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Microbial induction of immunity, inflammation, and cancer
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The human microbiota presents a highly active metabolic that influences the state of health of 
our gastrointestinal tracts as well as our susceptibility to disease. Although much of our initial 
microbiota is adopted from our mothers, its final composition and diversity is determined by 
environmental factors. Westernization has significantly altered our microbial function. Extensive 
experimental and clinical evidence indicates that the westernized diet, rich in animal products and 
low in complex carbohydrates, plus the overuse of antibiotics and underuse of breastfeeding, 
leads to a heightened inflammatory potential of the microbiota. Chronic inflammation leads 
to the expression of certain diseases in genetically predisposed individuals. Antibiotics and a 
“clean” environment, termed the “hygiene hypothesis,” has been linked to the rise in allergy 
and inflammatory bowel disease, due to impaired beneficial bacterial exposure and education 
of the gut immune system, which comprises the largest immune organ within the body. The 
elevated risk of colon cancer is associated with the suppression of microbial fermentation and 
butyrate production, as butyrate provides fuel for the mucosa and is anti-inflammatory and anti-
proliferative. This article will summarize the work to date highlighting the complicated and dynamic 
relationship between the gut microbiota and immunity, inflammation and carcinogenesis.
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 intestinal inflammation, and prime the innate and the adaptive 
arms of the immune system (Vaarala, 2003). Aberrations in the 
biodiversity of enteric microbiota can contribute to individual 
differences in immunologic behavior during and subsequent to 
childhood. Western nations, for instance, have experienced consist-
ent increases in the incidence of allergic diseases in the past few 
decades, which may be due to a lack of microbial exposure during 
infancy – the “hygiene hypothesis” – or adoption of a Western diet 
(Strachan, 1989; Wang et al., 2008). A synchronous decrease in the 
incidence of infectious diseases in developed countries has occurred 
subsequent to the implementation of antibiotics, vaccination, and 
improvements in hygiene (Bach, 2002).

Mounting evidence suggests that diet and the microbiota, 
independently or in conjunction, influence the risk of developing 
atopic disease. The constitution of enteric microbiota may be a 
consequence of one’s country of origin. Infants living in develop-
ing countries have been shown to be colonized at younger ages 
with fecal bacteria and have more rapid transfer of enteric micro-
bial strains than infants living in developed countries (Adlerberth 
et al., 1998). Diversity is considerably greater in rural African than 
European children (Figure 1), with a predominance of resistant 
polysaccharide hydrolyzers (Prevotella and Xylanibacter) and rela-
tive absence of inflammatory Enterobacteriaceae (De Filippo et al., 
2010). Compared to children without atopic illnesses, microbial 
species of children who manifest atopic sensitization demon-
strate a reduced ratio of bifidobacteria to clostridia when they 
are infants (Kalliomaki et al., 2001a). Important determinants of 
enteric microbiotic composition in infants appear to be the mode 
of delivery, maternal diet, type of infant feeding (breast milk or 
formula), gestational age, infant hospitalization, antibiotic use by 
the infant, and the presence of siblings (Penders et al., 2006). One 

IntroductIon
The distal intestine is populated by a stunning quantity of bacte-
ria, comprised of relatively few phyla that are highly diverse at the 
species level. This heterogeneous composition presents a vibrant 
metabolically active life-form, sharing the same habitat as our 
enteric organs. Realistically, enteric microbiota are a continuum, 
with members existing somewhere along the spectrum between 
symbiosis and pathogenicity. As the microbiota co-evolved with 
humans, they have provided us with genetic and metabolic charac-
teristics that we have not had to develop on our own, such as ena-
bling us to be able to harvest otherwise inaccessible nutrients and 
synthesizing vitamins (O’Keefe et al., 2009). Resistant starch and 
non-starch polysaccharides that evade human digestion provide 
energy for commensal bacteria. In turn, microbes metabolize these 
undigested nutrients to produce short-chain fatty acids (SCFA), 
including butyrate, the primary nourishment for colonocytes 
which possesses potent anti-proliferative and anti-inflammatory 
properties (Pryde et al., 2002). Alternatively, enteric microbes may 
enhance disease pathogenesis at the cellular and molecular level via 
pro-inflammatory mechanisms (Table 1).

EvolutIon of thE mIcrobIota In atopIc dIsEasE
Microbial colonization of the gastrointestinal tract begins at birth, 
changes rapidly during the first year of life, and thereafter remains 
fairly constant (Abraham and Cho, 2009). During infancy, sym-
biotic bacteria have the capacity to promote growth and healing, 
induce angiogenesis, optimize nutrient absorption, attenuate 

Abbreviations: DCA, deoxycholic acid; H
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promoted cellular proliferation by triggering mitogen-activated 
protein kinases which can increase the incidence of cell transforma-
tion as well as the rate of acquiring genetic mutations (Baron and 
Sandler, 2000; Biarc et al., 2004). Pro-inflammatory cytokines act 
as tumor promoters by regulating cytokines, chemokines, adhesion 
molecules, and angiogenesis (Coussens and Werb, 2002). A recent 
study of multiple intestinal neoplasia mice showed that infection 
with enterotoxin-producing Bacteroides fragilis organisms that 
produce inflammatory diarrhea in humans triggered colitis and 
strongly induced colonic tumors (Wu et al., 2009). Clinical support 
for the importance of chronic inflammation is provided by the 
observation that colon cancer risk is increased five-fold in patients 
with chronic ulcerative colitis (Ekbom et al., 1990). Furthermore, 
the risk of cancer in inflammatory bowel disease (IBD) is consid-
erably higher if the disease affects the colon, rather than the small 
intestine, indicating that the carcinogenic effects of bacteria and 
inflammation may be additive. Finally, it has been clearly estab-
lished that the use of anti-inflammatory medications suppresses 
colon cancer risk (Baron and Sandler, 2000).

Substantial epidemiological evidence also supports a primary role 
for diet in the genesis of colorectal carcinoma (Doll and Peto, 1981). 
Comparative studies from high and low risk populations indicate that 
elevated intake of red meat and animal fat increase colon cancer risk, 
while greater consumption of fiber reduces risk. The effect of diet on 
colonic carcinogenesis may be mediated by the microbiota, which 
can either maintain colonic health or promote chronic inflammation 
(O’Keefe et al., 2009). Fermentation of indigestible carbohydrate, 
such as fiber and resistant starch, maintains colonic health by produc-
ing SCFA such as acetate, propionate, and butyrate. Unlike most other 
cells in the body, colonocytes use butyrate as their preferred energy 
source. Furthermore, butyrate appears to be fundamental in the 
maintenance of cellular homeostasis and a normal colonocyte phe-
notype (Topping and Clifton, 2001). SCFAs have anti- inflammatory 
effects, either directly by regulating the release of prostaglandin E2, 
cytokines, and chemokines from human immune cells (Cox et al., 
2009), or indirectly by their ability to support the growth of probiotic 

study comparing the enteric microbial species constitutions of 
7-year-old children noted that those delivered by Cesarean section 
had significantly lower quantities of clostridia and bifidobacteria 
(Salminen et al., 2004). Additionally, infants who are treated fre-
quently with antibiotics have a heightened likelihood of developing 
asthma (Marra et al., 2009).

Breast feeding is associated with a diminished risk of atopic 
diseases, and alteration of the mother’s diet to avoid n−6 saturated 
fat and include supplementation with Lactobacillus rhamnosus GG 
(ATCC 53103), has been shown to reduce risk by 50% (Kalliomaki 
et al., 2001b). Diet in early life may also affect the likelihood of 
developing allergic illnesses. For instance, infants fed a strictly 
organic diet were found to have a significantly lower likelihood 
of developing eczema (Kummeling et al., 2008). Dietary lipids, 
particularly n−6 long-chain polyunsaturated fatty acids, have a 
pro-inflammatory effect through the increased synthesis of pros-
taglandin E2; their consumption can contribute to the development 
of allergies and asthma (Black and Sharpe, 1997). N−3 polyun-
saturated fatty acids, on the other hand, possess a demonstrated 
ability to decrease the inflammatory response via their reduction 
in prostaglandin E2 levels (Kobayashi et al., 2006). Diet may, thus, 
affect the development of allergic disease both directly by its effect 
on inflammation and indirectly through its influence on the com-
position and activity of the microbiota.

colon cancEr
Robust experimental and clinical evidence demonstrates that 
chronic inflammation increases the risk of neoplastic transforma-
tion (Ekbom et al., 1990; Baron and Sandler, 2000; Coussens and 
Werb, 2002; Garcea et al., 2005). Not surprisingly, studies have 
linked colonic carcinogenesis to chronic inflammation generated 
by “pathogenic” bacteria. Although specific bacterial species have 
yet to be proven to be the cause of colon cancer, the minor gut 
colonizer Streptococcus bovis has been implicated in some clinical 
studies. Experimental investigations into its carcinogenic potential 
showed that bacterial proteins upregulated COX-2 production and 

Table 1 | Cellular and molecular evidence for the role of the microbiota in inflammation and disease.

Finding Reference

The differentiation of IL-17-producing T-helper cells in the lamina propria of the small intestine requires commensal cytophaga–

flavobacter–bacteroidetes bacteria and can be inhibited with antibiotics

Ivanov et al. (2008)

A microbial factor known as polysaccharide A suppresses pro-inflammatory interleukin-17 production by intestinal immune cells 

and protects from inflammatory-mediated illnesses via functional requirement for interleukin-10-producing CD4+ cells

Mazmanian et al. (2008)

IL-2 deficient, germ-free rats develop colitis due to a non-pathogenic E. coli mpk strain Waidmann et al. (2003)

Enteric bacteria influence outcome of systemic immune responses by determining the ratio of Th1 to Th2 effector cells Mazmanian et al. (2005)

Mutations in genes involved in bacterial peptidoglycan recognition (NOD2/CARD15) are risk factors for Crohn’s disease Abraham and Cho (2009)

The probiotic bacterial proteins p75 and p40 are capable of promoting intestinal epithelial homeostasis and significantly reduce 

TNF-induced colon epithelial damage

Yan et al. (2007)

Lactobacillus casei has been shown to attenuate the severity of experimental colitis by upregulation of ICAM-1 expression and 

leukocyte recruitment

Angulo et al. (2006)

SCFAs have anti-inflammatory effects by regulating the release of prostaglandin E(2), cytokines, and chemokines from human 

immune cells

Cox et al. (2009)

SCFAs support the growth of probiotic species bifidobacteria and lactobacilli Delcenserie et al. (2008)

Butyrate maintains colonic motility by modifying histone acetylation in the colonic myenteric plexus Soret et al. (2010)
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species, such as bifidobacteria and lactobacilli (Wang et al., 2002; 
Delcenserie et al., 2008). SCFAs also possess immune-modulating 
and anti-inflammatory actions by binding certain G-coupled recep-
tors which may help to stimulate the normal resolution of inflam-
matory responses in colonocytes (Maslowski et al., 2009). Colonic 
blood flow as well as fluid and electrolyte uptake are also enhanced 
by SCFA production (Topping and Clifton, 2001).

Butyrate, in particular, can modulate inflammation and affect 
tumorigenesis. Evidence shows that risk reduction may be related 
to the effects of butyrate on activating the apoptosis cascade 
and inducing growth arrest of tumors by histone hyperacetyla-

tion (Avivi-Green et al., 2000). In vitro, butyrate demonstrates 
 numerous additional anti-inflammatory properties, including 
decreasing the effects of pro-inflammatory cytokines and their 
expression by inhibiting NF kappa B activation and abolishing 
lipopolysaccharide (LPS)-induced expression of cytokines by 
peripheral blood mononuclear cells (Segain et al., 2000). Butyrate 
also inhibits the in vitro preneoplastic hyperproliferation-induced 
tumor promoters and arrests the growth of neoplastic colonocytes 
(Pryde et al., 2002). A fascinating recent study provides experi-
mental evidence that butyrate maintains colonic motility, and 
therefore “housekeeping,” by modifying histone acetylation in 

FiguRe 1 | 16S rRNA gene surveys reveal a clear separation of two children 
populations investigated. (A,B) Pie charts of median values of bacterial genera 
present in fecal samples of Burkina Faso (BF) and European Union (EU) children 
(>3%) found by RDP classifier v. 2.1. Rings represent corresponding phylum 
(Bacteroidetes in green and Firmicutes in red) for each of the most frequently 
represented genera. (C) Dendrogram obtained with complete linkage hierarchical 
clustering of the samples from BF and EU populations based on their genera. The 
subcluster located in the middle of the tree contains samples taken from the 
three youngest (1–2 years old) children of the BF group (16BF, 3BF, and 4BF) and 

two 1-year-old children of the EU group (2EU and 3EU). (D) Relative abundances 
(percentage of sequences) of the four most abundant bacterial phyla in each 
individual among the BF and EU children. Blue area in middle shows abundance 
of Actinobacteria, mainly represented by Bifidobacterium genus, in the five 
youngest EU and BF children. (e) Relative abundance (percentage of sequences) 
of Gram-negative and Gram-positive bacteria in each individual. Different 
distributions of Gram-negative and Gram-positive in the BF and EU populations 
reflect differences in the two most represented phyla, Bacteroidetes and 
Firmicutes. Adapted from De Filippo et al. (2010).
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circulation of primary bile acids, such as cholic acid and 
 chenodeoxycholic acid, which are mostly reabsorbed, although 
a fraction reaches the colon – and this quantity increases on a 
high fat diet (Reddy, 1981). If the colonic microbiota contains 
7α-dehydroxylating bacteria (chiefly clostridial species), the 
primary bile acids are converted to the secondary bile acids, 
namely deoxycholic acid (DCA) and lithocholic acid, which 
are well  recognized co-carcinogens with lithogenic properties 
(Nagengast et al., 1995; Ridlon et al., 2006). Higher fecal and 
plasma levels of DCA have been observed in patients with colon 
cancer (Hori et al., 1998), and our studies have shown that levels 
were considerably higher in healthy, high risk African Americans 
compared to low risk healthy rural Africans (Ou et al., 2011). 
Our recent studies have confirmed that 7α-dehydroxylating 
bacteria are less common in developing countries, where gall-
stones and colon cancer are rare (Wells et al., 2000; O’Keefe 
et al., 2007). Figure A1 displays the relationship between food, 
the enteric microbiota, and the intestinal mucosa in regards to 
macronutrient metabolism and inflammation.

Finally, an abundant supply of colonic carbohydrate residues can 
stimulate the synthesis of vitamins by the resident microbiota. In 
our studies in rural Africans, we measured constituents of colonic 
evacuants following polyethylene glycol (PEG) consumption 
(O’Keefe et al., 2007). As expected, total colonic SCFA and butyrate 
were significantly higher in rural Africans than in Caucasians and 
African Americans. More surprising was that colonic folate and 
biotin content was similar in all three groups despite consider-
ably lower dietary intake in Africans. Considering that content was 
higher than normal dietary intake, this indicated avid net synthesis 
by the microbiota. Folate is synthesized by some strains of spe-
cific microbes, e.g., bifidobacteria, from glycolysis and tricarbo-
xylic acid cycle intermediates (Watson, 2006). Studies have shown 
that increasing colonic carbohydrate, in the form of oligosaccha-
rides or resistant starch, enhances the production rate of folate by 
microbiota (Pompei et al., 2007). The importance of luminal folate 
and biotin is evident in recent studies demonstrating that active 
colonic mucosal transport mechanisms exist for these vitamins 
and that both vitamins play key roles in DNA synthesis and repair 
(O’Keefe et al., 2009).

Inflammatory bowEl dIsEasE
Inflammatory bowel disease comprises two distinct, but over-
lapping, entities – Crohn’s disease and ulcerative colitis. There 
are approximately 1.4 million people living in the United States 
with IBD and most cases are diagnosed in individuals in their 
teens or twenties (Loftus Jr. et al., 2002). The etiology of IBD 
has been described as on-going intestinal mucosal inflammation 
that hinges on microbial or environmental factors and immune 
deficiencies in genetically predisposed individuals (Abraham 
and Cho, 2009). Etiologically, immune system dysfunction, an 
abnormally permeable mucosal barrier, or imbalances in benefi-
cial and harmful species of enteric bacteria are hypothesized as 
contributing to IBD risk. Clinical and epidemiologic data dem-
onstrate that a network of inflammatory components interacts 
to incite IBD (Abt and Artis, 2009). Examples of the influence 
of microbially perpetuated inflammation include the association 
of IL-10 mutations with ulcerative colitis (Franke et al., 2008) 

the colonic myenteric plexus, leading to an increased  proportion 
of cholinergic neurons and accelerated colonic transit (Soret 
et al., 2010).

The negative side of fermentation is the production of hydro-
gen. Excess hydrogen can damage living cells by impairing NAD 
regeneration and inhibiting respiration (Gibson et al., 1993). 
This would not only injure the colonic mucosa (in the extreme 
case causing pneumatosis intestinalis), but would suppress the 
bacterial population size, thereby inhibiting its potential to feed 
itself and the colonic mucosa. The microbiota have evolved to 
circumvent this problem by expanding their diversity to con-
tain organisms – archaeal hydrogenotrophic methanogens (e.g., 
Methanobrevibacter smithii) – specialized to consume hydrogen 
to produce the non-cytotoxic end-product methane (Wolin, 
1976). The net effect is an enormous increase in the generation 
capacity of SCFAs from complex carbohydrates which ensures 
the health of both the microbiota and the colonic epithelium. 
As evidence, we observed that methanogenesis was considerably 
higher in low cancer risk rural Africans consuming high complex 
carbohydrate diets compared to high risk Americans who eat little 
fiber (O’Keefe, 2001).

Industrialized man’s diet has changed from containing mainly 
unprocessed vegetables and grains to favoring meat, animal prod-
ucts, and refined cereals. This evolution reduces the quantity of 
complex carbohydrates or fiber that reaches the colon and alters 
the composition of the residue to contain more sulfur. The altera-
tion in colonic milieu affects the diversity of the microbiota as 
sulfate stimulates the alternative growth of sulfur-reducing bacteria 
(SRBs, e.g., Desulfovibrio vulgaris), another form of hydrogeno-
trophic bacteria, which outcompete methanogens for hydrogen 
under these conditions (Gibson et al., 1988). Unfortunately, the 
metabolic end-product of SRBs, hydrogen sulfide (H

2
S), differs 

from methane, being inflammatory and genotoxic. H
2
S impairs 

cytochrome oxidase, suppresses butyrate utilization, inhibits the 
synthesis of mucus and the methylation of DNA (Gibson et al., 
1993), and is genotoxic via the generation of free radicals (Attene-
Ramos et al., 2007). Christl et al. (1992) demonstrated that 70% of 
British fecal samples contained SRBs and the remainder produced 
methane, whereas the reverse was the case with rural black South 
Africans (Gibson et al., 1988). The link to diet was illustrated by 
further studies showing that a high meat diet increased fecal sulfide 
(Magee et al., 2000), and increasing colonic sulfide suppressed 
methanogenesis (Christl et al., 1992). The clinical significance of 
this finding is exemplified by observing that colonic overgrowth 
with SRBs exists, together with suppression in butyrate production 
in patients with ulcerative colitis (Roediger, 1993), another condi-
tion that increases colon cancer risk. Interestingly, ulcerative colitis 
is also rare in native Africans (O’Keefe et al., 1983). While SRBs 
play an essential role in the external environment by suppressing 
the release of methane gas – one of the “greenhouse” gases – from 
sewers and marshes into the atmosphere (Guisasola et al., 2008), 
it seems that humans, unlike the carnivores, have had insufficient 
exposure time to a westernized diet to evolve mechanisms for pre-
venting H

2
S injury.

A high meat diet is usually associated with elevated fat 
intake, and fat itself has been shown to influence cancer risk 
(Ferguson, 2010). Fat stimulates the synthesis and  enterohepatic 
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and elevated levels of mucosal IgG directed against the normal 
microbiota in IBD patients (Cummings et al., 2003). Additionally, 
mutations in genes involved in bacterial peptidoglycan recogni-
tion (NOD2/CARD15) are known risk factors for Crohn’s disease 
(Abraham and Cho, 2009) and recent studies have shown that 
the microbiota can mediate the effects of these genetic defects 
(Rogler, 2010).

Rates of IBD in modernized nations are rising. Between the 
1950s and 1990s, the incidence of Crohn’s disease nearly tripled in 
Northern Europe (Farrokhyar et al., 2001). The “hygiene hypoth-
esis” has again been indicted (Strachan, 1989). This hypothesis 
posits that the growing reliance on antibiotics and the sometimes 
obsessive focus on maintaining an anti-bacterial environment for 
children may be triggers for IBD on a population level. Studies of 
migrants, for instance, have shown that relocating from a devel-
oping to a developed nation increases the risk of IBD and risk 
is greatest if relocation occurs during infancy or early childhood 
(Bernstein and Shanahan, 2008). Regional differences in rates of 
IBD indicate that its etiology is exceptionally complex, with rates 
in the southern United States being lower than other US regions, 
but those of Olmstead county (Minnesota) being more similar to 
rates in Wales (UK) rather than neighboring Canadian provinces 
(Bernstein et al., 2006; Gunesh et al., 2008). The incidence of IBD 
in African and Asian countries, such as Korea, is only a fraction 
of what it is in the United States and the United Kingdom (Yang 
et al., 2008).

Clinical observations of IBD patients and animal models 
highlight the role of bacteria, viruses, and mycobacteria in intes-
tinal inflammation, although no specific microbe or profile of 
microbes have to date been proven to be causative and it must 
be remembered that the disease itself and its treatment may also 
disturb the microbiota. Murine models of colitis require bacte-
ria for inflammation to occur, while other animal models have 
shown that antibiotics that target anaerobes and Gram-positive 
organisms such as enterococci are protective against ulcerative 
colitis – particularly when they are administered prior to the 
induction of inflammation (Cummings et al., 2003). Antibiotics 
can also be effective treatments for some IBD patients (Elson 
et al., 2005). IL-2 deficient, germ-free rats develop colitis due 
to a non-pathogenic E. coli mpk strain but not with exposure to 
B. vulgatus (Waidmann et al., 2003).

Dysbiosis may also play a role in the etiology and severity of 
IBD, as some patients demonstrate lower enteric bacterial diver-
sity with reduced proportions of butyrate-producers (Frank et al., 
2007) and “protective” bacteria such as lactobacilli and bifidobac-
teria (Eckburg and Relman, 2007). This suggests that the mucosa 
is “at risk,” exemplified by the heightened incidence and severity of 
Clostridium difficile colitis among IBD patients both in hospital-
ized and outpatient settings (Ananthakrishnan et al., 2009; Clayton 
et al., 2009). C. difficile thrives in a dysbiotic, “permissive,” environ-
ment and is suppressed by metabolically active butyrate-producers. 
However, butyrate deficiency may not provide the whole explanation 
as there is evidence for decreased butyrate utilization in ulcerative 
colitis and restoration of butyrate-producers may not reverse the 
inflammation (Thibault et al., 2010). Other microbial products may 
better explain the ability of butyrate-producers contained within 
Clostridium cluster IV and XIVa to decrease intestinal inflammation 

and necrosis in the mouse model (Sokol et al., 2008). Sokol et al. 
(2008) showed that the supernatant of a culture of a member of clus-
ter IV, Faecalibacterium prausnitzii, reduced colitis and mortality in 
the mouse model, even if administered orally or intraperitoneally.

Dietary factors may also influence risk of IBD. A Japanese study 
found a strong correlation between increased intake of animal 
protein and n−6 polyunsaturated fatty acids, and decreased intake 
of n−3 polyunsaturated fatty acids over the course of 20 years with 
Crohn’s disease (Shoda et al., 1996). IBD is also more likely to occur 
following a bout of acute gastroenteritis. Researchers in Spain 
studied 43,013 patients aged 20–74 years who had experienced 
an episode of acute infectious gastroenteritis and found that the 
estimated incidence rate of IBD was 68.4 per 100,000 person-years 
after an episode of gastroenteritis but 29.7 per 100,000 person-years 
in an age-, sex-, and calendar-matched controls (Garcia Rodriguez 
et al., 2006). There was an especially greater risk of developing 
Crohn’s disease during the first year after the infective episode 
(hazard ratio, 6.6; 95% CI, 1.9–22.4) although confounding of 
Crohn’s symptoms with a bout of gastroenteritis might explain this 
observation. IBD studies also note that patients have greater risk 
of developing gastrointestinal infections; an IBD twin study noted 
greater rates of self-reported enteric infections among patients 
than their non-affected twin (Halfvarson et al., 2006). Nonetheless, 
environmental triggers could be as important as genetic ones in 
the etiology of IBD. Studies of monozygotic twins in which only 
one twin is affected with IBD note that the unaffected twin may 
have altered mucosal glycosylation, indicative of “preinflamma-
tory” NFkappaB activation which would be acquired rather than 
inherited (Bodger et al., 2006).

conclusIon
Enteric organisms share a common environment with the mucosa 
and have evolved in tandem to ensure survival of what has been 
described as the “superorganism.” In health, the microbiota pre-
vents overgrowth with pathogens and simultaneously educates the 
gut immune system in immunotolerance and defense. Disturbance 
of the microbiota by diet, hygiene, antibiotics, or disease leads to 
“dysbiosis,” increasing the potential for mucosal injury and inflam-
mation which, with time, may trigger a variety of mucosal and 
systemic diseases depending upon the host’s genetic susceptibility. 
The final result of the soluble protein products of inflammatory 
cells is tissue damage, which can manifest in a variety of disease 
states, including eczema, colonic neoplasia, or IBD. Each of these 
entities requires a number of interactive factors to evolve and a 
prerequisite genetic susceptibility. Reproductive and lifestyle factors 
in developed nations, including advancements in public healthy 
hygiene measures, could help foster an environment that dimin-
ishes the protective effects of the enteric microbiota. Nonetheless, 
we can make a concerted effort to write fewer antibiotic pre-
scriptions for infants, support breastfeeding for new mothers 
and discourage elective C-sections unless conditions necessitate 
them. Additionally, education about protective dietary constitu-
ents should be embraced by clinicians. For instance, encouraging 
patients to include ample fiber or complex carbohydrates in their 
diet, supplementing with probiotics, choosing “healthy” n−3 fats 
over pro-inflammatory n−6 fats, and limiting meat consumption, 
may optimize health and longevity.
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appEndIX
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FiguRe A1 | The relationship between macronutrients and fiber with enteric bacteria and the intestinal mucosa.


