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The detailed behavior of many molecular processes in the cell, such as protein folding, protein 
complex assembly, and gene regulation, transcription and translation, can often be accurately 
captured by stochastic chemical kinetic models. We investigate a novel computational problem 
involving these models – that of finding the most-probable sequence of reactions that connects 
two or more states of the system observed at different times. We describe an efficient method 
for computing the probability of a given reaction sequence, but argue that computing most-
probable reaction sequences is EXPSPACE-hard. We develop exact (exhaustive) and approximate 
algorithms for finding most-probable reaction sequences. We evaluate these methods on test 
problems relating to a recently-proposed stochastic model of folding of the Trp-cage peptide. 
Our results provide new computational tools for analyzing stochastic chemical models, and 
demonstrate their utility in illuminating the behavior of real-world systems.
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Considerable effort has been devoted to various computational 
problems surrounding SCKMs. For example, computing station-
ary distributions and computing time-dependent state probabili-
ties given an initial state (usually via the chemical master equation) 
are two classical and well-studied problems (Van Kampen, 2008). 
The development of correct and efficient methods for simulating 
the dynamics of such models is another major area of research 
(Gibson and Bruck, 2000; Gillespie, 1977). More recently, there 
have been efforts to learn the parameters or even structure of 
SCKMs based on time series data (Henderson et al., 2010; Tian 
et al., 2007). SCKMs, which we define carefully below, can also be 
viewed as a means for describing continuous-time Markov chains 
(Anderson, 1991). Thus, many theoretical results and methods 
from the Markov chain literature also apply to SCKMs, although 
historically the two communities developed largely separately and 
have focused on  different applications.

We focus on a problem that has received very little atten-
tion in the SCKM or continuous-time Markov chain commu-
nities: finding most-probable reaction sequences connecting 
temporally- separated observations of the system. Such problems 
can arise very naturally – for example, as a means of estimat-
ing the behavior of a molecular system between experimental 
observations, or for extracting “prototypical” behaviors con-
necting different endpoints. For discrete-time stochastic mod-
els, such as Markov chains or hidden Markov models, similar 
trajectory inference problems are of enormous importance, with 
applications in areas such as path planning, speech recognition, 
error correction, robot navigation, DNA sequence analysis, user 
categorization, etc. Moreover, efficient dynamic programming 
algorithms can be used to find most-probable system trajec-
tories (Bertsekas, 1995; Rabiner, 1989). For SCKMs, there has 

IntroductIon
Increasingly, we have detailed knowledge about the chemical 
interactions or transformations in which various biomolecules 
participate. For example, high-throughput assays such as ChIP-
chip or ChIP-seq are rapidly identifying the DNA binding sites 
of transcription factors (Horak and Snyder, 2002; Valouev et al., 
2008). Quantitative tandem mass spectrometry allows us to not 
only identify protein complexes, but also to study how they form 
(Gingras et al., 2007; Link et al., 1999). Protein folding simulations 
identify intra-molecular binding events that define different folding 
paths (Snow et al., 2002). Real-time fluorescence microscopy allows 
us to see single molecules moving and interacting (Nie et al., 1995; 
Sekar and Periasamy, 2003).

When studying such interactions at single-cell or even 
 single-molecule levels, mass-action chemical kinetics can be 
either misleading or simply inapplicable. In such cases, dynamics 
are more accurately represented by stochastic chemical kinetic 
models (SCKMs) (Gardiner, 2004; Van Kampen, 2008). These 
models define a chemical system in terms of the types of mol-
ecules or molecular configurations that are possible, the types of 
chemical interactions or transformations that may occur, and the 
state-dependent probabilities with which they occur. The state 
of the chemical system is given by the number of molecules of 
each type that are present, hence is discrete, and the state evolves 
stochastically in continuous time, as described in greater detail 
below. SCKMs are often used, for example, to model stochastic 
thermodynamic switching between different configurations of a 
protein (Marinelli et al., 2009), to model the opening and closing 
of ion channels (Ball and Rice, 1992), and to study the sources 
of noise in gene expression (Swain et al., 2002; Thattai and van 
Oudenaarden, 2001).
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results and dIscussIon
stochastIc chemIcal KInetIc models and Problem statement
An SCKM is a stochastic, continuous-time, discrete-state model 
of the dynamics of a chemical system. It is specified in terms of 
a finite set of chemical reactions that may take place between a 
finite set of chemical species, or types of molecules. In the standard 
interpretation, one assumes that the molecules are contained in a 
bounded, well-mixed, fixed-volume, constant-temperature space 
(Van Kampen, 2008). Extensions to modeling spatial inhomogene-
ity or temporal variation in parameters are possible (Andrews and 
Bray, 2004; Gibson and Bruck, 2000; Shahrezaei et al., 2008), but 
we do not consider them here.

Let there be N chemical species and M chemical reactions that 
may take place between them. Let N = {0, 1, 2,…}. The state of the 
system at any time is given by the number of molecules of each 
species, X = (X

1
,…,X

N
) ∈ NN. Reaction i consumes C

ij
 molecules of 

species j (the reactants) and produces D
ij
 molecules of species j (the 

products). Reaction i can occur in state X only if there are sufficient 
reactants to match those consumed, in which case we say the reac-
tion is valid in that state. If it occurs, then the resulting state is

′ = − + … − +( )X X C D X C Di i N iN iN1 1 1, , .

While the effects of a reaction occurring are deterministic, which 
reactions occur and when they occur are both stochastic. The pro-
pensity of reaction i to occur in state X is

λi i

j

ijj

N

r
X

C
( ) ,X =





=

∏
1  

(1)

where r
i
 is the kinetic rate constant associated to reaction i. Let 

λ(X) = Σ
i
λ

i
(X) be the total propensity of the reactions in state X. 

Then, the time until the next reaction is exponentially distributed 
with parameter λ(X), and, independently of the reaction time, reac-
tion i is the next one to occur with probability λ

i
(X)/λ(X). The only 

exception to these rules is when λ(X) = 0, in which case no reactions 
can occur, and the system stays in state X forever.

In a given amount of time t, there is no strict limit on the number 
of reactions that may occur. However, each possible sequence of 
 reactions occurs with some probability. The computational problem 
we study is: given an initial state X

0
, a final time t > 0, and a non-empty 

target set of states X, find the/a most-probable sequence of valid 
 reactions that brings the system from X

0
 to any state in X in time t. 

In the special case that X = NN, one is simply asking for the most-
probable reaction sequence to occur over time t, starting from X

0
.

the ProbabIlIty of a reactIon sequence Is comPutable In 
PolynomIal tIme
Before we address the problem of finding most-probable reaction 
sequences, we consider how to compute the probability of a particular 
reaction sequence. This problem is more involved than one might 
think, though it can be solved in polynomial time1. Consider a  reaction 

been work on finding most-probable trajectories in the case of 
large system sizes, where the SCKM dynamics can be approxi-
mated by a stochastic differential equation (Dykman et al., 1994; 
Liu, 2008). However, we know of no previous work on finding 
most-probable trajectories in which the continuous-time and 
discrete-state nature of the SCKM is retained – a distinction 
that is crucial in settings where molecule counts are very small, 
including binary presence/absence situations such as the bind-
ing state of a gene’s promoter region or the folding state of an 
individual protein molecule.

We expect that solutions to trajectory inference problems 
for SCKMs will have widespread utility. For example, towards 
the end of this paper, we demonstrate this possibility by ana-
lyzing an SCKM describing the stochastic folding of the Trp-
cage peptide. Other potential applications include finding 
most-probable sequences of transcription factor binding and 
interaction leading to gene activation, sequences of protein 
complex assembly, or sequences of nucleic acid polymer folding. 
Maximum probability reaction sequences are, of course, only 
one aspect of the stochastic  dynamics of a chemical system. 
For systems in which the most-probable trajectory is much 
more probable than the alternatives, or when other probable 
trajectories are “similar” to the most-probable one, then the 
most-probable trajectory is representative of the dynamics as a 
whole. However, if there are many alternative trajectories with 
similar probability, including possibly quite different end states, 
then looking at only the single most-probable trajectory may be 
misleading. There are well-established methods for computing 
transient and stationary probability distributions over the state 
space (Van Kampen, 2008), and for performing stochastic simu-
lations of chemical systems (Gillespie, 1977). These provide 
alternative views of system behavior which are not sensitive 
to issues of the uniqueness or representativeness of maximum 
probability trajectories. However, transient or stationary dis-
tributions do not include trajectory-based  information, such 
as which states follow which other ones. Stochastic simula-
tions, although they include trajectory-based information, 
are based on random sampling rather than exact calculations. 
Thus, maximum probability trajectories provide a novel and 
potentially useful form of information for understanding sto-
chastic chemical systems, and one that is  complementary to 
other computational approaches.

It turns out that trajectory inference for SCKMs is not so read-
ily or elegantly solvable as it is for discrete-time models (Markov 
chains or hidden Markov models) or for stochastic differential 
equation models. We show that the probability of a particular 
trajectory can be evaluated in polynomial time. However, results 
from the study of Petri nets tell us that finding most-probable 
trajectories is at least EXPSPACE-hard in general. Nonetheless, 
we develop a correct exhaustive search method that is sufficient 
to answer questions in a peptide folding domain. We also pro-
pose and evaluate several heuristic optimization strategies on a 
hard optimization instance from the peptide domain. Our work 
thus establishes baseline expectations and algorithms for what we 
believe will turn out to be an important computational problem 
in analyzing SCKMs and in making inferences based on obser-
vational data.

1This is a slight bending of the truth. The computation requires evaluation of the 
exponential function, which, being a transcendental function, can only be done to 
some desired accuracy (Macintyre and Wilkie, 1996; Weispfenning, 2000). If we 
treat exponentiation as a unit-time, or at least poly-time, operation, then the claim 
is true as stated.
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We propose a general, polynomial-time approach to  computing 
the probability based on standard transient-distribution calcu-
lations from the theory of continuous-time Markov chains. As 
shown in Figure 1, our strategy is to imagine a continuous-time 
Markov chain in which each step along the reaction path is one 
state, and the exponential waiting times in each state are the same 
as in the corresponding states of the SCKM. In essence, we strip 
away any alternative reaction paths that might be followed. If 
we assume that the chain starts in state X

0
, then the probability 

that the chain is in state X
K
 at time t is precisely the probability 

that all K reactions of the SCKM complete in time t, but no 
other reactions occur afterward. Let ρ(t) denote the probability 
distribution over states of the continuous-time chain at time 
t. With Q being the matrix shown in Figure 1C, the forward 
Chapman–Kolmogorov equation states that ρ(t) obeys the linear 
differential equation (d/dt)ρ = Qρ. The solution to this equation 
is ρ(t) = eQt ρ(0). The matrix exponential, eQt, can be computed 
in a polynomial number of operations (e.g., by converting Qt to 
Jordan normal form, in which matrix exponentiation is easy). 
Evaluating the next-to-last component of ρ(t) gives us the sec-
ond term in Eq. 2, and thus the entire probability of the reac-
tion sequence, in polynomial time. Such a direct approach to 
computing transient distributions is not generally followed in 
the SCKM literature because an SCKM can in general have a very 
large or even countably infinite number of states, leading to an 
intractably large matrix Q. In the present use, however, we are 
concerned with only the states along a particular reaction path, 
so that the computation is tractable. See Materials and Methods 
for details of our implementation.

fIndIng most-Probable reactIon sequences Is 
comPutatIonally hard
Because the state space, NN, is countably infinite, it should be no 
surprise that it is difficult to find a most-probable reaction sequence 
leading to X. Indeed, results regarding Petri nets tell us that even 
establishing the reachability of X from X

0
 is computationally dif-

ficult. Although they have come into much more general use, 
Petri nets originated as a mean for describing chemical systems 
(Petri and Reisig, 2008). They have states (species) with markings 
(molecule counts) and transformations (reactions) which subtract 

sequence R
1
,…,R

k
 which, from initial state X

0
 produces successive 

states X
1
,…,X

K
. Let t

0
,…,t

K
 be the random waiting times spent in each 

state before the next reaction occurs. The probability of the reaction 
sequence R

1
,…,R

K
 occurring in time t from state X

0
 depends on three 

events: (i) each reaction must be selected among the alternatives, (ii) 
the reactions must complete by time t, and (iii) no reaction can occur 
in state X

K
 until after time t. We can write this as

P R R t

P t

K

R
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K
i
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The first term is easy to compute. The second term concerns 
sums of exponentially distributed random variables – that is, 
hypoexponential distributions. In two special cases, there are sim-
ple analytical formulae for the densities of such sums. When all the 
λ(X

i
) are equal to a common λ, then the sum of the first K times 

follows the Erlang distribution.

l t t t
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If all the λ(X
i
) are distinct, then the sum of the first K times 

follows a different distribution.
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In either case, the desired probability can then be obtained by 
computing the convolution:

P t t t t t

l t t P t t d

K K

K K

t

0 1 0

0 1

0

+ + ≤ + + >( )
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∫
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t and
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where P t tK
t( ) .( )( )> − = − −τ λ τe Xk  However, as we will see, we com-

monly encounter situations in which some of the λ(X
i
) are the 

same and some are different, in which case there is no convenient, 
explicit formula.
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Figure 1 | Outline of proposed strategy for computing the probability that a reaction sequence completes in a given amount of time. (A) The reaction 
sequence picks out a sequence of states starting from X0. (B) A continuous-time Markov chain describing the timing of transitions along that sequence of states. The 
waiting time in state Xi is exponentially distributed with parameter λi = λ(Xi). (C) The rate matrix for the chain shown in (B).
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Now, the best-first search operates as follows. At all times, the 
procedure keeps track of the most-probable reaction sequence R* 
from X

0
 to X found so far, if any. Let P(R*) denote the probability 

of that sequence. If no such solution has been found so far, then 
we write R* = undef. The search is initialized by placing the empty 
reaction sequence, R = ∅, on the priority queue with priority 1. At 
each iteration of the search, the highest-priority reaction sequence 
R is removed from the queue, its priority pri(R) defined by Eq. 6. 
R is processed according to the following steps. (See Materials and 
Methods for more detailed pseudocode).

1. If R* ≠ undef and pri(R) ≤ P(R*), then terminate the search, 
returning R* as the solution.

2. If R results in a state in X, then compute the exact probability 
of that reaction sequence, P(R). If P(R) > P(R*), then set R* 
equal to R.

3. Add every possible single-reaction extension of R to the prio-
rity queue.

If the algorithm terminates in line 1, then the following 
reasoning establishes the correctness of the solution returned. 
First, if the search finds a solution of probability P(R*), and 
the highest-priority partial solution in the queue has priority 
pri(R) < P(R*), then neither that partial solution nor any exten-
sion of it can have probability higher than P(R*). This is true 
because of how we have chosen the priority function. Moreover, 
all other partial solutions in the queue have priority no higher 
than P(R), and so neither they nor any extensions of them can 
have probability higher than P(R*). This establishes the correct-
ness of the algorithm.

Whether or not the algorithm terminates at all is another ques-
tion. If there are infinitely many possible reaction sequences, but 
none leads to the target set X, then the algorithm does not ter-
minate. If X is reachable, then the only way the algorithm can 
fail to terminate is if the search explores arbitrarily long reaction 
sequences without ever triggering the termination condition. From 
Eq. 6, for this to happen requires an infinite reaction sequence 
for which λ λRi+1

( )/ ( )X Xi i  converges rapidly to one and for which 
P(t

0
 + t

1
 + t

2
 +…≤ t) > 0 is not too small. The latter condition 

implies that λ(X
i
) → +∞, which, considering Eq. 1, implies that 

the number of molecules of at least one of the species must escape 
to infinity in finite time. One can write down SCKMs with this 
property. For example, the SCKM with a single species A, and a 
single-reaction rule 2A → 3A, has finite probability of generating 
infinitely many A’s over any finite time interval. Such SCKMs are 
obviously physically impossible, let alone biologically realistic, so 
we do not consider this a great concern. As long as reachability and 
probability one finiteness of all molecular counts over time t can 
be established, both of which are often straightforward in practice, 
then the search will terminate.

an analysIs of trP-cage foldIng
To demonstrate the potential utility of the problem we have formu-
lated, we consider a recently-proposed model of Trp-cage folding 
(Marinelli et al., 2009). Trp-cage is a synthetic peptide of 20 amino 
acids. Marinelli et al. (2009) used molecular dynamics computa-
tions to estimate the major configurations in which the peptide can 

 markings from some states and add markings to other states (con-
sume  reactants, and produce products). An SCKM is a particular 
kind of stochastic Petri net, by virtue of its special probabilistic 
rules for the timing and selection of reactions. The reachability 
question for general Petri nets, which means finding a sequence 
of transformations leading from one marking of the states to a 
different marking of the states, is decidable and EXPSPACE-hard 
(Esparza and Nielsen, 1994). Various restrictions on Petri nets can 
reduce the complexity of reachability questions. For example, if 
markings are restricted to being binary (each molecular species is 
either present or absent), then the problem is PSPACE-complete 
(see Esparza and Nielsen, 1994 for more). These results immediately 
imply similar hardness results for our SCKM problem, because 
finding a most-probable reaction sequence from X

0
 to X requires 

determining whether there is any such reaction sequence at all. 
More formally, for any Petri net reachability problem, we can pose 
the decision problem: consider an SCKM with species and reactions 
corresponding to the states and transitions of the Petri net, let all 
reaction rates be r

i
 = 1, let X

0
 correspond to the initial marking 

of the Petri net, and let X be a singleton set corresponding to the 
final marking of the Petri net; does there exist a sequence of valid 
reactions bringing the SCKM from X

0
 to X with probability ≥0. 

Clearly, reachability is true for the Petri net problem if and only if 
the desired reaction sequence exists for the SCKM (regardless of 
its probability, as long as the sequence is valid).

correct exhaustIve search for the most-Probable reactIon 
sequence
Having established that efficient identification of the most-prob-
able reaction sequence is impossible in general, we next propose 
an exhaustive approach based on best-first search. Our procedure 
is “correct” in the sense that if it terminates and returns a reaction 
sequence, then that sequence is guaranteed to be a maximum prob-
ability sequence. Moreover, we establish conditions, which turn 
out to be readily satisfied in practice, that ensure termination of 
the search procedure. Thus, when these conditions are met, the 
algorithm is guaranteed to terminate and return a maximum prob-
ability reaction sequence.

Recall that the best-first search procedure maintains a priority 
queue of partial solutions to the optimization problem (the search 
frontier), which it repeatedly expands until identifying the opti-
mal solution (Russell and Norvig, 1995). In the present context, a 
partial solution is any valid reaction sequence beginning in state 
X

0
, whether or not a state in the target set X is the result of the 

reaction sequence. We propose to prioritize a reaction sequence 
R = (R

1
,…,R

K
) resulting in state sequence X

0
,…,X

K
 by

pri P t t t
R

i

K

K
i( )

( )

( )
R =







+ + ≤( )+

=

−

−∏
λ

λ
1

0

1

0 1

X

X
i

i

�
 

(6)

where the t
i
 are the random waiting times in the states X

i
. Comparing 

to Eq. 2, we have dropped the requirement that no other reactions 
happen before time t. Indeed, Eq. 6 is the probability that R or any 
extension of that sequence occur in time t. As a consequence, the 
priority assigned to the sequence is an upper bound on the actual 
probability of R occurring (Eq. 2), as well as on the actual prob-
ability of any extension of the sequence.
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210, 787, 2492, 6633, and 15,286 times respectively. The  evaluation 
of solutions or lower bounds is the dominant computational cost 
in the search.

ProbabIlIstIcally correct search by stochastIc samPlIng
Although best-first search can identify optimal solutions, its expo-
nential time complexity encouraged us to look for simpler, heu-
ristic approaches. A simple, non-exhaustive method to search for 
 high-probability reaction sequences is to generate sequences  randomly, 
computing the probability of all those that result in a state in X, and 
keeping track of the best solution found. In particular, we propose 
to generate reaction sequences using Gillespie’s stochastic simulation 
algorithm (Gillespie, 1977), which generates random realizations of 
the stochastic dynamics of an SCKM. From start state X

0
, Gillespie’s 

algorithm repeatedly generates a random waiting time until the next 
reaction and a random next reaction, until reaching the final time t. 
While simple, this approach is not entirely naive. Of all possible reac-
tion sequences that result in a state in X, the one with the highest true 
probability has the greatest chance of being generated. If the highest 
probability reaction sequence has probability p, then the chance that 
this approach fails to find it in K random realizations of the dynamics 
is (1 − p)K. In the limit as K → +∞, the optimal reaction sequence is 
found with probability one, and in particular, the  probability of not 
finding the optimal solution decreases exponentially in the number 
of attempts made. However, the expected number of random samples 
until the optimal sequence is found is 1/p, which can be quite large 
when the most-probable path has low probability.

We tested the Gillespie generate-and-test approach on the Trp-
Cage domain, using the problem with initial state 1, final state 5, 
and final time t = 5000 ns. From the best-first search results, we 
knew the optimal reaction sequence, and we knew its  probability 
p ≈ 1.09 × 10−4. We allowed the Gillespie approach to generate 
K = 15,286 trajectories, equal to the number of trajectories scored or 
lower-bounded by the best-first search. We repeated this  procedure 

reside, and the transitions between those configurations. They pro-
posed the five-state model shown in Figure 2A. This model can be 
analyzed within the framework of SCKMs by equating each possible 
configuration with a distinct chemical species and the transitions 
between them as different chemical reactions.

We used best-first search to compute answers to two questions. 
For the first question, we consider the problem in which the pep-
tide is initially in the folded state, 1, and we ask what is the most-
probable sequence of reactions (or equivalently, configurations of 
the peptide) for varying end times t, allowing for any possible end 
state. The results are shown in Figure 2B. For short end times, the 
peptide stays in the folded state the whole time. However, with 
more time, it becomes more likely for the peptide to switch to state 
2 and then back to the folded state. Interestingly, the intermediate 
possibility of moving to state 2 and still being there at time t is 
not a most-probable outcome for any t. With even more time, the 
peptide is most likely to switch back and forth two or more times 
between state 1 and state 2. Figure 2B also shows the probabilities 
of these individual state sequences as a function of time.

Figure 2C shows the results of our second analysis, in which 
we assumed that the peptide starts in the folded state and ends 
in state 5. At the smallest times, the shortest possible state path, 
1 → 3 → 4 → 5, is most-probable. Unlike the previous example, 
however, this most-probable path has probability approaching zero 
as t → 0, because it is very unlikely for the peptide to go from the 
folded state to the molten globule state in so little time. For larger 
amounts of time, the most-probable path has the peptide flipping 
between states 1 and 2 before following the 3 → 4 → 5 route to 
the molten globule state.

As one would expect for exhaustive search, the time complexity 
increases approximately exponentially with increasing end time 
and/or optimal solution length. For example, for the second prob-
lem, at t = 1000, 2000, 3000, 4000, and 5000 ns, the search either 
evaluates a candidate solution or evaluates the lower bound (Eq. 6) 

CBA

Figure 2 | Most probable reaction sequences for a model of Trp-cage 
folding. (A) High-level model of Trp-cage stochastic folding dynamics from 
Marinelli et al. (2009). Circles correspond to major configurations, with “1” being 
the most stable, folded configuration, and “5” being an un/mis-folded 
configuration that is rarely visited but difficult to escape from. Arcs represent 
possible transitions and are labeled with the expected time for a transition to 

occur – the inverse of the kinetic rate constant ri for that reaction. (B) The 
probability of the most-probable state sequence, and of several specific state 
sequences, as a function of time, assuming the peptide begins in state 1 and 
can end in any state. (C) The probability of the most-probable state sequence, 
and of several specific state sequences, as a function of time, assuming the 
peptide begins in state 1 and ends in state 5.
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100 independent times. The results are shown in Figure 3. Figure 3A 
shows that as more and more trajectories are generated, an increas-
ing fraction of the 100 runs found the optimal solution. By the end, 
78 of the runs had done so, consistent with the predicted fraction 
of 1 − (1 − p)K ≈ 0.81. Figure 3B shows the geometric average of 
the probabilities of the best solutions found by the 100 runs as 
more trajectories are generated. Although it is not obvious from 
the figure, many runs find alternative solutions before identifying 
the optimal one – some only a little worse, and some startlingly 
worse, with probabilities of 10−10 or smaller. After 15,286 trajecto-
ries, the worst of the 100 runs had found a best state sequence of 
1212121212121345, which has probability ≈4.61 × 10−5.

adaPtIve generate-and-test oPtImIzatIon aPProaches
Given the partial success of the Gillespie approach, we decided to try 
more general heuristic optimization approaches, while staying within 
the overall generate-and-test scheme. We supposed that  information 
from previously-evaluated reaction sequences could be used to 
bias the random generation towards better solutions. We tried two 
approaches, Ant Colony Optimization (ACO) (Dorigo et al., 2006) 
and Population-Based Incremental Learning (PBIL) (Baluja, 1994). 
ACO has been applied to protein folding before (Shmygelska and 
Hoos, 2005), albeit in a rather different problem formulation. Both 
approaches employ a matrix to summarize the results of previous 
solution attempts, and to guide the generation of future solutions. 
We tried two different matrix representations. In our SR representa-
tion, the matrix is indexed by states of the system (1–5) and “actions” 
(1–14, corresponding to the 13 reactions and an “end here” action 
which ends a reaction sequence at the current state; this action was 
allowed only in state 5, and of course, other reactions were only 
allowed from their source states). Intuitively, the entries of the matrix 
represent an estimate of how good it is to take the action (extending 
the reaction sequence, or ending it) in the given state. In our number-
of-reactions/reactions (NR) representation, the matrix is indexed 
by the number of reactions so far (0–20) and actions (1–14). Here, 
the entries represent an estimate of how good it is to choose a next 
reaction or end the reaction sequence depending on how long the 

reaction sequence already is. In this representation, if 20 reactions are 
generated without reaching the target state, the reaction sequence is 
discarded. ACO updates its matrix after every attempt at generating a 
solution, whereas PBIL makes a set of attempts and updates its matrix 
based on the best (and optionally worst) solution(s) found in that set. 
We used standard implementations and default parameter settings 
for these algorithms; see Section “Materials and Methods” for details. 
Our goal was not necessarily to obtain the best possible performance, 
but rather to test how well off-the-shelf heuristic approaches would 
perform without any tuning.

The results of 100 independent runs of these two approaches and 
two representations are shown in Figure 3. With the SR represen-
tation, both ACO and PBIL significantly outperform the Gillespie 
approach, both in terms of how many of the runs discovered the 
optimal solution and in mean solution quality. PBIL was especially 
successful. All 100 runs discovered the optimal solution, taking just 
183.14 sampled trajectories on average, and 399 for the worst of the 
100 runs. Although ACO-NR outperformed Gillespie, PBIL-NR did 
rather poorly. Only 22 runs of the latter found the optimal solu-
tion, although the mean solution score rose quickly early on. These 
results show that, at least on this problem, heuristic approaches 
can improve on the performance of both Gillespie and best-first 
search, by using information from earlier trajectories to guide the 
generation of new candidate solutions.

materIals and methods
comPutIng reactIon sequence ProbabIlItIes
As described above, given an SCKM, an initial state X

0
, a reaction 

sequence R
1
,…,R

K
, and a final time t, we compute the probability of 

that reaction sequence as follows. Let X
1
,…,X

K
 be the states that result 

from the corresponding reactions. First, we compute the propensities 
of every reaction i in every state X

j
, 0 ≤ j ≤ K, along the reaction path, 

λ
i
(X

j
). By summing over reactions, this gives us the total propensities 

in each state, λ(X
j
). From these propensities, we straightforwardly 

compute the first term of Eq. 2. For the second term, we form the 
matrix Q, as described in Figure 1. We multiply this by t  element-wise, 
to obtain Qt. We then compute the matrix exponential of this using 

BA

ACO NR ACO NR

Figure 3 | Heuristic optimization results on the peptide problem with 
initial state 1, final state 5, and final time t = 5000 ns. “BFS” refers to 
best-first search, “Gillespie” to the generate-and-test approach using the 
Gillespie algorithm, “ACO” to ant colony optimization, and “PBIL” to population-
based incremental learning. The suffix “-SR” denotes the SR matrix 

representation for ACO or PBIL, whereas “-NR” denotes the number-of-
reactions/reaction matrix representation. (A) The fraction of 100 independent 
runs discovering the optimal solution as a function of the number of sample 
trajectories. (B) The geometric mean, across the 100 runs, of the probabilities of 
the best solutions found as a function of the number of sample trajectories.
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   // Consider all possible extensions of the reaction 

      sequence

   for all RSeqExt in Extensions(RSeq) do
     Priority ← RSPUB(RSeqExt)

     PQ.enqueue(Priority,RSeqExt)

   end for
  end while
  return BestRSeq

Algorithm 2 SRSeq: SR method for generating random sample
   reaction sequences

  RSeq ← ∅
  KeepGoing ← true

  while KeepGoing do
   i ← the state resulting from RSeq

   J ← the set of reactions possible from state i, and

      the "end here" choice, if i is the target set

   Choose j ∈ J with probability proportional to M
ij

   if j = "end here" then
       KeepGoing ← false

   else
       Add j to the end of RSeq

   end if
  end while
  return RSeq

Algorithm 3 NRSeq: NR method for generating random sample
    reaction sequences

  RSeq ← ∅
  KeepGoing ← true

  while KeepGoing do
   i ← the state resulting from RSeq

   J ← the set of reactions possible from state i, and

        the "end here" choice, if i is the target set

   Choose j ∈ J with probability proportional to M
ij

   if j = "end here" or length(Rseq)=20 then
       KeepGoing ← false

   else
       Add j to the end of RSeq

   end if
  end while
  return RSeq

Ant colony optimization updates its matrix M after every target-
reaching reaction sequence is generated and its probability com-
puted. The intuition is that choices leading to higher-probability 
solutions get bigger increments in the M matrix. Pseudocode for 
the algorithm is given below. The outermost loop can be done a 
fixed number of times, or until some other criterion is satisfied. We 
stopped each run when it had either generated 15,286 candidate 
reaction paths or it had found the optimal solution, whichever 
came first. The matrix update depends on a parameter δ, which 
we take to be 0.1.

Algorithm 4 Ant Colony Optimization (ACO)
  BestRSeq ← undef
  BestProb ← 0

  while not <Termination Condition> do
   // Generate a candidate solution

   RSeq ← SRSeq (or NRSeq)

   // If it’s a valid solution, compare with best solution 

the expm function of Matlab. The entry in the first column and 
next-to-last row of this matrix is the probability that all reactions 
complete in time t, but no reaction occurs in state X

K
.

best-fIrst search for a most-Probable reactIon sequence
Suppose we are given an SCKM, an initial state X

0
, and a target set X. 

For our best-first search, we assume access to several helper functions. 
RSP computes the probability of a particular reaction sequence (Eq. 2). 
RSPUB computes Eq. 6, which is an upper bound on the probability of 
a reaction sequence as well as any extension of that reaction sequence. 
EndsInTargetSet tell us whether a given reaction sequence results 
in a state in X. Extensions returns a list of all valid one-reaction 
extensions of a given reaction sequence. We also use a priority queue 
PQ, which supports enqueue, dequeue, and not-empty functions.

ant colony oPtImIzatIon and PoPulatIon-based Incremental 
learnIng detaIls
Both ant colony optimization (ACO) and population-based incre-
mental learning (PBIL) use a non-negative matrix, M, to summarize 
the successes and failures of previous attempts at generating solutions 
to the problem. In the state/reaction (SR) representation, M has 5 
rows (corresponding to the five possible states of the system) and 14 
columns. The columns correspond to extending a partial solution by 
one of the 13 possible reactions, though in any given state only a few 
of these are actually possible, or choosing to end a reaction sequence, 
which is allowed only if the previous reactions have brought us to the 
target state. In the number-of-steps/reaction representation (NR), M 
has 21 rows (corresponding to 0 to 20 reactions having been chosen 
so far), and 14 columns (which have the same meaning as in the SR 
representation). Both ACO and PBIL use M to generate candidate 
solutions in the same way, though the exact method depends on 
whether the SR or NR representation is used, as shown below. Note 
that the NRSeq method does not always succeed in generating a 
reaction path ending at the target state, whereas the SRSeq method 
keeps going until it chooses “end   here” at the target state.

Algorithm 1 Best-first search for optimal reaction sequence
  // Initialization

  RSeq ← ∅
  PQ.enqueue(1,RSeq)

  BestRSeq ← undef
  BestProb ← 0

  // Continue search as long as nodes on priority queue

  while PQ.notempty do
   (Priority,RSeq) ← PQ.dequeue

   // If highest-priority node has worse score than a 

      solution already found, we’re done

   if BestProb ≥ Priority then
      return BestRSeq
   end if
   // If reaction sequence brings us to X, compute
      probability and record, if appropriate

   if EndsInTargetSet(RSeq) then
      Prob ← RSP(RSeq)

      if Prob > BestProb then
         BestProb ← Prob

         BestRSeq ← RSeq

      end if
   end if
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conclusIon
We have proposed a novel computational problem, that of finding 
most-probable reaction sequences for SCKMs, and studied its solu-
tion. We believe that this problem is relevant to molecular biology 
now, and will grow in relevance as we obtain better characteriza-
tions of the stochastic chemical behavior of biomolecules and bio-
molecular networks. We have demonstrated the potential utility of 
the problem formulation by analyzing a stochastic model of peptide 
folding. Many other applications can be envisaged. For example, 
one might, in a similar fashion, study most-probable sequences of 
transcription factor-DNA binding events that lead to gene activa-
tion or most-probable sequences of protein-protein interaction 
events in protein complex assembly.

We showed that computing the probability of an individual 
reaction sequence can be done in polynomial time, but that finding 
most-probable reaction sequences is computationally intractable 
in general. In essence, this is because the reachability question itself 
is hard. It is an open question whether our SCKM problem is any 
harder than the reachability problem. Conversely, if we can estab-
lish reachability by other means, as is often possible in practical 
applications, does the optimization problem become any easier? 
Even in the case that the reachable state space is polynomial in the 
size of the problem description, we have not been able to derive 
an efficient algorithm for finding optimal reaction sequences. The 
complex, non-linear form of the reaction sequence probability (see 
Eq. 4 especially), defies convenient decomposition. The probability 
of a particular reaction sequence is non-monotone in t, while, for 
fixed t, adding extra reactions to the end of a sequence may either 
increase or decrease its probability. We conjecture that finding 
most-probable reaction sequences is intractable even if reachabil-
ity of X is guaranteed and the reachable state space is polynomial 
in size, but this remains to be determined definitively.

We proposed a correct exhaustive search method for finding 
most-probable reaction sequences, and demonstrated its use in ana-
lyzing folding behavior in a high-level model of Trp-Cage molecular 
dynamics. Although the focus of this paper was on establishing basic 
hardness results and a first correct algorithm, we also evaluated sev-
eral heuristic approaches to solving the problem. The results on the 
peptide folding problem indicate that heuristics have the potential to 
outperform exhaustive search, with one form of PBIL doing particu-
larly well. However, no general conclusions can be drawn without a 
more thorough empirical study. We have no doubt that improved 
heuristic solution methods can be developed, and we are actively 
working on doing so. Another important avenue for further research 
is to look at more sophisticated types of queries. For example, one 
may be interested in most-probable folding paths of a protein that 
avoid certain states or interactions – such as mis-folded states that 
may be associated with diseases (Selkoe, 2004) or interactions that 
may be the target of pharmaceutical interventions. More generally, 
one can imagine marrying temporal logics with SCKMs (similar to 
Chabrier-Rivier et al., 2004) to ask a host of important questions 
about the stochastic behavior of biomolecular systems.
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      and update M

   if RSeq results in a state in X then
      Prob ← RSP(RSeq)

      if Prob > BestProb then
         BestProb ← Prob

         BestRSeq ← RSeq

      end if
      for all State- (or step-) reaction pairs (i,j)
          specified by RSeq do
         M

i,j
 ← (1 − δ ) M

i,j
 − 1/log(Prob)

      end for
   end if
  end while
  return BestRSeq

Algorithm 5 Population Based Incremental Learning (PBIL)
  BestRSeq ← undef
  BestProb ← 0

  while not <Termination Condition> do
    Generate PopSize candidate solutions by SRSeq (or 

    NRSeq)

    Compute the probabilities of any valid solutions  

    generated

    if at least one valid solution was generated then
       RSeq ← the highest-probability valid solution

       Prob ← RSP(RSeq)

       // Compare against best solution so far

       if Prob > BestProb then
         BestProb ← Prob

         BestRSeq ← RSeq

       end if
       // Update matrix M

       for all State- (or step-) reaction pairs (i,j)
          specified by RSeq do
          M

i,j
 ← (1 - δ) M

i,j
 + δ

          M
i,j'

  ← (1 - δ)M
i,j'

δ for all j' ≠ j
       end for
       end if
    // "Mutate" the matrix M

      for all State- (or step-) reaction pairs (i,j) do
       With probability ρ, perform the following update,
       where r is a uniform random variable on [0, 1]:

       M
i,j
 ← M

i,j
 + µ × r

    end for
    Normalize rows of M so they sum to one

  end while

Population-based incremental learning takes a more compli-
cated approPBIL takes a more complicated approach to updat-
ing M. It repeatedly generates a batch of PopSize = 10 candidate 
solutions using either the SR or NR method. It checks whether 
each solution is valid in the sense of leading to the target set. 
It finds the best of those, and increases the probabilities of the 
choices that led to it, decreasing the probabilities of the other 
choices. Then, it randomizes the matrix M by a small amount. The 
rows of the matrix M are maintained to sum to one, so that they 
can be interpreted as probabilities. The algorithm depends on a 
learning rate parameter δ = 0.1, a mutation probability ρ = 0.02, 
and a mutation shift μ = 0.05, all recommended default values 
(Baluja, 1994).
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