
dition. Among several other network characteristics that match 
critical Ising dynamics with brain dynamics was also the equality 
of the fraction of sites with positive and negative correlations, cor-
roborating that the dynamics of the normally functioning brain at 
rest being near a critical point. In any case, the unequivocal answer 
to the question the investigators set out to answer was that networks 
derived from correlations of fMRI signals in human brains are 
indistinguishable from networks extracted from Ising models at 
critical temperature.

In an important next step, Expert et al. (2010) investigated the 
large-scale dynamical properties of resting brain by examining 
more closely the character of the spatio-temporal correlations: 
considering three successive steps in spatial coarse graining, two-
point correlation functions exhibit self-similarity; self-similarity in 
time was revealed by 1/f frequency behavior of the power-spectrum. 
The condition of long-range correlations in space and time pre-
supposes a dynamical system at criticality; the strong correlations 
across large distances are indicators of highly integrated cortical 
states, with nearby clusters functioning in synchrony.

Apart from this principal conclusion of this study, the authors 
also alert to a significant property of the brain networks which, 
as noted before, are extracted from the site-to-site temporal voxel 
correlations: obviously, equally oriented spins in the Ising model 
coalesce in large domains near the critical temperature where also 
nontrivial collective states emerge in the Ising model’s otherwise 
regular lattice. Similarly, large regions of brain activate concur-
rently with deactivation of other regions. How does the brain self-
organize to negotiate the dynamic balance between the extreme 
possibilities of total quiescence and explosive massive excitation? 
The authors refer to a discussion of this stability problem which 
was already noted by Abeles (1991). It motivates their question: is 
it necessary to confine brain activation to structural connections 
linking brain regions, as is customary in most current research? 
(e.g.: Hagmann et al., 2008). Take the Ising model as example: there, 
a change of temperature can lead to the emergence of functional 
collectives, in the absence of preexisting structural connections. 
This leads Fraiman et al. to ask: might the brain, likewise, have 
this capacity, as basis of a kind of adaptive coordination analogous 
to that envisioned by Kelso and Tognoli (2007) and Tognoli and 
Kelso (2009)?

Apparently, SOC, metastability and critical phase transitions 
constitute a nexus of intimately interrelated dynamic processes 
of which fractals and self-similarity are pivotal aspects (Bak and 
Paczuski, 1995). I already alerted in earlier Sections to the distinc-
tion between critical cortical states as generic brain feature and 
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upon phase transition. The properties described in the foregoing 
are universal in the sense that the apply irrespective of the system’s 
constituents at the microscopic level.

One of the amazing features of phase transitions is that material 
systems of diverse physical properties at their microscopic level 
form on phase transition but a small number of Universality Classes 
which share identical macroscopic properties (for a discussion in 
relation to brain function: see Werner, 2009c). Based on a stochas-
tic theory of neural activity, Buice and Cowan (2007) developed 
field-theoretic methods for non-equilibrium statistical processes; 
their model exhibits a dynamical phase transition of the univer-
sality class of directed percolation (see Fractals and criticality of 
brain states).

Critical Theory (Stanley, 1987; Yeomans, 1992; Marro and 
Dickman, 1999) considers reality as a hierarchy of levels, each hav-
ing its own scale, its own description and a theory that accounts 
for that description. The scale on each level emerges from the 
scale on the next finer level by ignoring some of the lower level 
details which become invisible at the higher level scale (Sokal and 
Bricmont, 2004; Laughlin, 2005). The result is a drastic reduction 
of dimensionality. Coarse graining (specifically Renormalization 
Group Transformation) (Fisher, 1998) unveils self-similarity at the 
point of phase transition. The intimate relations between scaling, 
renormalization group, and long-range correlations are addressed 
by Perez-Mercader (2004) and Penrose (1986), the latter pointing 
out that the definition of fractal dimension depends primarily on 
the distribution of widely separated sites, telling little on sites that 
are close together.

What is the significance of criticality? Excitable systems at criti-
cality exhibit an optimal dynamical range for information process-
ing (Kinouchi and Copelli, 2006; Beggs, 2008; see Shew et al., 2009, 
in The mesoscopic level). Furthermore, a model that reproduces 
the typical features of systems at a critical point learns and remem-
bers complex logical rules: learning occurs by plastic adaptation of 
synaptic strengths, and exhibits universal features in being inde-
pendent of the specific task assigned to the system (de Arcangelis 
and Herrmann, 2010). Finally, phase transition in critical systems 
are a universal mechanism for rapid switching between different 
cooperative neuron collectives. These three attributes of criticality 
are the reason for its rapidly moving into center stage of current 
brain theory. A remarkable consequence of phase transitions is the 
generation of qualitative novelty in the form of macrostates with 
new properties: Section “Summary and final thoughts” will discuss 
this aspect in relation to brain theory.

psychologIcal and BehavIoral processes
The following overview of psychological functions with power-law 
scaling is predicated on the notion that mental states may be viewed 
as macrostates emerging from EEG dynamics (Allefeld et al., 2009), 
and neurophysiological processes generally. Classical Psychophysics 
of Helmholtz, Fechner and Weber sought to establish dependencies of 
perceptual experience on properties of physical stimuli impinging on 
sensory organs. In 1975, Stevens reported the summary of the exten-
sive work that led him to propose that this dependency is in many 
sensory modalities a power-function. In neurophysiological experi-
ments, Werner and Mountcastle (1963, 1964) identified the power-
function scaling of responses in primary afferent  cutaneous nerve 

fibers to mechanical indentation of peripheral receptors. Neurons 
of primary visual cortex (V1) exhibit a higher coding efficiency and 
information transmission rate for input signals with natural long-
term (1/f) correlations (Yu et al., 2005). Copelli et al. (2002) and 
Kinouchi and Copelli (2006) claim that Stevens (1957) law for inten-
sity of subjective sensory experiences can be attributed to dynamics in 
a network of excitable elements constituting the peripheral receptors, 
set at the edge of a phase transition, i.e.: of being in a state of critical-
ity. For a discussion of this view, see Chialvo (2006).

Unlike dismissing the fluctuations in the performance of many 
psychophysical task as “noise”, Gilden (1997, 2001) attributes them 
to a memory process associated with active choice and discrimina-
tion. This memory process is suggested to express itself as 1/f ‘noise’ 
in the three major measurement paradigms in Psychophysics: 
speeded judgment, accuracy of discrimination and production. 
The 1/f fluctuations are attributed to an intrinsic dynamics, associ-
ated with the formation of representations, comparable to the kind 
of memory that arises in dynamical systems as they flow forward 
in time, along principles outlined by Beran (1994). According to 
this interpretations of the psychophysical observations, cognition 
would generate its dynamical signature as a consequence of its 
own activity: this would entail a fundamental revision of what is 
signal and what is noise in psychophysical data. Gilden points out 
that the conventional experimental design and data analysis using 
ANOVA does in fact bury “one of the most important signatures 
of what happens when the mind is working”.

Timing fluctuations in tasks requiring sensorimotor coordina-
tion display cycle-to-cycle fluctuations which, analyzed as time 
series, show fractal scaling of power-spectra (Chen et al., 1997). 
Ding et al. (2001) suggest that the reason for this lies in the multiple 
time scale activities of distributed neural areas that contribute to 
the task performance. If asked to produce random series of num-
bers from a given set, series with short and long-range correlations 
are produced which in most cases exhibit a power-law spectrum 
(Morariu et al., 2001). Van Orden et al. (2003) interpret serial cor-
relations in human cognition as evidence of self-organization. In 
their view, self-organization coordinates the activities of the organ-
ism across a hierarchy of time scales, producing correlated variation 
across time: variations in response times would then appear as a 
natural fractal in which larger scale deviations nest within them-
selves smaller (self-similar) scale deviations. Accordingly, 1/f noise 
is in this view not sufficient evidence for self-organized criticality, 
but rather its necessary consequence. Similarly, Kello et al. (2007) 
assembled reaction time and response data which lead them to 
considering the 1/f scaling of their data as expression of a coordina-
tive, metastable basis of cognitive functions. This view is in effect 
an extension of Van Orden’s et al. (2003), shifting the genesis of 1/f 
scaling from self-organization to metastability: the 1/f pervasive-
ness in the brain would be the signature of metastability associated 
with cognitive functions. However, these claims are challenged by 
Wagenmakers et al. (2005) and contrasted with the alternative that 
long-term serial dependence in data can be explained in a number 
of ways, for instance by mixtures of a small number of short-range 
processes) (Wagenmakers et al., 2004).

Applied to problem solving and insight, reasoning was viewed 
by Stephen and Dixon (2009) as the self-organization of novel 
structures: taking a particular problem solving task as example, the 
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possibly fractal nature of the learning process. Tsuda and Kuroda 
(2004) recently elaborated this idea and developed a mathematical 
model of Cantor Coding for the formation of episodic memory 
in the hippocampus.

The intent is here merely to draw attention to a large segment of 
literature, of which the foregoing citations are but a small sample 
that implicates interrelations between state space dynamics of RNN 
and IFS in the processing of symbolic information. For clarification 
of this relationship, Kolen (1994, 2006) proposed that the RNN’s 
state dynamics itself is an IFS, as a paradigmatic case of the syn-
ergism of fractal and complex system dynamics. Levy and Pollack 
(2002) obtained supportive evidence in that every point in the 
hidden layer of the RNN is either itself part of the fractal attractor 
of the IFS, or has an orbit that “ends on” the attractor in a finite 
number of steps. Two tantalizing questions arise: one, wherein does 
the “computational” power of a Fractal System lie? How does the 
self-similar structures of fractals unpack layers of “information” for 
guiding actions across many scales still eludes our comprehension. 
And, second, what exactly is the nature of that apparent synergism 
between complex system and fractal dynamics? (see Linking across 
many scales of space and time).

 motor BehavIor and allometrIc control processes
During quiet standing, the human body sways in a seemingly 
erratic fashion. Collins and De Luca (1994) determined that the 
pattern of this postural sway is exhibits intrinsic correlations 
which can be modeled as a system of bounded correlated ran-
dom walks. This result suggested to the authors that the postural 
control system incorporates both open and closed loop control 
mechanisms. The statistics of temporal patterns in spontaneous 
motor activity of laboratory rodents can be replicated by the sto-
chastic mechanism of Davidsen and Schuster (2002, see Processes 
that generate power-law distributions) which generates power-
law distributions and 1 1/f power-spectrum over several decades 
(Anteneodo and Chialvo, 2009). The presence of long-time cor-
relations in the stride-interval time of normal humans suggested 
to Hausdorff et al. (1995) that the activity of walking may be a 
self-similar fractal. Acknowledging the complexity of locomotor 
activity, the authors referred to its prerequisite of coordinating 
inputs from motor cortex, basal ganglia, and cerebellum, as well 
as feedback from vestibular, visual, and proprioceptive sources. 
In the Hausdorff et al. study, the gait cycle (synonymous with 
stride interval) was defined as the time between consecutive heel 
strikes of the same foot.

West and Griffin (1999) and Griffin et al. (2000) took a dif-
ferent and novel approach to the analysis of gait patterns: using 
the time between consecutive maximal positive extensions of the 
same knee for measuring the stride interval, their data analysis 
was based on determining the long-time correlation properties 
of the stride-interval time series. The Relative Dispersion (given 
as the ratio of standard deviation to the mean) for different lev-
els of data aggregation captures the inter-relatedness of the data 
across multiple time scales. The method is described in detail by 
Bassingthwaighte et al. (1994) and is designed to answer whether 
the correlations are self-similar upon scaling (i.e.: identical between 
groups of neighbors at different time scales). The result of the data 
analysis was that the fluctuations of the gait cycle were self-similar 

authors suggest that the problem solution can be viewed as a phase 
transition in a self-organizing system whose dynamics would be 
reflected in power-law behavior. Implications for social psychology 
are reviewed by Correll (2008): cognitive effort to avoid bias in 
judgments reduces the scaling exponents of response times relative 
to less challenging tasks. Grigolini et al. (2009) interpret Correll’s 
data to suggest that increasing the difficulty of cognitive tasks would 
accelerate the transition from observed 1/f noise to white noise in 
decision making time series.

The temporal structure of many human-initiated activities 
can display a striking regularity. Barabasi (2005) showed that a 
 decision-based queuing process can account for the dynamics of 
some human patterns of activity: when individuals execute tasks 
based on some perceived priority, the timing of the tasks will indi-
cate the signatures of fractal dynamics: heavy-tailed distributions 
with initial fast bursts.

If patterns of expression in spoken language reflect in some way 
the organization of brain processes, then Zipf ’s law is of course the 
notable landmark that presages more recent fascinating reports of 
fractal patterns and scale-invariant word transition probabilities 
in spoken and written texts (Alvarez-Lacalle et al., 2006; Altmann 
et al., 2009; Costa et al., 2009), and their extension to music (Zanette, 
2008). On the basis of EMG data, it appears that some common 
features of patterning in language, music and syntax (Patel, 2003) 
can be attributed to neural activity in Broca’s area and its right 
hemisphere homolog (Maess et al., 2001).

symBol processIng and fractals
The classical book “Language of Thought” (Fodor, 1975) epitomizes 
the framework of computation-representation of the Computational 
Theory of Mind. However, with adopting a dynamical perspective, it 
became appropriate to view “representation” in terms of regions of 
state space, and “computational rules” as attractors (Elman, 1995); 
the dynamics is supplied by recurrent neural networks (RNN). 
Systems of this kind learn to recognize and generate languages 
after being trained on suitable examples. Surprisingly, it turned 
out that the induction of this ability occurs when small network 
parameter adjustments bring about a phase transition in the neural 
network’s state space. Once in a certain state, machine states for 
correct recognitions scale with an exponent of 1.4 (Pollack, 1991). 
Considering the RNN as a dynamical system, it appears that its 
trajectories can locate regions in phase space which support frac-
tal dynamics: putting it in a graphical way, the phase space would 
seem “peppered” with regions for fractal dynamics (i.e. attractors), 
which can be reached by the trajectories of the complex system’s 
dynamics. Numerous additional sources point to a close, though 
often not readily transparent relation between the dynamics of 
RNN and IFS: the principle is consistent with the observations of 
Pollack (1991) inasmuch as fractal sets provide a method for organ-
izing recursive computation in a bounded state space (Tabor, 2000). 
Furthermore, context-free grammar computation by connectionist 
networks using fractal sets can generate spatial representations of 
symbolic sequences (Jeffrey, 1990; Tino, 1999) via IFS (Barnsley 
and Demko, 1985; Barnsley et al., 1989). A class of associative rein-
forcement learning algorithms was constructed by Bressloff and 
Stark (1992) as an extension of non-associative schemes in sto-
chastic automata theory; within the IFS framework, it suggested a 



Frontiers in Physiology | Fractal Physiology  July 2010 | Volume 1 | Article 15 | 16

Werner Fractals in the nervous system

processes that generate power-law dIstrIButIons
Mitzenmacher (2003) reviewed some aspects of the rich and long 
history of generative models for power law and log normal distribu-
tions, and their relations. Antedating the modern theory of stochastic 
processes, Yule (1925) proposed a model of speciation to explain 
the highly skewed distributions of abundances of biological genera. 
Thirty years later, Simon (1955) derived several related stochastic 
processes from relatively general probability assumptions that lead 
to Yule-type distributions. Their characteristic properties distinguish 
them from the negative binomial and Fisher’s logarithmic series. 
Leaving open the possibility of still other generative mechanisms for 
power-law distributions, Simon suggests that the frequency of occur-
rence of this empirical distribution should not come as surprise. The 
preferential attachment scheme for network growth (Barabasi and 
Albert, 1999) has stimulated the recent interest in the Yule-Simon 
approach in as much as Bornholdt and Ebel (2001) could show that 
they are closely related. The important step of introducing the notion 
of aging of network nodes was taken by Dorogovtsev and Mendes 
(2000): the probability of being linked to a newly added node is 
taken to be proportional to its current connectivity weighted by a 
power-law function of its age. This motivated Cattuto et al. (2006) to 
propose a modified Yule-Simon process that takes the full history of 
the system into account, applying a hyperbolic memory kernel.

Simon’s conclusion that power-law distributions can be derived 
from relatively general assumption seems to be born out by the 
number of mathematical models that have been proposed. A shot-
noise process, reviewed by Milotti (2002) is an example, as is the 
Reversible Markov Chain Models (Erland and Greenwood, 2007), 
and the Clustering Poisson Point Process (Grüneis, 2001), the latter 
already introduced in the Section “Power-Law Scaling in Neuronal 
Structures and Processes.” The simple stochastic mechanism of 
Davidsen and Schuster (2002) generates pulse trains with power-law 
distributions of pulse intervals, and 1/f power-spectra over several 
decades at low frequencies with an exponent close to 1. Iterated 
function systems (IFSs) are a unified approach for generating and 
classifying a broad class of fractals with self-similarity (Barnsley 
and Demko, 1985). The Chaos Game is a generalized form of this, 
designating a method for generating the attractor (fixed point) of 
any IFS. Other Recurrence Models (Kaulakys and Meskauskas, 1998; 
Kaulakys et al., 2006) derive from a more specific frame of reference 
insofar as they consider random walks in complex systems that dis-
play self-organization. As alternative, Ruseckas and Kaulakys (2010) 
generate 1/f noise with nonlinear stochastic differential equations. 
Touboul and Destexhe (2009) followed a similar route when devel-
oping their case against power-law scaling of neural avalanches (see 
The mesoscopic level). Physical systems whose observable properties 
exhibit values which randomly exceed certain critical values are 
candidates for applying Extreme Value Theory: the aim of the clas-
sical form of this theory is to quantify the properties of the extremes 
(large or small) occurring in random sequences of independent 
numbers. Extremal dynamics may be applied to generate objects 
with fractal structure (Miller et al., 1993); as Extremal Optimization, 
it successively eliminates undesirable components of suboptimal 
problem solutions (Boettcher and Percus, 2000).

The various approaches discussed in the foregoing can essentially 
be viewed as ad hoc (Milotti, 2002). In contrast, however, there are 
two types of conceptual anchors that ground power-law relations 

with a fractal dimension of 1.25. In addition, stride-interval time 
series itself was in this study a random fractal, consistent with the 
data of Hausdorff et al.

The importance of the West–Griffin results lies in showing 
that the correlation in their data was an inverse power-law of a 
form similar to the allometric scaling laws found in many areas 
of Biology: typically, allometry establishes a relation between 
two properties of an organism. Historically, the idea is based on 
Huxley’s (1932) definition of allometric growth, describing that 
the different growth rates of two parts of an organism are propor-
tional to one another. In the West–Griffin studies, the allometric 
principle is reflected in the constancy of the Relative Dispersion 
over the length of the stride-interval time series which, in the 
present case, has the non-integer fractal dimension of 1.25. Their 
data raise the issue of systematic control of variability, which is 
generic of complex physiological processes. Unlike the familiar 
homeostatic control that regulates system variables by negative 
feedback, an allometric control system is conceived as regulating 
variability of a process involving multiple interactions among 
sensors and effectors with intricate feedback arrangements, each 
with its own characteristic set of frequencies and time scales. 
Their functions are reflected by the allometric relation which 
captures the process’s long-term memory with power-law correla-
tions, and by the power-law distributions of the system variable 
(West, 1999, 2009).

The significance of this principle is documented by West (1999, 
2006) for the numerous physiological processes which are identi-
fied as fractal, on the basis of their time series behavior. Notable 
examples of fractal Physiology are heart rate, bronchial air ways 
and body temperature variability, and integrated neural control 
networks. In these situations, the regulatory mechanisms constitute 
coupled cascades of feedback loops in systems far from equilib-
rium. Therapeutic interventions, commonly based on the homeo-
static principle which assumes the significant system variable to 
be normally distributed fails to take the regulatory complexity 
into account and may be counterproductive. Instead, Allometric 
(fractional) Control based on Fractional Calculus (Podlubny, 1999) 
provides the appropriate approach. Applications of Fractional 
Calculus to modeling the interdependence and organization of 
complex system, such as for instance the vestibulo-oculomotor 
system, are illustrated by Magin (2006).

Changing walking speed, using metronomically controlled walk-
ing, or aging and pathological conditions introduce stress condi-
tions to the neural control system which requires expanding the 
theoretical framework. Based on the notion of a stochastic model 
of human gait dynamics (Ashkenazy et al., 2002), West and Scafetta 
(2003) tested the model of a neural pattern generator on the data set 
obtained by Hausdorff et al. (1995) which they showed to exhibit 
slightly multifractal fluctuations. Metronome timing breaks the 
long-time correlations of the natural pace and generates a large 
fractal variability of the gait regime. The two essential features of 
the model required for capturing the phenomenology of the data 
set were that the dynamics of the system unfolds on an attractor 
in phase space, and that the natural frequency of the attractor is 
replaced by a random walk over a restricted set of frequencies which 
leads to the multifractal output for the dynamical model (Scafetta 
et al., 2009).
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ence of distant samples. The conceptual connections to scaling 
 invariance and to the theory of renormalization are discussed by 
Quian (2003). Fractional reaction–diffusion in inhomogenous 
media stabilizes steady state solutions of Turing patterns (Henry 
and Wearne, 2000).

Shlesinger et al. (1987) introduced the Levy walk as a ran-
dom walk with non-local memory, coupling space and time in 
a scaling fashion. For the alpha-stable Levy Walks, the transition 
probability varies with the size of the step (Montroll and West, 
1979). Anomalous diffusion results from a Levy Flight which is 
a process where the time taken to complete a transition depends 
on the length of the step (West et al., 1997). West et al. (1994) also 
identified dynamical generators of Levy Statistics. In an elegant 
step towards unifying various classes of random walks, Zumofen 
and Klafter (1993) applied the framework of CTRW’s to derive 
Levy stable processes. The interesting properties of Levy processes 
include their satisfying a scaling law, self-similarity and possessing 
memory (Allegrini et al., 2002). Levy (1954) also generalized the 
Central Limit Theorem to include those phenomena for which the 
second moment diverges. West and Deering (1995) and West (2006) 
assembled a large number of data obtained from various biological 
systems that satisfy Levy walk statistics. In a motor skill acquisition 
task, Cluff and Balasubramaniam (2009) report that probability 
distributions for changes of fingertip speed in pole balancing are 
Levy distributed. In vitro recorded spontaneous electrical activity 
of neuronal networks exhibits scale – invariant Levy distributions 
and long-range correlations (Segev et al., 2002). This is thought to 
enable different size networks to self-organize for adjusting their 
activities over many time scales. Among animal movement patterns 
associated with random search behavior, Levy walks outperform 
fractional Brownian motion (Reynolds, 2009), presumably evolved 
under section pressure (Bartumeus, 2007). Situating the power-law 
formalism in the larger framework of Maximum Entropy, Frank 
(2009) develops the view of the power-law as the outcome of one 
particular form of aggregation of processes, namely aggregation 
that preserves information only about the geometric mean. More 
generally, this important study places the power-law alongside other 
generative, each placing its distinct constraints on information for 
describing patterns of nature.

Physical process models to account for fractal heavy-tailed dis-
tributions of traffic pattern of (information) packages in local area 
networks (LANs) are based on renewal reward processes, originally 
applied to commodity pricing. Applied to network package traffic, 
the model takes into account the presence of long packet trains 
(“on periods”, with packages arriving at regular intervals) and long 
inter-train pauses (“off periods”). The superposition of many such 
packet trains displays on large time scales the self-similar behavior 
LANs if the “on–off” distribution has infinite variance (Willinger 
et al., 1995; Willinger, 2000).

The second conceptual framework was already introduced in 
Section 2.3.3: power-law distributions are among the novelties that 
arise in the vicinity of or at the critical point of a continuous phase 
transition, including criticality. This should not come as surprise 
since scaling reflects long-time correlations in the underlying proc-
ess, analogous to the comparable re-ordering process at critical 
phase transitions (Wilson, 1979): both cases address a class of phe-
nomena where events at many scales make contributions of equal 

 explicitly in larger foundational contexts. For one of the  conceptual 
roots, I turn to the theory of Random Walks and  fractional difference 
equations. The continuum limit of simple random walks is diffusion 
and, correspondingly, expressed in the mathematics of differential 
equations. The simple random walk aggregates the random steps from 
a large number of identically distributed random variables with finite 
variance. However, an extensive range of investigations has made it 
abundantly clear that simple random walks with this statistics do not 
capture the richness of biological data, and for that matter other fields 
of investigation as well (for reviews see: Bassingthwaighte et al., 1994; 
West and Deering, 1995; West 1999). A decisive step beyond simple 
random walks was the introduction of the concept of continuous-
time-random walk (CTRW) by Montroll and Weiss (1965). Some 
forms of CTRW are fundamentally different from the classical dif-
fusion model by drawing the timing of steps from waiting time dis-
tributions, or by taking steps of randomly varying length. This is for 
instance the case when the waiting time distribution does not possess 
a characteristic time scale (for instance, has a power-law distribution): 
in this situation, the mean square displacement and the distribution 
of transition rates become fractal. Processes corresponding to these 
and related random walk models are then referred to as fractal ran-
dom walks, corresponding to anomalous diffusion which occupies 
an important place for studying physical processes such as transport 
in disordered media or non-exponential (anomalous) relaxation of, 
for instance, glassy media. Along these lines, Montroll and West, 
1979), Hughes et al. (1982) and others examined a large repertoire 
of stochastic processes with unusual probability distributions for the 
displacement per step. For certain parameters, these walks have infi-
nite spatial moments, generate fractal self-similar trajectories, have 
characteristic functions with non-analytic behavior, and lead to an 
analog of RNG transformations. In the continuum limit, the fractal 
random walk leads to the Fractional Langevin Equation of motion 
describing trajectories, and their ensemble densities, in phase space 
(West, 2006). Such processes are viewed as fractional kinetics, and 
mathematically addressed in fractional calculus (Kleinz and Osler, 
2000; West and Nonnenmacher, 2001; Sokolov et al., 2002) and by 
Fractal Operators (West et al., 2003).

In an application to Neuroscience, Lundstrom et al. (2008) 
showed that neocortical pyramidal neurons’ firing rate is a frac-
tional derivative of slowly varying stimulus parameters: neuronal 
fractional differentiation effectively results in adaptation with many 
time scales (see Linking across many scales of space and time). 
Fractional-order dynamics of brainstem vestibulo-oculomotor 
neurons was demonstrated by Anastasio (1994) who also suggested 
that simulation of fractional-order differentiators and integrators 
can be approximated by integer-order high- and low-pass filters, 
respectively. Thus, fractional dynamics may possibly be applicable 
to motor control systems, generally. This is also suggested by the 
stride-interval time series of human gait being a random fractal, 
indicating the role of long-time correlations in walking (West and 
Griffin, 1999; see Symbol processing and Fractals). Mandelbrot 
and van Ness (1968) defined Fractional Brownian Motions as a 
family of Gaussian random functions, parametrized according to 
the interdependence of successive increments, with the param-
eter ranging from zero (Gaussian Fractional Random Walk) to 
infinite in Fractional Brownian motion: the latter to account for 
the empirical studies of random phenomena with interdepend-
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importance. Significantly, the comprehensive review on Fractal 
structures in nonlinear dynamics by Aguirre et al. (2009) begins 
with the sentence “Fractal structures appear naturally in nonlinear 
dynamics, in such a way that the two concepts are deeply related”. 
Their review draws particular attention to numerous instances in 
nature where attractor basin boundaries in dissipative (open) sys-
tems display fractal behavior. Gisiger’s (2001) comment is a propos: 
“at one point, Bak (1996) considered SOC as universal, with scaling 
as consequence; it appears, however, that the balance of evidence 
shifted the question: why is there scale invariance in Nature? to the 
question: is Nature critical?”

For constructing theories that deal with problems that have 
multiple scales, the renormalization group (RNG) offers a general 
method. In Physics, the most frequently studied situation is “percola-
tion transition” for which Newman (2005) offers a detailed account 
of the origin of power-law scaling: the cumulative distribution of 
cluster sizes forms at the critical point a power-law distribution. 
Percolation transition is a special case under the closely intercon-
nected family of RNG and coarse graining that entails power-law dis-
tributions as a source of natural fractals (see Fractals and Criticality 
of Brain States). Coarse graining allows one to determine whether 
the phenomenon under investigation has universality, apart from 
scaling: Universality implies that macroscopic properties of a system 
are independent of the system’s particular microscopic configura-
tion. The particular values determined for a given instantiation of 
the system are then not significant, apart from showing that the 
system scales: the theoretical foundations are extensively discussed 
by Essam (1980) and by Stauffer and Aharony (1991/1994).

For Neuroscience, Kozma et al. (2005) illustrated the potential 
relevance of percolation for phase transitions in models of neural 
populations with mixed local and global interactions, and (Werner, 
2009b,c) proposed Renormalization Group Transformation as a 
general principle to account for functional relations between levels 
of neural organization. Since fractals will in both situations natu-
rally arise, it is pertinent to ask what their role could be. West et al. 
(2008) and Allegrini et al. (2006a,b) attribute to them a complexity 
matching function which will be the subject of review and com-
ments in the Section “Complexity matching effect”.

fractals In actIon
Having reached the end of the largely phenomenological surveys 
of fractal scaling and associated manifestations of fractality at the 
conventionally distinguished levels of organization and function 
of nervous systems, it appears inescapable to recall the title of 
Barnsley’s (1993) book “Fractals everywhere”. The apparent preva-
lence in the nervous system is matched by the numerous manifesta-
tion in physiological systems generally (West and Deering, 1995). Is 
the ubiquity a sign of triviality, or the result of a generic and fun-
damental principle of Nature? If that is the case in Biology at least, 
then Nature seems to adhere to it with remarkable conservatism 
as, for instance, the monographs of Dewey (1999) for Molecular 
Biophysics and of Seuront (2010) in Ecology attest.

As documented by Aguirre et al. (2009), and is referenced in 
several sections of this review: the intimate relation between fractals 
and nonlinear dynamics in dissipative systems is apparent and well 
substantiated. Hence the seemingly disproportionate attention paid 
to phase transitions and criticality in Sections “Peripheral nervous 

system” and “The mesoscopic level”. However, Section “Processes 
that generate power-law distributions” lists a large number of alter-
natives for generating fractals, some of which obviously qualify-
ing as “natural”, as, for instance Levy flights. Thus, the burden of 
proof of attributing observed fractals to nonlinear dynamics lies 
on identifying the fractal boundaries or the critical phase transition 
that gave rise to them. This subset of natural fractal must then be 
viewed as manifestation of, and a consequence of, the particular 
dynamic regime from which they originated.

the complexIty matchIng effect (cme)
The issue under consideration is the communication among com-
plex systems generating fractal signatures. The starting point is the 
evidence presented in Section 1.4 that the EEG time series can be 
identified as a (non-ergodic) non-Poisson renewal (NPR) process, 
reflecting strong deviation from exponential decay. A brief account 
of CME will suffice at this point since a comprehensive overview of 
the underlying principle of CME is available in West et al. (2008). 
CME is concerned with the conditions under which one complex 
network responds to a perturbation by a second complex network: 
Consider a NPR network with a power-law index < 2 as measure 
of its complexity, and apply a random signal as perturbation: this 
is in essence comparable to the condition of aperiodic Statistic 
Resonance (Gammaitoni et al., 1998). Allegrini et al. (2006a,b) then 
generalized the conditions by applying as perturbation another 
complex network which also satisfies the NPR condition with 
power-I law index < 2. Under these conditions, it can be shown 
that the effect of the perturbation is maximal if the power-law 
indices of the interacting systems are equal. The claim is that CME, 
as illustrated in the foregoing, applies to a large class of NPRs such 
as, for instance, return times for random walks, either in regular 
lattices or in complex networks.

lInkIng actIons across many scales?
Even if Nature’s conservative adherence to fractals is a valid argu-
ment in support of their functional significance, we are still in the 
dark as to what that function may be. Emphasizing the feature of 
self-similarity, we can turn to types of functions which could ben-
efit from stacking extended ranges of space and/or time scales into 
one compact format; moreover, there is no privileged time scale in 
power-law dynamics. Sensory adaptation as a change over time in 
the responsiveness of the sensory system to a constant stimulus is 
a situation of this kind (Wark et al., 2008). Adaptation with power-
law dependence and multiple time scales has been demonstrated 
in nervous systems under many different conditions. Examples 
come from such diverse sources as electrosensory afferent nerve 
fibers in weakly electric fish (Xu et al., 1996), spider mechanore-
ceptor neurons (French and Torkkeli, 2008). The auditory sensory 
memory which is thought to encode stimuli on multiple time scales 
(Ulanovsky et al., 2004). Fairhall et al. (2001a,b) direct attention 
to the speed with which the dynamics of a neural code is opti-
mized, even when the statistical properties of the stimuli themselves 
evolve dynamically over a wide range of timescales, from tens of 
milliseconds to minutes. The source of 1/f fluctuations in human 
sensorimotor coordination tasks is presumably attributable to the 
multiple time scale activities of neural centers (Ding et al., 2001). 
In visual psychophysics, adaptation to contrast follows  power-law 
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Fusi et al. (2005) applied the principle of power-law  forgetting 
of adaptation to a cascade model for regulating the plasticity 
of synapses as the basis of stored memories. Note that memory 
strength is here represented as synaptic plasticity, not as synaptic 
strength, as is commonly the case. Each synapse model has two 
levels of synaptic strength, weak and strong. Associated with each 
strength is a cascade of states (in one of their models, five). The 
cascades introduce a range of probabilities for transition between 
weak and strong levels of synaptic plasticity. A complicated heu-
ristics is built into the model design that enables combinations 
of states of plasticity, for instance: states with low probability are 
paired up with labile states, and conversely, etc. The important 
point is that a high level of memory storage with long retention 
times significantly outperforms other model designs. In a model of 
learning visuomotor associations that are reversed unpredictably 
from time to time, synaptic modification occurring on multiple 
time scales along the same principles can be the basis for flexible 
behavior; the model predictions were validated with experimental 
data (Fusi et al., 2007). For the possibility of cascading structures 
for EEG phase and amplitude, see Section “Fractals and criticality 
of brain states”, and references to Lakatos et al. (l.c.), He et al. (l.c.), 
and Mono et al. (l.c.).

It appears then, that the principle of shifting between different 
scales on demand manifests itself in many different forms, and on 
different levels of neural organization. Under natural conditions, 
are the required exponential functions for power-law integration 
models of self-similar structures?

summary and fInal thoughts
The assembly of largely phenomenological data was presented to 
support the claim that fractal processes and properties occur at 
many and diverse levels of neural organizations and performance, 
and are functionally relevant. Several issues that must not glossed 
over lightly needed discussion in several places: e.g. fractality as such 
is not an obligatory indicator of SOC; whether non-conservative 
systems may be limited to a state of quasi-criticality instead of being 
candidates for full criticality (see Peripheral nervous system); and 
what the origin of natural fractals may be, including their standing 
in a Maximum Entropy framework (Frank, 2009; see “Processes 
that generate power-law distributions”). In Sections “Fractals and 
criticality of brain states” and “Significance of brain criticality”, the 
tantalizing question was addressed that discourse on criticality may 
in different contexts refer to different dynamical regimes. However, 
whichever stance is taken, the close relation of fractals with critical 
dynamics is beyond dispute. Despite the evidence secured by Plenz 
and Chialvo (l.c.) in specially targeted experiments, critical dynam-
ics is still by some investigators called in question at the mesoscopic 
level, but the evidence for its importance and essential role at the 
macroscopic domain is uncontroversial and solid.

Among the virtues of brain criticality in the sense discussed 
in Section “Significance of brain criticality”, there is one that has 
attracted attention for the longest time: it is the ability for rapid 
changes of state. Note that the following considerations pertain 
to the Phase transition in the framework of Critical Theory, as 
a universal mechanism for rapid switching between different 
cooperative neuron collectives. Less attention received the fact, 
well established in Physics, that the system presents at the critical 

 dynamics (Rose and Lowe, 1982) as does the tilt aftereffect (Greenlee 
and Mangussen, 1987). For fractional-order dynamics in adapta-
tion, see: Lundstrom et al. (2008) and Anastasio (1994) in Section 
“Processes that generate power-law distributions”.

This fragmentary compilation of diverse observations is intended 
to illustrate the propensity of various neural structures to respond 
swiftly to a range of temporal and/or spatial parameters: the image 
of a set of strings resonating to specific frequencies comes to mind. 
Could self-similar fractal structures, having stored a repertoire of 
responses, each specific for a particular range of temporal and/
or spatial stimulus parameters, fulfill this function? On formal 
grounds, Thorson and Biederman-Thorson (1974) attributed 
sensory adaptation to distributed relaxation processes, based on 
non-uniformities of local “efficacy” in the transduction process 
at peripheral receptors. Might this “local non-uniformity” be the 
expression of a self-similar functionality of receptors?

Generically, models of adaptation integrate the response of a sys-
tem and feed the integrated signal back to curtail that response. The 
type of adaptation is determined by the properties of the integrator. 
Applying this principle, Drew and Abbott (2006) examined a form 
of power-law integration with the result that the suppressive effect 
of repeated stimuli on successive responses are accumulated with 
power-law decline. In distinction from other forms of integration 
(e.g.: exponential), power-law integration has the notable feature of 
scale-invariance and, in their simulations, replicated the published 
data of Xu et al. (1996), cited in the previous paragraph. On the same 
principle, these investigators also implemented power-law adaption 
within a standard spiking neuron model, except for approximat-
ing the time dependence of the power-law adaptation integral for 
computational efficiency by a series exponentials. This principle 
has been successfully applied by Hausdorff and Peng (1996) and 
is the basis of Anderson’s (2001) assertion of the power-law being 
an emergent function: it amounts to linking the non-interacting 
exponential processes to a cascade which reproduces the power-law 
forgetting in power-law integration. The adaptation obtained of 
the integrate-and-fire model with adaptation current obtained by 
a cascade of exponential processes matched perfectly that obtained 
by injecting adaptation currents to the model neurons.

The implications of this successful approach are considerable: 
the Dell and Abbott results suggest that power-law adaptation can 
be instantiated by a cascade of a large number of processes with 
ordinary exponential dynamics, covering a wide range of time 
constants. The cascaded model design lets the temporal stimulus 
dynamics set the appropriate adaptation dynamics, in virtue of the 
numerous exponential processes with different time scales. They 
present a telling argument in support of the biological significance 
of this mechanism of adaptation: natural stimuli vary unpredict-
ably over a wide of time scales; instead keeping the recovery time 
after excitation constant, power-law adaptation allows the temporal 
statistics of the stimuli themselves to determine the dynamics of 
adaptation. The work of Toib et al. (1998) and Gilboa et al. (2005) 
referred to in Section “Ion channels” are additional examples of 
“multiscale computing” involving fractals.

Are we prepared to envision a general principle of self-organizing 
control structures for multiscale behavior, extracting the statistics 
of an unpredictable environment by way of power-law integration? 
The papers cited in the next paragraph speak to this question.
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collection is closest to the natural brain networks? Suggestions 
abound, but tantalizing questions remain still open to further 
inquiry. An architecture that does justice to self-similarity under 
renormalization appears attractive as it might unite the dynamics 
of network topology in one common mechanism, as I suggest in 
that Section.

Commenting on the wealth of existing data on anatomical and 
functional cortical networks organization may seem like “carrying 
coals to Newcastle”, notably in view of the comprehensive review 
prepared by Bullmore and Sporns (2009). Nevertheless, a few gen-
eral considerations may be of some relevance. It is a commonplace 
observation that Nature loves Hierarchies: in the influential article 
“Architecture of Complexity”, Simon (1962) gave plausible reasons 
for this apparent love affair. A few years later, in a discussion of 
complex systems, Simon (1973) observed that the term “hierar-
chy” has taken a somewhat generalized meaning, divorced from its 
original denotation in human organizations of a vertical author-
ity structure. He there contended that in application to complex 
systems, “Hierarchy” has come to denote a set of Chinese Boxes of 
a particular kind, usually consisting of their recursion. But then, 
these Chinese Box hierarchies come in variants of one form or 
another of ordering, e.g. in the partial ordering of trees. Finally, 
in the 3rd edition of “The Sciences of the Artifical”, Simon (1996) 
settled on applying the term “Hierarchy” in a much broader sense, 
referring to all complex systems that are analyzable into successive 
sets of subsystems: this entails partitioning in conjunction with 
the relations that hold among the subsets (l.c., p. 197). For this 
historical and a variety of other reasons, there are now diverse 
(and sometimes ambiguous) senses in current use by investiga-
tors reporting their finding in anatomical, fMRI and model studies 
when speaking of hierarchical order. A precise definition for fitting 
a hierarchical structure to the topology of a graph is proposed by 
Clauset et al. (2006).

The network and graph-theoretical community has developed 
its own criteria: modularity has been introduced a measure of a 
networks decomposability, for instance into community structures 
(Newman and Girvan, 2004), possibly at different hierarchical lev-
els, allowing one to “zoom in and out” for finding communities 
on different levels; this was discussed in detail by Meunier et al. 
(l.c.). Mucha et al. (2009) seek to address this same objective in a 
new framework that encompasses coupling of individual networks 
via links connecting nodes of one with nodes of another network 
at multiple scales, thus allowing for some nesting which escapes 
the Newman–Girvan method, but is accessible by the approach of 
Sales-Pardo et al. (2007). Keeping these issues in mind is, I sug-
gest, of importance in the definitive evaluation of many of the 
reports of fMRI data on cortical functional organization: while 
describing modularity, they may not be able to capture nesting 
among modules, due to methodological limitations. Yet, it is the 
nesting of the kind that Simon refers to as “Russian doll” (see also 
the Russian Matryoshka dolls of Agnati, l.c.), where the pressing 
question of self-similarity arises: It has some plausibility in view of 
Sporns’s (2006) suggestive evidence for cortical connection patterns 
of fractal and self-similar nature. In different contexts, self-similar 
community structures were noted by Guimera et al. (2003) in a net-
work of human interactions, and nesting of theta- and beta gamma 
oscillations was noted by Gireesh and Plenz (2008) in neuronal 

transition  qualitatively new properties, requiring new macroscopic 
 descriptors (for more details: Werner, 2009c). The important fea-
ture of the organization following the phase transition is to form 
new objects with distinct properties: a new Ontology. In Physics, 
transitions between ferro- and para-magnetism are the prototypical 
example. We need to ask: What, if any, is the manifestation of onto-
logical novelty in this form of brain phase transition? Customarily, 
one tends to think in terms of integration and differentiation, 
brought about by the change in correlation patterns of the sys-
tem components, with nearby clusters functioning in synchrony. 
However, this way of looking at the nature of the state change fails 
to meet the requirement for qualitative (ontological) novelty, as 
the analogy with Physics would require. In the paradigmatic cases 
in Physics, new aggregations are being formed on phase transition 
which display novel properties at a macroscopic level of descrip-
tion. What can we assume to happen in brain on phase transition? 
The obvious answer is: partitioning into neural assemblies with 
fractal properties. This is of course merely analogous to the fractal 
patterns formed at phase transition in physical systems. But here is 
an essential difference between the systems studied in Physics and 
the brain: Take the ferro-paramagnetic phase transition again as 
example, it consist merely in a change of spin orientation of the 
elementary components. But in the case of brain, the elementary 
components are reactive neurons which have the potential of enter-
ing into aggregations with functional interactions. Model studies of 
de Arcangelis and Herrmann (2010) with self-organizing neuronal 
networks show that avalanches formed at phase transition can learn 
complex rules on the basis of a collective process. Under appropriate 
conditions, the learning dynamics is universal inasmuch as even 
complex rules can be acquired. Recalling Section “Symbol process-
ing and fractals”, the relation of the state dynamics of these neural 
networks to IFSs and fractal attractors would constitute a notable 
case of the synergism of fractal and complex system dynamics.

Returning now to the “other” of critical brain dynamics which 
views brain criticality as generic and persistent state: do any of 
these or other implications of ontological import pertain to state 
transitions in this dynamic regime?

Re-visiting the work of Beggs and Plenz (see The mesoscopic 
level) and putting it bluntly: phase transition (viewed in the frame-
work of Critical Theory) would endow avalanches with novel 
capacities that are not analytically predictable from the original 
state of the system. Generalizing from this, it is evident that pursu-
ing these and related directions in targeted studies of the aftermath 
of brain phase transitions is imperative for seeking to gain a full 
appreciation of the functional novelties it may create. Whether 
such studies will show a way of bridging the ultimate barrier of the 
epistemic cut (Pattee, 2001) that separates the domain of integrable 
Physics from the domain of symbolic structures remains to be seen: 
but this issue is, I submit, at the core of the apparent object–subject 
(brain–mind) duality.

The limited sample of recent publication on network models 
cited in Section “Fractals in brain networks” is but a fraction of 
the large number of combinations and permutations of network 
design parameters that are conceivable: on the one hand, ranging 
from the of small-world to scale-free works with various degree 
distributions, on other hand each type being hierarchical, modular 
with and without hubs, and fractal. Which one from among this 
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