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The heart is a continually active pulsatile fluid pump. It generates appropriate forces by
precisely timed and spaced engagement of its contractile machinery. Largely, it makes its
own control signals, the most crucial of which are precisely timed and spaced fluxes of
ions across the sarcolemma, achieved by the timely opening and closing of diverse voltage-
gated channels (VGC). VGCs have four voltage sensors around a central ion-selective pore
that opens and closes under the influence of membrane voltage. Operation of any VGC is
secondarily tuned by the mechanical state (i.e., structure) of the bilayer in which it is embed-
ded. Rates of opening and closing, in other words, vary with bilayer structure. Thus, in the
intensely mechanical environment of the myocardium and its vasculature, VGCs kinetics
might be routinely modulated by reversible and irreversible nano-scale changes in bilayer
structure. If subtle bilayer deformations are routine in the pumping heart, VGCs could be
subtly transducing bilayer mechanical signals, thereby tuning cardiac rhythmicity, collec-
tively contributing to mechano-electric feedback. Reversible bilayer deformations would be
expected with changing shear flows and tissue distension, while irreversible bilayer restruc-
turing occurs with ischemia, inflammation, membrane remodeling, etc. I suggest that tools
now available could be deployed to help probe whether/how the inherent mechanosensitiv-
ity ofVGCs – an attribute substantially reflecting the dependence of voltage sensor stability
on bilayer structure – contributes to cardiac rhythmicity. Chief among these tools are volt-
age sensor toxins (whose inhibitory efficacy varies with the mechanical state of bilayer)
and arrhythmia-inducing VGC mutants with distinctive mechano-phenotypes.
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CARDIAC VGCs AND MECHANO-PHYSIOLOGY
Cardiac myocyte voltage-gated channels (VGCs) are abundant,
ubiquitous,and diverse. Multiple isoforms and splice variants from
the Kv, Nav, Cav, and HCN subfamilies work together to shape
and propagate action potentials and to achieve electro-mechanical
coupling. Knowing that VGC operation is inherently (Tabarean
and Morris, 2002) mechanosensitive (MS; Figures 1–3), it is nat-
ural to pose the broad hypothesis that VGCs contribute to physi-
ological and pathological mechano-electric feedback in the heart.

Abbreviations: Cav, voltage-gated calcium channel; CNS, central nervous system;
GsMTx4, an ICK toxin from spider venom; G(V ) and Gmax, conductance, G, as a
function of voltage, V; also, the “activation curve” for a VGC, a sigmoid plot that flat-
tens when activation attains maximal values; HCN and HCN2, hyperpolarization-
activated cyclic-nucleotide gated channel, and HCN isoform number 2; HERG,
“human ether-a-go-go related gene”; a K-permeant VGC variant; ICK, internal
cysteine-knot; INa, sodium current; KCNQ, a Kv sub-group; Kv and Kv1, Kv3,
voltage-gated potassium channel and Kv isoforms number 1 and 3; LQT3, long Q–T
interval syndrome 3; MS, mechanosensitive; Nav and Nav1.X, voltage-gated sodium
channel, with isoforms numbered 1.1, 1.2 etc.; R1623Q and R1626P, mutants of
human Nav1.5 identified in patients with LQT3 syndrome; S4, transmembrane seg-
ment 4, a charged amino acid rich sequence in a voltage sensor; SGTx1, an ICK
voltage sensor toxin from spider venom; Shaker, the nickname of a Kv discovered
in the Drosophila mutant, Shaker; Shoaker-ILT, Shaker with 3 amino acids in S4
mutated; VGC, voltage-gated channel; VsTx1, an ICK voltage sensor toxin from
spider venom.

Box 1 and 2 list classes of situations where VGC mechanosen-
sitivity could potentially come into play in the myocardium.
“VGC mechanosensitivity” is a robust, understandable, but highly
nuanced phenomenon. Consult (Morris, 2011a) together with
(Morris and Laitko, 2005) for a review of VGC mechanosensitivity
as seen by biophysical studies of recombinant and native VGCs; in
essence, voltage sensor repacking underlies VGC mechanosensitiv-
ity, and repacking plays out differently in different VGC species and
different membrane environments. VGCs have complex kinetic
schemes and their mechanosensitivity plays out against those
schemes. Nav current is “inhibited by stretch” if one looks only
on the fact that stretch accelerates fast inactivation. Nav current is
“potentiated by stretch” if one looks only on the fact that stretch
accelerates activation. And so it goes for all the VGCs, all of which
are inherently MS voltage-and-time dependent conductances.

A commonly held view is that the only cardiac“stretch channel”
of real interest is “the” stretch-activated cation channel. This idea
needs to be dispelled before we proceed. First, stretch-activated
cation channels that generate unitary current events occur only
in atrial myocytes. In contrast, ventricular myocytes and sinoa-
trial node cells generate whole cell mechanically sensitive cation
currents, but are devoid of unitary stretch-activated channel activ-
ity (Zeng et al., 2000; Cooper and Kohl, 2005; Morris and Laitko,
2005; Banderali et al., 2010). Second, as with cardiac VGCs (which
are identified entities), it is still unknown whether atrial cation
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BOX 1 | Situations that might REVERSIBLY DEFORM VGC-bearing membranes in the heart

(1) Shear forces associated with blood flow. Endomyocardial cells, valve surfaces, papillary muscle surfaces, and the lumen of the
cardiovascular system would all experience continually changing shear forces.

(2) Stretch/distension/twist of ventricles and atria associated with chamber filling. Sarcoplasmic membranes and, when present,
t-tubular and intercalated disk membranes could all experience localized intermittent deformations. Likewise for the fine
processes of intra-cardiac neurons embedded in the mechanically dynamic ventricular wall.

(3) Strains arising from respiratory motions and other external forces like chest thump.

BOX 2 | Situations that might IRREVERSIBLY RESTRUCTURE VGC-bearing membranes in the heart

Ischemia-reperfusion injury, cardiac inflammatory and sepsis conditions, diverse developmental changes and physiological adjust-
ments, mutations or drugs that affect the composition of membrane lipids, mutations, or drugs that perturb membrane meso-
structures such as caveolae, mutations that perturb normal membrane cortex structure (e.g., dystrophin-related genes), diet changes,
temperature changes, presence of bilayer restructuring agents such as ethanol or of agents that modify cholesterol (packing and
amounts), mechanical trauma severe enough to locally bleb the sarcolemma.

FIGURE 1 |The structural basis of mechanosensitivity in VGCs. (A) Left,
a Kv channel (Long et al., 2007) modeled in closed-like and open-like
conformations and right (for intracellular and extracellular faces of the Kv)
space-filling models of these states (modified from Chanda et al., 2005)
and based on (Long et al., 2007) and refs therein). Due to its cruciform
shape, the VGC’s lateral interactions with bilayer lipids are considerably
more extensive than if the protein were cylindrical (the typical depiction
before high resolution structures were available). Because of the
substantial shape change of the closed-open transition, some of the free
energy of the transition must be attributed to restructuring the lateral
protein-lipid interface. (B) The 4 voltage sensors, whose gating charge is
primarily in transmembrane segment S4 (asterisk), occupy the periphery

(see Long et al., 2007). (C) A single activated-state voltage sensor
domain modeled in lipid bilayer (the two water/lipid interfaces are
depicted) showing that in its activated-state, the sensor locally
deforms/thins the bilayer (modified from Krepkiy et al., 2009).
(D) Bilayers, too have different structures (and hence energetics) that are
dramatic and lipid-dependent, as seen from these lateral pressure profiles
calculated for two simple bilayers, one without, one with cholesterol.
Cholesterol thickens a bilayer (see Z axis) and increases its packing order. For
any shape-changing integral membrane protein (IMP), the lateral pressure
profile is an important component of the energetic landscape (for further
explanation see Morris and Juranka, 2007b; Finol-Urdaneta et al., 2010;
Morris, 2011a,b).

channels (which are unidentified entities) respond to stretch or
shear forces in situ the way they do in vitro (Morris, 2011a, 2011b).
Third, in biophysical tests (Figure 2), recombinant VGCs show
the same level of sensitivity to membrane stretch as endogenous
stretch-activated cation channels (Gu et al., 2001), raising the sim-
ple but telling question: if atrial stretch cation channels feel and
respond to mechanical stimuli in situ (Bode et al., 2001) how
do the more abundant and equally stretch-sensitive VGCs remain
unaffected?

Given that VGCs are molecularly identified and sensitive to
a plethora of reasonably specific inhibitors, what has been the
barrier to establishing if they do or do not contribute “mechano-
modulated” components to myocardial currents? The difficulty
is that the machinery of voltage sensing is the very machinery
responsible for mechanosensitivity in these channels (Laitko and
Morris, 2004; Krepkiy et al., 2009). Could one nevertheless recog-
nize and dissect out MS contributions of VCGs to cardiac currents,
and if so, by what means?
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FIGURE 2 | Use of Xenopus oocyte cell-attached patch recordings

to study MS gating in VGCs. (A) Endogenous “stretch-activated cation
channel” activity and heterologously expressed Kv channels (Shaker,
fast inactivation removed) exhibiting what a naive observer could
reasonably construe to be “stretch-activated K channel” activity. In reality
it is stretch-modulated VGC current (Gu et al., 2001). (B) A Xenopus oocyte,
and a cartoon of pipette aspiration as used for applying membrane stretch
(inset, a cell-attached macropatch; typically, smaller patches are used but
this allows for visualization of non-traumatized plasma membrane; inset is
modified from Shcherbatko et al., 1999). As explained in refs (Morris et al.,
2006) and (Wang et al., 2009), membrane trauma, when it happens, is
submicroscopic. (C) During pipette aspiration, stretch increases membrane
tension, and does so whether aspiration pressure is negative (“suck”) or

positive (“blow”), as seen for two very different VGCs, a Kv3
homotetramer and a Nav1.5 pseudotetramer. Multivalent lanthanide
ions included in the pipette inhibit endogenous stretch channel activity (and,
as expected, right-shift VGC currents by tens of mV). Here, and throughout,
black, red, gray traces signify before, during, after stretch. (Di,ii) Illustrates
“stretch difference currents” obtained from before/during/after records (two
step depolarizations and one ramp depolarization are used here) and
demonstrates that the magnitude of the stretch difference currents increase
with increasing stretch intensity, while (iii) shows that stretch increases
unitary K currents frequency at 0 mV (which corresponds to the reversal
potential of endogenous stretch-activated cation channels). These figures
are modified from (Gu et al., 2001; Laitko et al., 2006; Morris and Juranka,
2007a).

I discuss here two classes of ready-to-deploy molecular tools,
namely voltage sensor toxins and arrhythmia-inducing voltage
sensor mutations, that could help with rigorously posing the ques-
tion: “Does VGC-X pass stretch-modulated current in the working
myocardium?” Mechanical stimulation of soft tissues is notoriously
hard to quantify; for this reason it is particularly tricky to charac-
terize the modulation of VGCs by such stimuli (Bode et al., 2001;
Morris et al., 2006; Huang et al., 2009). Unwavering insistence
on blinded experimental and analysis procedures (see Wan et al.,
1999; Gottlieb et al., 2008) will therefore be needed, plus inclusion
of diverse controls for drug specificity, for the appropriateness of
mechanical and voltage protocols, for time-effects, for reversibil-
ity, and so on. The pay-off will be an understanding of how nature
either uses or, possibly, has managed to entirely bypass the inher-
ent mechanosensitivity of the VGCs operating in the inherently
and relentlessly electro-mechanical milieu of the heart.

BASIC OPERATION OF A VGC WITHOUT/WITH BILAYER
MECHANICAL PERTURBATIONS
Voltage-gated channels are either tetramers (Figure 1A) or
pseudotetramers; evolution has evidently conjoined a voltage
sensor protein (Figure 1C) to a pore-forming protein (Long et al.,

2007), and then in various ways has multiplied this entity four-
fold. The resulting VGCs differ in their selectivity for cations
and their voltage-dependent gating has useful idiosynchrasies;
depolarization promotes opening in Kv, Nav, and Cav channels,
hyperpolarization promotes opening in HCN channels, repolar-
ization lets HERG channels open. The molecular mechanisms by
which voltage sensors respond to changing membrane voltage have
become increasingly clear over the last decade. Gating current
associated with movement of charged residues in the voltage sen-
sor domains (Chanda et al., 2005) can be measured in the different
VGC subtypes. Ionic or gating currents can be recorded while
simultaneously monitoring the intensity of site-directed fluores-
cence signals embedded in or near the voltage sensor machinery
(Mannuzzu et al., 1996; Horne and Fedida, 2009). Upon mem-
brane depolarization, a transmembrane sequence (largely in S4)
bearing positively charged arginine and lysine residues twists and
repacks relative to the rest of the protein. The voltage-dependent
repacking facilitates the opening or closing of various“gates”along
the central ion permeation pathway.

By analogy to a hinged-and-bolted gate, outward movement
the charge associated with S4 would be “bolt sliding.” “Unbolted”
gates are free to open, but do so only under the influence of the
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FIGURE 3 | VGC operation is inherently mechanosensitive (MS). (A)

Nav1.5 channel current accelerates reversibly with stretch; activation and
inactivation rates both speed to the same extent (Gmax has been reached at
−30 mV in this patch, so peak INa is unaffected by stretch, but activation and
fast inactivation both reversibly accelerate; modified from Morris and Juranka,
2007a). (B) a Nav1.5 activation Boltzmann left-shifts reversibly with stretch.
(C) Shaker (Kv1) and Shaker-ILT have different rate-limiting voltage transitions
in the activation pathway. Stretch affects both, but it accelerates the (largely
independent) movement of the Shaker voltage sensors, whereas it
decelerates (the late concerted) movement of the voltage sensor in
Shaker-ILT, as seen here for voltages near the foot and head of the respective
G(V)s; in keeping with the acceleration vs deceleration, stretch left-shifts the
Shaker Boltzmann and right-shifts the Shaker-ILT Boltzmann (not shown; see

Reference Laitko et al., 2006). (D) In Shaker 5aa, voltage-dependent
gating is two orders of magnitude slower than in Shaker (compare to C;
note the different time scales), but since an independent (though sluggish)
voltage-dependent transition is rate-limiting for activation, this mutant
channel behaves like its “WT” counterpart (see Laitko and Morris, 2004).
(E) HCN2 channels open with hyperpolarization, they close with
depolarization, they have multiple open states and they exhibit pronounced
hysteresis. Here HCN2 currents are studied by (i) ramp clamp, (ii) passive
action potential clamp and (iii) classic step clamp (see Lin et al., 2007) for
details. Upon a step depolarization (iii) from −140 to −40 mV, stretch
accelerates channel closure. Gating currents show this transition to be
analogous to the rate-limiting depolarization-induced “outward” voltage
sensor motion in Kv Shaker.

ever-present jostling of thermal energy that makes them “swing
open on their hinges.” The waiting (for appropriate random jos-
tles) makes the overall gating process stochastic. VGCs, in other
words, are voltage-and-time dependent devices and “VGC kinetic”
parameters quantitatively summarize the interplay of electric
and thermal energy. Even if membrane voltage changes instan-
taneously, as occurs in ideal voltage clamp, the individual VGCs
in a population open with randomly distributed latencies or wait
times. The resulting I (V, t ) (“macroscopic” if from many chan-
nels simultaneously or “ensemble” if averaged from one channel
tested multiple times) has a “characteristic time” for the opening
and closing transitions at that voltage. The voltage at which being
open or closed is equally likely is the midpoint (V 0.5) of a voltage-
dependent sigmoid curve, its“Boltzmann.”If some factor – a drug,
an elevated temperature, a membrane fluidizer, hyperbaric pres-
sures, membrane stretch – alters the characteristic waiting times
and/or the V 0.5, we say the VGC’s kinetics are modulated. In Kv1
and Nav channels, membrane stretch decreases the wait times
without changing the voltage dependence (slope of the Boltzmann;
Tabarean and Morris, 2002; Laitko and Morris, 2004; Banderali
et al., 2010). In terms of our metaphor, stretch “lubricates the bolt”
but makes it no smaller or bigger. In biophysical terms, stretch low-
ers the free energy barrier for voltage sensor movement without
altering the quantity of gating charge that moves. A hyperpolar-
izing (“left”) shift of the Boltzmann means that voltage sensors
move more easily, a depolarizing (“right”) shift means they move
with greater difficulty.

Kv3 and Cav channel responses to stretch show the same-fold
increase in current at all voltages; their activation rates are unaf-
fected and they show no Boltzmann shifts with stretch (Morris and
Laitko, 2005; Laitko et al., 2006). Evidently, for these channels, the
rate-limiting transition in the voltage-dependent activation path
is not a stretch-sensitive transition (Laitko et al., 2006; Morris,
2011a). Cav and Kv3 channels behave as if stretch“promotes”chan-
nels into near-open states (probably by making an outward voltage
sensor movement easier), so that when a slower voltage-dependent
(and stretch-insensitive) transition occurs, more than the usual
number of channels open (Figures 2C,D). Identifying the rate-
limiting but stretch-insensitive transition in these channels would
clearly be of interest for selective drug design.

Various physical and chemical deformations of the bilayer
(Phillips et al., 2009) can modulate gating in VGCs (Figures 1C,D).
Bilayer deformation could result from membrane stretch (or
imposed change in local curvature), from hyperbaric pressure,
from addition of a bilayer structure-distorting chemical reagent,
from developmental processes that alter the bilayer’s cholesterol,
fatty acid, sphingomyelin content, etc. Elastic membrane stretch
thins and disorders the bilayer. Hyperbaric pressure, by increasing
packing order, thickens and rigidifies it. Clearly, elastic membrane
stretch can modulate VGC kinetics in biophysical recording con-
texts (Figures 2 and 3) for recombinant channels (see also Morris
and Laitko, 2005; Morris, 2011a) but it is now up to cardiac phys-
iologists to determine if stretch (e.g., Zabel et al., 1996) and other
bilayer deformations modulate VGCs in situ.
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Squid axon sodium and potassium currents have been voltage-
clamped at hyperbaric pressures equivalent to the ocean depths
and, of course, at atmospheric pressure (see Morris and Juranka,
2007a). The outcome? When large hyperbaric pressures are applied
reversibly, both gating and ionic currents slow reversibly. Consider
the giant squid, the diving whale, the elephant seal two, or more
kilometers deep in the ocean. All their bilayers are thicker, more
densely packed at depth than at the ocean surface. As they rise
toward the surface, the bilayers again become thinner, more fluid.
Collectively, the VGCs in these creatures unavoidably experience
and accommodate bilayer mechanical modulations. VGCs have
been at work in membranes since a time when all creatures were
sea creatures. In terrestrial mammals such as ourselves, have VGCs
learned to ignore the information available in bilayer structure?
Probably not.

BOTH ELASTIC AND PLASTIC CHANGES IN BILAYER
STRUCTURE AFFECT VGC KINETICS
Plasma membranes are principally defined by their lipid bilayer
but also include intracellular and extracellular proteins (mem-
brane skeleton and adherent extracellular matrix respectively). To
a first approximation, our interest here is bilayer structure which
is the molecular determinant of bilayer mechanics (Phillips et al.,
2009) but with the proviso that bilayer structure and long-range
organization are powerfully influenced by the state of the normally
adherent and contractile actomyosin–spectrin based membrane
cortex, by the extracellular matrix and by the membrane’s integral
and peripheral membrane proteins (Charras and Paluch, 2008;
Phillips et al., 2009; Lingwood and Simons, 2010; Morris, 2011b).

A VGC is reversibly “stretch-modulated” if it exhibits reversible
changes in voltage-dependent current when subjected to reversible
(elastic) membrane stretch. But membrane stretch can also impose
irreversible (plastic) changes in membrane structure (Morris
and Juranka, 2007b). Not surprisingly therefore, many chan-
nels, including VGCs, exhibit irreversible and reversible responses
to experimental membrane stretch (Morris and Juranka, 2007b;

Wang et al., 2009). In essence, abrupt irreversible changes reflect
membrane trauma (see cartoon, Figure 4), typically due to mem-
brane blebbing, the dissociation of bilayer from adherent mem-
brane cortex proteins (Tabarean et al., 1999; Wang et al., 2009;
Schmidt and MacKinnon, 2008). Irreversible changes in bilayer
lipid composition/organization also occur physiologically, devel-
opmentally, with diet, and with various pathologies and these too
modify VGC kinetics (e.g., Morris and Juranka, 2007b; Ben-Zeev
et al., 2010).

Though reversible deformations of lipid bilayers are necessarily
small (e.g., bilayers can stretch only ∼3–4% before rupture; Morris
and Homann, 2001), reversible stretch modulation of VGC current
can be dramatic, as in Figure 2. As a biological gauge, it is interest-
ing to compare VGC mechanosensitivity (as in Figures 2 and 3) to
that of MS prokaryotic channels which act as molecular osmotic
emergency valves and open only at near-lytic membrane tensions.
Walled prokaryotes, however, also have VGCs (e.g., Finol-Urdaneta
et al., 2010; Irie et al., 2010). If voltage sensors first appeared in
such cells, then they originated and evolved in high turgor cells,
i.e., in cells where high curvature membranes subject to bilayer
deformations and tension fluctuations were common. Prokary-
ote VGCs likely exhibit MS modulation more frequently than
osmovalves exhibit stretch-activation (see Morris, 2002; Boucher
et al., 2009). In animal cells, membrane tensions are well below
the near-lytic range (Morris and Homann, 2001). Myocardial t-
tubules and intra-cardiac neuron transmural neurites might well
experience deformations, tension changes, osmotic dilations, and
other mechanical perturbations (Dyachenko et al., 2008). Virtu-
ally nothing is known about this or about regular or intermittent
bilayer deformation intensities in “flat” regions of membrane (sar-
colemma proper, intercalated disk membrane) or in caveolin or
amphiphysin-rich regions. Inherent biophysical mechanosensitiv-
ity is not sufficient evidence to say that VGCs are physiological
mechano-transducers; experiments with native channels in their
normal working environments are needed to determine if nature
exploits the inherent mechanosensitivity of VGCs to monitor the

FIGURE 4 | Membrane trauma can irreversibly left-shift Nav channel

operation, producing “leaky” Nav channels, probably because the

resident bilayer gets more bleb-like, i.e., thinner, more disordered.

(A) This phenomenon was first discovered from accidental damage to
membranes while making gigaohm seals on oocytes. Here, Nav1.4
(without the auxiliary beta subunit) kinetics recorded in 4 patches from
the same oocyte look radically different depending on the extent to
which the membrane was mechanically traumatized during seal
formation. Modifed from (Tabarean et al., 1999). (B) Cartoon suggesting
that bleb formation leaves channels (dark ovals) in a bilayer environment

that is on average thinner and (not specifically depicted but indicated
by the lighter color) more disordered/fluid/symmetric-across-leaflets.
In oocytes, Nav1.5 channels behave as if they are trafficked to
disordered membrane (Morris and Juranka, 2007a; Wang et al., 2009;
Banderali et al., 2010) and so do not show irreversible kinetic changes with
stretch, but in HEK cells, stretch is largely traumatic for Nav1.5 channels
(Beyder et al., 2010). (C) The trauma phenomenon also occurs for Nav1.6 in
oocyte membranes and is summarized by coupled left-shift of the
activation and steady-state inactivation curves as shown here (see Wang
et al., 2009).
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mechanical (i.e., bilayer mechanical) status of various myocardial
membranes, or alternatively, if nature has learned to circumvent
this characteristic of VGCs.

MOLECULAR PHARMACOLOGY TOOLS - VOLTAGE SENSOR
TOXINS AND THEIR D-ENANTIOMERS
Neither gadolinium nor the peptide GsMTx4 (a powerful inhibitor
of stretch-induced atrial fibrillation) should be called “specific
MS cation channel inhibitors.” Doing so has muddied the waters
vis à vis both MS cation channels and the mechanosensitivity
of VGCs (see Lin et al., 2007). Lanthanides (gadolinium, lan-
thanum) do indeed inhibit MS cation channels, but are entirely
unsuitable in cell physiological settings since any lanthanide ions
that manage to remain in solution (Caldwell et al., 1998; Morris
et al., 2006) also modify gating of VGCs (Gu et al., 2001). That
gadolinium-modified ventricular myocyte INa could be miscon-
strued as gadolinium-inhibition of “MS cation channels” has been
meticulously demonstrated (Li and Baumgarten, 2001).

Whereas any physiological story that relies on gadolinium
blockade of MS cation channels should be ignored, the actions
of GsMTx4, an amphiphilic tarantula venom internal cysteine-
knot (ICK) toxin, GsMTx4 (Suchyna et al., 2000; Jung et al., 2005)
should be examined afresh in physiological settings. Along with
similarly structured toxins that are well-established voltage sen-
sor toxins, it offers fascinating promise as an in situ indicator
of VGC involvement in mechano-electric feedback. GsMTx4 (see
Figure 5) piques interest for at least three reasons: (1) it is an
established inhibitor of cardiac phenomena relevant to mechano-
electric feedback, since it powerfully inhibits, at biologically rele-
vant concentrations, stretch-induced atrial fibrillation and swell-
induced ventricular cation current (Suchyna et al., 2000; Bode
et al., 2001), (2) by evolutionary pedigree, the tarantula venom

peptide, GsMTx4, looks indistinguishable from known members
the tarantula venom’s cabal of voltage sensor toxins, making it
plausible that, like those toxins, it binds to sensors on one or
several VGCs (Jung et al., 2005), (3) VsTx1, a related tarantula
venom peptide, is a voltage sensor toxin and is demonstrably MS
in its efficacy (Schmidt and MacKinnon, 2008) making it rea-
sonable to anticipate that GsMTx4 might also be a MS voltage
sensor toxin.

Voltage-gated channel mechanosensitivity is linked, in all like-
lihood, to the supposition, now experimentally justified (Krep-
kiy et al., 2009), that transition from resting to active states
requires a voltage sensor to locally thin (i.e., deform) the bilayer
(see Figure 1C). Reciprocally, therefore, any external agency that
thins the bilayer will favor active states. By steric and thermo-
dynamic arguments, it would be surprising if bilayer-resident
amphiphilic voltage sensor toxins bound to their targets in an
entirely mechano-in sensitive fashion. And indeed, empirical evi-
dence supports this logic: simple but elegant experiments with
VSTx1, a voltage sensor toxin for select Kv channels, show that
inhibitory efficacy depends dramatically on the mechanical state
of the bilayer (Schmidt and MacKinnon, 2008; see Figure 5).
Moreover, efficacy and binding of this and of similar voltage sen-
sor toxins to their Kv voltage sensor targets depends on bilayer
lipid-species (Milescu et al., 2007, 2009; Schmidt and MacKin-
non, 2008), in other words toxin-sensor actions depend on bilayer
structure.

As implied above, I suspect that GsMTx4, like VSTx1, is a
voltage sensor toxin whose actions are sensitive to the mechan-
ical state of the bilayer. If so, the VGC target of GSMTx4 –
cation-permeant “pacemaker channels” possibly? – have yet to be
identified (Lin et al., 2007; Morris, 2011a). The argument to date
has been, however, that this toxin evolved as a specific inhibitor

FIGURE 5 | Are there more MS voltage sensor toxins out there?

(A) A collection of ICK peptides purified from tarantula venom
(modified from Jung et al., 2005). The top 3 are established voltage
sensor toxins, and the bottom one, GsMTx4, might be too (micromolar
level GsMTx4 inhibits unidentified MS cation channels in astrocytes, but
that is not the effect of interest here. GsMTx4 has powerful cardiac actions
at <200 nm; Bode et al., 2001). (B) The “silver bullet scenario” as described in
the text. VsTx1 action is mechanosensitive in that it inhibits this species of
Kv channel (right-shifts activation; ii → iii) only when bilayer organization has
been disrupted. The irreversible left-shift (i → ii) upon excision/trauma is as
seen for some Nav channels (Figure 4), and like the advent of toxin efficacy,

is ascribed to, (C) the difference in bilayer mechanics between the two
recording conditions. (D) how GsMTx4 might act as a stretch-sensitive
toxin for HCN channel voltage sensors. The scenario at left mirrors known
behavior of VsTx1 and SGTx on their targets (Kv voltage sensors) and
that at right suggests how membrane stretch might increase the inhibitory
efficacy of GsMtx4. It is also possible to imagine membrane deformations
that decreased the affinity of amphiphilic voltage sensor toxins for their
targets. HCN channels are mentioned here, but the idea would apply
for any voltage sensor, even for stand-alone ones (see Figure 1C;
proton channels, voltage sensitive phosphatases as described, e.g., in Krepkiy
et al., 2009).

Frontiers in Physiology | Cardiac Electrophysiology May 2011 | Volume 2 | Article 25 | 6

http://www.frontiersin.org/cardiac_electrophysiology/archive
http://www.frontiersin.org/cardiac_electrophysiology/


Morris Voltage-gated channels are inherently mechanosensitive – does the heart care?

of (non-VGC) MS cation channels (Suchyna et al., 2004) acting
not as a specific ligand but as an amphiphilic perturbor of bilayer
structure. This is thought to modulate MS transitions in uniden-
tified voltage-insensitive cation channels. If, instead, the dramatic
inhibitory effect reported for 170 nM GsMTx4 on atrial stretch-
induced fibrillation (Bode et al., 2001) involves specific binding
to voltage sensor, it can be expected to bind its target sensor(s)
with greater avidity in some bilayer mechanical states than oth-
ers. It nevertheless remains entirely unclear by what mechanism
GsMTx4 in the submicromolar range inhibits stretch-induced
atrial fibrillation (Bode et al., 2001) and swell-induced ventricular
(inwardly rectifying) I cation (Suchyna et al., 2000). The possibility
that specific binding of GsMTx4 to some species of cardiomyocyte
VGC(s) is sensitive to bilayer stretch urgently needs to be tested.
If GsMTx4 is behaving as a “stretch-sensitive voltage sensor toxin”
(Figure 5) in the rabbit heart experiments mentioned, the biolog-
ical implications are exciting. It would signify, for example, that
bilayers of some of the VGC-bearing cardiomyocyte membranes
of the atrium are deformed in a physiologically significant fashion
by whole-tissue stretch.

Consideration of available data points to pacemaker cation
channels as plausible VGC targets for GsMTx4. At 400 nM,
GsMTx4 abolishes an unidentified swell-induced inwardly rectify-
ing cation current (ventricular myocytes), and at 170 nM GsMTx4
it strongly inhibits stretch-induced atrial fibrillation. Atrial and
ventricular myocytes and sinoatrial node cells all express several
isoforms of HCN-type “pacemaker” channels, and this subfamily
of VGCs precisely fits the description of an inwardly rectifying
MS/swell-induced cation current” (with the caveat that only the
HCN2 isoform has been tested; Calloe et al., 2005; Lin et al.,
2007). If the idea embodied in Figure 5D (stretch-sensitive vs
toxin) is broadly valid, then we have in hand a class of VGC-
specific, discretely modifiable molecular tools for exploring the
role of VGCs in cardiac mechano-electric feedback. Note that
even if submicromolar GsMTx4 is found to modulate native
HCN channels in stretched membranes, it might also act on
additional VGC species in native membranes. Clearly, it will be
important to test a range of different native VGCs for MS actions
of GsMTx4.

HCN channel kinetics are challenging. Their hysteresis would
make it difficult to seek evidence of reversible MS efficacy in a
voltage sensor toxin. But the approach used by Schmidt and MacK-
innon (2008) identifies irreversible MS changes in efficacy and this
could make studies of HCN channel/toxin/stretch tractable. What
should be sought? Large irreversible toxin-induced right-shifts in
traumatized membrane patches, contrasting to “no-shift” in intact
membrane. Use of sawtooth ramps at two speeds would give use-
ful outputs (see Figure 2). GsMTx4 efficacy (or lack thereof)
on HCN isoforms 1–4 would be determined by two microelec-
trode clamp (= intact membrane) then compared to efficacy in
excised outside-out (= traumatized membrane) oocyte patches
(refer to prototype in Figure 5; see figure legend). Other VGCs
could also, of course, be tested with GsMTx4. The protocol needed
to look for MS vs Toxins comes down to this: identical VGC
protein, identical bilayer lipids, lipids structured differently (= dif-
ferent bilayer mechanics) in intact and traumatized (disorganized)
membranes.

EXPLOITING THE GsMTx4 SENSITIVITY OF
STRETCH-INDUCED FIBRILLATION
Stretch-arrhythmia experiments like those done by Bode et al.
(2001) with GsMTx4 should be undertaken to explore the in situ
efficacy of a known MS voltage sensitive toxin. Does VSTx1
action on cardiac Kv channels change with tissue stretch? Response
“polarity” (i.e., more vs less atrial arrhythmia) would depend on
whether toxin binding increased or decreased with stretch. Either
would indicate that tissue stretch was deforming cardiomyocyte
bilayers that held Kv channels.

A program of blinded stretch-induced atrial fibrillation experi-
ments involving 3–4 tarantula venom ICK peptides is needed. The
peptides should include 2–3 well-characterized voltage sensor tox-
ins (e.g., VSTx1) plus GsMTx4, all at, say, 200 nM, a concentration
slightly above 170 nM used to such effect by Bode et al. (2001) in
their atrial stretch experiments. Fully blinded no-voltage-sensor-
toxin controls are not a problem; the d-amino acid enantiomer
peptides of SGTx1 (Milescu et al., 2007) and of GsMTx4 (Suchyna
et al., 2004; again, at 200 nM) would be ideal. d-enantiomer SGTx1
accumulates in the bilayer as effectively as its natural (WT) coun-
terpart, but unlike the WT does not bind the Kv voltage sensor
or right-shift Kv activation (Milescu et al., 2007). d-enantiomer
GsMTx4 also would not act as voltage sensor toxin (one pre-
sumes!). What is claimed (Suchyna et al., 2004), however, is that
d-enantiomer GsMTx4 inhibits stretch-activated cation channels
as strongly as l-enantiomer described would rectify a major and
surprising oversight: there has never been a test of prediction that
l-enantiomer and d-enantiomers of GsMTx4 (at 170 nM) are equi-
effective (Suchyna et al., 2004) as inhibitors of stretch-induced
atrial fibrillation. If, as I suspect, the published 170 nM action of
the l-enantiomer (Bode et al., 2001) reflects a stretch-sensitive volt-
age sensor toxin action (on a to-be-determinedVGC), then 200 nm
d-enantiomer GsMTx4 will not be effective as an inhibitor. The
use of blinded procedures and double controls will obviate false
negative problems.

CARDIAC ARRHYTHMIAS IN ISCHEMIA – TARGETING THE
“LEAKY” VGCs OF DAMAGED BILAYER
Mechanically induced irreversible changes (i.e., plastic change) in
membrane nano-structure typically takes the form of blebbing –
de-adhesion of membrane cortex from the bilayer, accompanied
by loss of lipid order, including the loss of leaflet asymmetry. The
operation of many VGCs, including Nav channels (Shcherbatko
et al., 1999; Tabarean et al., 1999; Wang et al., 2009; Beyder et al.,
2010), becomes irreversibly left-shifted in the mechanically dis-
turbed bilayers of blebbed membrane. A key consequence: VGCs
are inappropriately active near the resting potential. Kinetically
speaking, the channels“leak.”For this reason, channels in mechan-
ically or ischemically blebbed sarcolemma or in dilated t-tubule
membranes would become foci of pathological channel activity
(Wang et al., 2009).

Re-imagine the scenario of Figure 5 (VsTx1, Kv, intact vs
blebbed bilayer; Schmidt and MacKinnon, 2008) in a clinical con-
text. The toxin is a “silver bullet” able to hit only “the bad guys” –
the left-shifted, and hence leaky, channels in damaged bilayer. This
scenario deserves attention. Wherever in cardiomyocytes, adhe-
sions between bilayer and cortical cytoskeleton fail, membrane
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blebs form (in CNS subjected to traumatic brain injury, such bleb-
bing occurs at Nav1.6-rich nodes of Ranvier (Wang et al., 2009).
Ischemic and traumatic blebs with Nav channels are likely foci
for ectopic excitation. Blebs are patches of disordered fluidized
membrane which, for crawling motility and mitosis (Stewart et al.,
2011) form reversibly, but which in trauma, ischemia, inflamma-
tion, apoptosis form irreversibly. Returning to the VSTx/Kv story,
the “silver bullet” status of the toxin becomes possible because of
the dramatically different bilayer structures in intact vs trauma-
tized membranes. “[O]ne of the mechanisms by which riluzole
exerts its neuroprotective action is to preferentially block the inac-
tivated sodium channel of damaged or depolarized neurons under
ischemic conditions,” Narahashi and colleagues concluded some
years ago (Song et al., 1997), before it was understood that altered
bilayer mechanics might underlie some of the differential action
they reported. An important question that should be addressed
is whether clinically important lipophilic Nav inhibitors (includ-
ing ranolazine) are particularly useful post-ischemia (Dhalla et al.,
2009) because they can preferentially target left-shifted (leaky)
Navs in blebbed bilayer. If so, an elevated solubility for the drug
in “fluidized” (blebbed) vs intact membrane might be partially
responsible. Another possibility is that drug binding to slow-
inactivated states is more stable in blebbed vs intact membrane.
These possibilities are in no way mutually exclusive.

Since VGC gating and toxin binding to voltage sensors are both
sensitive to bilayer conditions, differential efficacy is also likely
for lipophilic reagents in different bilayer mechanical environ-
ments (see discussion in Reference Finol-Urdaneta et al., 2010).
Structural tuning (which could be tested with a Schmidt and
MacKinnon, 2008 approach) to amplify differential efficacy in
traumatized vs intact membranes might bring lipophilic VGC
drugs closer to “silver bullet” status.

NEEDED FOR MECHANO-ELECTRIC FEEDBACK STUDIES: A
NAV1.5 “R1626P” MOUSE
Voltage sensor mechanosensitivity renders all VGCs MS and makes
it difficult to determine if VGCs contribute to the mechano-
electrical life of the working myocardium. VGC-specific voltage
sensor toxins could be one good approach. Another would be
to exploit arrhythmia-associated disease mutants of VGCs that,
at a biophysical level, show abnormal and distinctive mechano-
phenotypes. While mechanical stimuli were applied (Huang et al.,
2009) at varying frequencies and phases of the cardiac cycle,
cardio-outputs could be followed in an animal (mouse, pre-
sumably) expressing the mutant VGC. Comparison of frequency
domain data sets should help establish whether the WT vs mutant
mechano-phenotypes affect stretch-arrhythmias. The power of
such information is illustrated by a non-invasive experimental
approach used in humans to seek evidence of cardiac mechano-
electric feedback. Patients with atrial fibrillation and a variable
secondary modulation (flutter) of their elevated beat frequency
were monitored (electrocardiograms and respiratory motions)
during metronomic breathing at various rates (Masé et al., 2008).
Rhythmicity patterns were consistent with expectation from a
coupled oscillator model (interacting cardiac and respiratory

rhythms) of mechano-electric feedback. Mechano-electric feed-
back experiments with small mammals are challenging but doable
(Huang et al., 2009), and provide diverse opportunities to probe
with drugs (Fabritz, 2007), with rhythm resetting procedures, and
so on (Morris, 2011a).

In a case of LQT1 syndrome in which the proband (and other
family members) presented with late onset hypertension-induced
atrial fibrillation, it has been suggested that the mutant KCNQ1
(delayed rectifier) channel is responsible for dangerously dys-
functional mechano-electric feedback (Otway et al., 2007). The
mutation, in a region responsible for channel/actin interactions,
renders the channel overly sensitive to hyposmotic swelling. It
needs to be determined, however, whether the mutant KCNQ1
responses to swelling are (as implied; Otway et al., 2007) indeed
due to membrane “stretch” (Calloe et al., 2005; Hammami et al.,
2009).

Substandard mechano-electric feedback might add insult to
injury in large enough measure to trigger potentially lethal
arrhythmias in some LQT3 syndrome patients carrying Nav1.5
channel mutations. Of particular interest are mutations associ-
ated with sudden infant death syndrome (Banderali et al., 2010)
and sudden unexplained nocturnal death syndrome. The latter
is strongly associated in otherwise healthy adults with both sud-
den respiratory disturbances (Cheng et al., 2010) and with acute
inflammatory conditions of the cardiovascular system, conditions
that are blebbogenic (Nakajima et al., 2010). Whether large and
sudden respiratory motions such as gasps, sneezes, snorts etc.,
or sudden respiratory rate changes can directly – that is, via
mechano-electric feedback (Masé et al., 2008) – impact myocardial
rhythmicity in humans needs further study.

Nav1.5 channel LQT3 mutations are pro-arrhythmic because
they impair fast inactivation, engendering long Q–T intervals and
fostering sudden re-entrant tachycardias when heart rate is low, as
during sleep. We studied currents in two voltage sensor mutants
involving domain-4 arginines residues (Banderali et al., 2010; the
domain-4 voltage sensor governs the voltage dependence of inac-
tivation; Figure 6). Both are associated with LQT3 syndrome:
R1626P (identified and mexiletine-treated in a young adult; Ruan
et al., 2007) and R1623Q (identified in a case of sudden infant
death; see Banderali et al., 2010). Both showed the same abnormal
mechano-phenotype: their inactivation rates, which have reduced
or absent sensitivity to voltage, show significantly reduced sensi-
tivity to stretch (Banderali et al., 2010; Figure 6B). The overall
consequence is that in the mutants stretch does not speed up
“INa turn off” as effectively as in WT. In situ, therefore, stretch
would therefore be expected to be excessively pro-arrhythmic for
the LQT3 mutants. I have suggested a transgenic mouse equiv-
alent of human Nav1.5-R1626P as a good candidate for probing
VGC involvement in mechano-electric feedback (see Morris,2011a
and Figure 6 legend). An “R1626P” mouse might help resolve
the issue of why LQT3 mutations are suddenly lethal at time-X
on night-Z as opposed to nights A-to-W. Even if the answer is
“chaos” (Glass, 2009), chaotic storm systems are famously sus-
ceptible to being triggered by the beat of a butterfly wing. In
sudden cardiac death, are minor stretch effects the butterfly kiss
of death?
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FIGURE 6 |Two LQT3 channels: impaired domain-4 voltage sensors,

impaired mechanosensitivity. (A) Stretch difference currents for WT Nav1.5
channels (see Figure 3A for INa before, during, after stretch; Morris and
Juranka, 2007a). Because INa is inward over the entire physiological range, and
because Nav channels activate then rapidly inactivate, stretch difference
currents for Nav channels are more complex than stretch difference currents
for Kv channels (Figure 2D). For Nav rule is: downward = more INa during
stretch, upward = less INa during stretch. Based on the Nav stretch difference
currents at the voltages illustrated, imagine what would happen during an
action potential: briefly near the start, stretch would increase INa (downward)
but quickly decreased INa would prevail. If this happens in situ, when there is
stretch, the faster turn off of INa once an action potential was triggered would
contribute in an anti-arrhythmic fashion to the overall mechano-electric
feedback. The LQT3 mutations, R1623Q and R1626P, affect the Nav domain 4
voltage sensor, whose depolarization-induced repacking renders the
inactivation rate (Tau−1) voltage dependent by stabilizing the inactivation

particle in its bound state (see Banderali et al., 2010). Replacing arginine
(positive) at R1623 with glutamine (neutral) impairs repacking of the voltage
sensor protein and reduces the voltage sensitivity of Tau inactivation.
Replacing arginine at 1626 with kink-inducing proline makes the inactivation
rate entirely insensitive to voltage; at all voltages, R1626P has the same
low-speed inactivation. The consequence: these LQT3 Nav channels remain
open too long during the action potential; excess INa causes “torsades de
pointes” arrhythmias. (B) Stretch (from pipette suction) is less effective at
speeding the rate (Tau−1) of INa inactivation for R1623Q than for WT (likewise
for R1626P, but not shown). (C) Overlaid stretch difference currents compare
kinetics for WT and the LQT3 mutant. With increasing depolarization (imagine
the action potential passing through −30 and 0 mV) WT INa turns off (goes
upward) far sooner than for R1623Q. (D) For R1626P, stretch difference
current always (even at 0 mV) represents excess (stretch-induced) inward INa.

The R1626P response to stretch in situ, were it to occur, would be distinctly
“excitatory” and pro-arrhythmic. Figures B–D are from Banderali et al. (2010).

CONCLUSION
The key messages from this essay have both biological and a
pathological implications: (1) we now have molecular tools –
peptide toxins and LQT3 syndrome VGCs – that can help in
asking whether VGCs in the mechanically active myocardium
are routinely modulated by bilayer mechanics, and (2) VGCs in
mechanically or ischemically blebbed membrane, as compared
with intact healthy membrane, are embedded in mechanically
abnormal bilayers where voltage sensors move too readily and
where the channels interact differently with amphiphilic drugs

than they do in intact membrane. As an example, the kinet-
ically “leaky” Nav channels of blebbed membrane would fos-
ter ectopic excitation but would also be especially susceptible
to appropriately designed “silver bullet” lipophilic Nav channel
inhibitors.
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