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To date, parameters defining biological properties in multiscale disease models are com-
monly obtained from a variety of sources. It is thus important to examine the influence
of parameter perturbations on system behavior, rather than to limit the model to a spe-
cific set of parameters. Such sensitivity analysis can be used to investigate how changes in
input parameters affect model outputs. However, multiscale cancer models require special
attention because they generally take longer to run than does a series of signaling pathway
analysis tasks. In this article, we propose a global sensitivity analysis method based on
the integration of Monte Carlo, resampling, and analysis of variance.This method provides
solutions to (1) how to render the large number of parameter variation combinations com-
putationally manageable, and (2) how to effectively quantify the sampling distribution of
the sensitivity index to address the inherent computational intensity issue. We exemplify
the feasibility of this method using a two-dimensional molecular-microscopic agent-based
model previously developed for simulating non-small cell lung cancer; in this model, an
epidermal growth factor (EGF)-induced, EGF receptor-mediated signaling pathway was
implemented at the molecular level. Here, the cross-scale effects of molecular parame-
ters on two tumor growth evaluation measures, i.e., tumor volume and expansion rate,
at the microscopic level are assessed. Analysis finds that ERK, a downstream molecule
of the EGF receptor signaling pathway, has the most important impact on regulating both
measures.The potential to apply this method to therapeutic target discovery is discussed.
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INTRODUCTION
Despite advances in cancer therapies such as molecular-targeted
therapy (Sawyers, 2008), the clinical outcome of highly malig-
nant tumors remains disappointing, with one in four deaths in
the United States attributed to this disease (Jemal et al., 2010).
In recent years, interdisciplinary approaches using data-driven
mathematical and computational modeling have garnered much
attention, gaining recognition for their potential to simulate, and
analyze the complex behavior of cancer systems (Khalil and Hill,
2005). Moreover, tumor models across different biological scales,
i.e., multiscale cancer models, have begun to play an increasingly
important role in moving the field of integrative cancer sys-
tems biology toward clinical implementation (Sanga et al., 2007;
Wang and Deisboeck, 2008). A multiscale approach recognizes
the fact that cancer growth indeed spans multiple spatial scales
(from nanometers to centimeters) as well as temporal scales (from

Abbreviations: ANOVA, Analysis of Variance; EGF, epidermal growth factor; EGFR,
EGF receptor; ERK, extracellular signal-regulated kinase; GSA, global sensitivity
analysis; LSA, local sensitivity analysis; MAPK, mitogen-activated protein kinase;
MEK, mitogen-activated protein kinase kinase; PKC, protein kinase C; PLCγ,
phospholipase Cγ.

milliseconds to years), and in some cases, it is more informa-
tive to incorporate this aspect into models than to remain at a
scale-specific level.

A multiscale cancer model’s need to quantify parameters on,
and relationships between, different biological scales significantly
increases the complexity of model development. It is quite com-
mon that model parameters defining biological properties at dif-
ferent scales are not produced by a single laboratory, but instead
are supplemented with those obtained from the literature or have
to be estimated. Given the inherent uncertainties in their val-
ues, parameters should not be fixed when building a model, but
should be assigned statistical distributions that reflect the degree
of uncertainty. Hence, it is crucial to not only study the dynamical
system behavior governed by a specific set of parameters, but also
to further investigate the influence of their perturbations on the
overall system behavior (Zi et al., 2005). Sensitivity analysis has
been widely accepted as a useful tool for this purpose, especially
when it is not possible or practical to conduct numerous wet-lab
experiments (van Riel, 2006).

Sensitivity analysis methods fall into two categories: local sen-
sitivity analysis (LSA) and global sensitivity analysis (GSA). LSA
(one-at-a-time parameter variation) evaluates the slopes of system
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outputs with respect to each parameter at a particular point, result-
ing in a narrow coverage of the entire parameter space (i.e., all
possible parameter variation combinations). GSA, on the other
hand, addresses model behavior over a wide range of parameter
operating conditions (Mishra et al., 2009). In complex biosys-
tems, such as cancer, model parameter values may vary within a
large range depending on the specific cell types and cellular envi-
ronments. Hence, LSA can potentially be misleading. A number
of GSA techniques have been developed, especially in the engi-
neering field (Helton et al., 2006), but only recently have GSA
methods been applied to systems biology models (Bentele et al.,
2004; Zi et al., 2005; Zhang and Rundell, 2006; Marino et al.,
2008; Sahle et al., 2008; Zhang et al., 2009). Specific examples
are given in the following, and interested readers should refer to
the corresponding original articles for more detail. Bentele et al.
(2004) proposed a GSA approach by directly building on LSA
to measure parameter sensitivities in a CD95-induced apoptotic
pathway model. In their approach, a parameter’s global sensi-
tivity index is quantified by calculating a weighted average of
local sensitivity indices of the parameter at multiple random
points within the parameter space. In Sahle et al. (2008), the
authors presented a new approach that integrates the use of opti-
mization techniques with sensitivity analysis to find the global
optimum of the sensitivities of control coefficients in a glycol-
ysis model. However, their approach may prove insufficient if
the flux control coefficient (used to evaluate the control exerted
by each reaction on the glycolytic flux) of a parameter has a
very high value. A probabilistic variance-based GSA, based on
Sobol’s method (Sobol, 1993), was developed to study a mitogen-
activated protein kinase (MAPK) signaling model (Zhang et al.,
2009), but the method is very computationally intensive because
it requires a large number of system simulations in a Monte
Carlo framework.

So far, most of the GSA methods proposed in the sys-
tems biology field still focus on signaling pathway analysis. We
believe that providing an applicable GSA method for multi-
scale cancer models, and for multiscale systems biology mod-
els at large, is an important step for the assessment of the
context-dependent relationship between different biological scales
of interest. In this article, we present such a method for per-
forming GSA, based on the integration of Monte Carlo and
resampling methods as well as analysis of variance (ANOVA).
ANOVA is a model-independent method with no assumption
regarding the functional relationships between input and output
(Frey and Patil, 2002), a feature which is of particular inter-
est because, in most cases of model analysis, such relationships
are not known a priori or cannot be quantified mathemati-
cally. Although ANOVA has been used as a sensitivity analy-
sis method in other scientific disciplines, such as food quality
(Pet-Armacost et al., 1999; Gerken et al., 2000), material test-
ing (Golinkin et al., 1997), and health risk assessment (Ashraf
et al., 1999; Mokhtari and Frey, 2005), to our knowledge this
is the first such systematic application to the theoretical model-
ing of cancer. We exemplify the feasibility of the method using a
two-dimensional (2D) multiscale agent-based model previously
developed for simulating non-small cell lung cancer (NSCLC;
Wang et al., 2007).

MATERIALS AND METHODS
MULTISCALE NON-SMALL CELL LUNG CANCER MODEL
We only briefly introduce the concept behind and key develop-
ment methods of the 2D agent-based NSCLC model (Wang et al.,
2007), which spans both molecular and microscopic (i.e., multi-
cellular) scales. At the molecular scale, an epidermal growth factor
(EGF)-induced, EGF receptor (EGFR)-mediated signaling path-
way specific to NSCLC is implemented (Figure 1). The pathway
model is composed of 20 EGF downstream signaling compo-
nents and 38 corresponding rate constants. Each cell (or agent)
in the model carries such a self-maintained signaling pathway. At
the microscopic scale, a lattice-based 2D biochemical microen-
vironment is constructed and populated with diffusive chemical
cues including EGF, glucose, and oxygen (see Figure 2 for model
environment setup). In each simulation run, a total of 49 seed
cells, arranged in a 7 × 7 square, are initially positioned in the
center of a 2D lattice. As a simulation progresses, cancer cells
constantly sense changes in environmental factors, interact with
other cells, and adjust their behavior according to a set of pre-
defined biological rules. A cellular phenotypic decision algorithm
is established to determine cell phenotypic transitions upon mol-
ecular changes: PLCγ-dependent migration and ERK-dependent
proliferation. Experimental studies have shown that the transient
acceleration of accumulating PLCγ levels leads to cell migration
(Dittmar et al., 2002), while that of ERK leads to cell replication
(Santos et al., 2007). Therefore, in the algorithm, the rate of change
of PLCγ determines the cellular migration decision, and the rate
of change of ERK dictates the cellular proliferation fate. If a cell
decides to migrate or proliferate, it will search for a suitable neigh-
borhood to move to or for its offspring to occupy. A main feature
of the model is that, in each simulation, tumor growth and expan-
sion patterns due to cell proliferation and migration are neither
pre-defined nor intuitive, but rather are the accumulated result of
dynamic interactions between individual cells, and between cells
and their biochemical microenvironment. The model can be used
to quantify the relationship between extracellular stimuli, intra-
cellular signaling dynamics, and multi-cellular tumor growth and
expansion. Thus, in this study the above-described NSCLC model
is employed as the modeling platform to investigate the cross-scale
effects of simultaneous pathway parameter variations on tumor
outcome at the microscopic scale.

USING ANOVA TO ASSESS PARAMETER SENSITIVITY
Analysis of variance evaluates the effects of the inputs (i.e., inde-
pendent variables) on the response (i.e., output or dependent
variable) by decomposing the response into an overall mean (μ),
main factor effects, interaction effects, and an error term (ε), and
then provides their corresponding estimates (Winter et al., 1991).
In ANOVA, each input factor has to be assigned specific ranges
of values (also termed “factor levels”). Here is an example of a
two-way (i.e., two input factors) ANOVA with a single response
variable (Y ):

Yi,j ,k = μ + Ai + Bj + (A × B)i,j + εi,j ,k , (1)

where i refers to the level of factor A, j refers to the level of factor
B, and k refers to the kth value of the response variable. Ai, Bj,
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FIGURE 1 | Non-small cell lung cancer-specific EGF-induced

EGFR-mediated signal transduction pathway model previously

developed inWang et al. (2007). Extracellular EGF binds to the EGF receptor
on the cell membrane, inducing receptor dimerization and
autophosphorylation. The bound receptor forms a docking site for the
signaling molecule PLCγ, which then activates the Raf signal through PKC.

This process then initiates the ERK signaling cascade. Detailed chemical
reactions, including rate constants and initial concentrations of components,
are described in Wang et al. (2007). The two highlighted molecules, PLCγ and
ERK, are used in an experimentally supported, molecularly driven cellular
phenotypic decision algorithm (Wang et al., 2007, 2009). Reproduced with
permission from Wang et al. (2007).

FIGURE 2 | A virtual 2D microenvironment with a discrete lattice

containing 200 × 200 grid points (Wang et al., 2007). A single, distant
blood vessel representing a “nutrient source” is located at (150,150) and a
number of 7 × 7 cancer cells are initially positioned in the center of the
lattice. The diameter of each cell is 10μm. A heterogeneous biochemical
environment is attained by normally distributing three external diffusive
chemical cues (EGF, glucose, and oxygen tension) throughout the 2D
microenvironment. The assigned initial values of these chemical cues are
weighted by the distance of a grid point from the nutrient source. Hence the

nutrient source, representing a blood vessel, is the most attractive location for
the chemotactically acting tumor cells, because it maintains the highest
weight for each aforementioned chemical cue. Moreover, throughout the
simulation, the concentrations of these three chemical cues are continuously
updated at a fixed rate (see Wang et al., 2007 for corresponding equations).
When the first cell reaches the nutrient source, the simulation run is
terminated. One of the important features of this multiscale model is that
each cell encompasses a self-maintained molecular signaling pathway
(see Figure 1).
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and (A × B)i,j represent the main effect of the ith level of factor
A, the main effect of the jth level of factor B, and the interaction
effect between the two factors, respectively. Corresponding equa-
tions can be deduced in the same way for three or more input
factors. ANOVA uses the F-test to examine the significance of
each main or interaction effect, thus determining whether a sta-
tistically significant difference exists between mean responses for
main effects or interactions between input factors. Thus, an F value
is used as the sensitivity index to evaluate the effects of a factor
(input parameter) on model output and then to rank the parame-
ters. The higher the F value, the more a parameter contributes to
changes in the output,and thus the more critical the parameter is in
the model.

INTEGRATED GLOBAL SENSITIVITY ANALYSIS
We propose an integrated GSA method that includes a process
for preparing the basic input data samples, and a process for
performing the analysis and quantifying the distribution of the
sensitivity index (i.e., F value). We exemplify each process using
the aforementioned 2D NSCLC multiscale model.

Data sample preparation
Continuous input parameters (in our case, the initial concentra-
tions of pathway components) are first partitioned into mutually
exclusive ranges of values, and each individual range is termed a
parameter level. Exploring the entire parameter space will pro-
vide the most accurate, comprehensive understanding of a system,
but is computationally impractical unless the number of parame-
ters or parameter levels is small. For example, suppose we have
M parameters and for each parameter we have N levels; this will
generate a total of NM combinations. The number of simulations
(each corresponding to a mutually independent parameter set)
grows exponentially as M or N increases. The other reason for
its impracticality is that the 2D multiscale cancer model takes a
relatively long time to finish, depending on the final size of the
simulated tumor, because each cell has to undergo a series of path-
way analyses throughout the course of the simulation (with 3D
discrete models taking even longer). For this reason, we use a ran-
dom sampling of input parameters to make the large number of
variation combinations computationally manageable. Specifically,
we use the Latin hypercube sampling (LHS) method (McKay et al.,
1979; Iman and Conover, 1980) to generate 2000 random sets of
parameter values which evenly cover individual parameter ranges
simultaneously. The LHS is a widely used variant of the standard
Monte Carlo method, which allows for an unbiased estimate of the
average model output. The advantage of this approach is that the
random samples are generated from all of the ranges of possible
values, thus giving insight into the extremes of the probability dis-
tributions of the outputs. That is, the use of LHS helps to ensure
maximal sampling through each parameter dimension.

With the 2000 random sets of parameter values, 2000 simula-
tion runs will be carried out accordingly, and hence will generate
2000 sets of simulation results. Note that, with our multiscale can-
cer model, to investigate the effects of how molecular changes in
individual cancer cells percolate throughout and across the scales
of a cancer system, the model output (i.e., biological response of
the tumor) is no longer the behavior of output signals or signal

activation patterns (as is the case in most current signaling path-
way studies Murphy and Blenis, 2006); but rather, they are the
tumor’s growth and expansion rate, two phenotypic behaviors at
the microscopic level. Similar to previous studies (Wang et al.,
2008, 2009), we use the number of elapsed time steps as a measure
for “tumor expansion rate,” and the final number of live cells for
“tumor (area or, more generally) volume.” We note here that a
greater number of time steps until termination indicates a slower
tumor expansion rate in a given simulation. For simplicity, we call
each set of parameter values along with the corresponding two
tumor output values an observation (see Figure 3A for an illustra-
tion). Hence, at the end of this data preparation process, we have
2000 observations. Hereafter, the 2000 observations (consisting of
input parameter values and corresponding output responses) are
referred to as the original sample.

Analysis
We plan to only consider the main effect for input (independent)
parameters because it has been found that interaction effects con-
tribute almost insignificantly when compared to the main effect
(Pant and Ghosh, 2006); also, doing so is a reasonable way to
reduce the initial complexity of the system. As mentioned above,
the F value calculated by the F-test is the sensitivity index for
ANOVA. We note here that, based on the original sample (contain-
ing 2000 observations) generated in the previous data preparation
process, ANOVA can already yield a parameter sensitivity rank-
ing. The specific procedure for performing ANOVA on an input
parameter is as follows. Assume parameter A has N treatment lev-
els (corresponding to treatment groups in biological experiments).
For each treatment level, we perform a number of 2000/N “virtual”
experiments (this number, dependent on the LHS method, should
roughly be 2000/N but may be different). Thus, we perform a total
of 2000 “virtual” experiments based on these treatment levels for
parameter A. In the end, with respect to each dependent variable,
we have 2000 lines of measured experimental data. ANOVA is then
used to compare means of these treatment levels using the F-test.

However, although the original sample is generated with the
sophisticated LHS method, there is still the possibility that the
sample data is biased, which would make the resultant ranking
incorrect. To produce more convincing results, we seek to further
quantify the sampling distribution of the sensitivity index (i.e.,
F value). A straightforward approach to understand such distribu-
tions of F values is as follows: create more, different sets of sample
data (each sample again contains as many parameter combina-
tions as the original sample), run the multiscale model with each
parameter set in each sample, perform an F-test to calculate the F
value for each parameter for each sample, and then, using all of the
obtained results, quantify the distribution of F values. Since this
approach is computationally costly, we employ a bootstrap method
(Henderson, 2005). In brief, bootstrapping repeatedly samples the
original sample with replacement and forms a new sample that is
the same size as the original sample. The most attractive feature of
bootstrapping is that we do not have to run the multiscale cancer
model again, saving a great deal of time. In our study, we generate
1000 bootstrap samples (including the original sample) and then
apply ANOVA to each bootstrap sample to calculate correspond-
ing F values (Figure 3B). As a result, with respect to each model
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FIGURE 3 |The ANOVA-based GSA procedure for the 2D multiscale lung

cancer model. (A) Schematic illustration of the original sample. An
“observation” is composed of two parts: input and output. Combining the
input and output parts into one observation facilitates the subsequent
analysis. For example, when we use the bootstrap method (see below) to
process resampling, one observation is regarded as one set of data. As
shown in the figure, there are a total of 2000 such observations (this number
can be set to meet different research purposes, i.e., as investigators see fit

given their empirical results; “2000” is the number that we assume to be
sufficient to obtain a “fair” parameter ranking). All the observations as a
whole are taken as a sample, and we call this sample the “original sample.”
(B) Structure of the sensitivity index values calculated based on the 1000
bootstrap samples. There are 1000 corresponding F values for each input
parameter (e.g., EGF), from which the quantification of F values can be
drawn. The simplest statistical measure is to calculate the mean value and
standard deviation of the 1000 F values.

output (tumor volume or expansion rate), there will be 1000 sen-
sitivity index values (each corresponding to a bootstrap sample)
generated for each input parameter. Probability distributions of
sensitivity indices can then be drawn from these results.

RESULTS
The first 2000 sets of parameter combinations (i.e., the origi-
nal sample) were created with Matlab 2008 (Mathworks, Inc.).
All of the statistical analysis programs for running ANOVA and
bootstrap resampling were developed with SAS/STAT 9.2 (SAS
Institute). The 2D agent-based model was developed in C/C++.
All simulation runs were carried out on a 19-node dual-CPU

supercomputer, and each simulation run took about 10 min to
finish. In this study, we only considered the initial concentrations
of seven EGFR pathway components (EGF, EGFR, PLCγ, PKC,
Raf, MEK, and ERK; see Figure 1) as input parameters. Parameter
variation ranges were set large enough to cover the entire possi-
ble parameter space. Moreover, a variation range was partitioned
into levels by means of evenly spaced intervals for each parameter.
Table 1 summarizes the input parameter variation ranges and cor-
responding levels. In a parameter ranking, a rank of 1 was assigned
to an input with the highest sensitivity index, and the largest value
of rank was assigned to the input with the least importance (i.e.,
lowest sensitivity index).
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ANOVA-BASED RANKING
Table 2 summarizes the ranking results when using the ANOVA
method with 1000 bootstrap samples. For tumor volume evalua-
tion (Part I of Table 2), ERK appears at the top of the ranking of
the seven inputs, which is not surprising since ERK determines a
cell’s proliferation fate in our phenotypic decision algorithm of the
2D multiscale model (Wang et al., 2007). MEK holds the second
position, but its F value is only approximately 1/10 of that of ERK,
implying that ERK is far more important than MEK in influencing
the emergent tumor volume. The remaining five molecules all have
F values that are small when compared to the aforementioned two.
In the tumor expansion rate evaluation (Part II of Table 2), ERK
is again the top input, followed by PLCγ and EGFR. This is some-
what surprising since we assumed that PLCγ would have the most
significant impact on tumor expansion because it is the determi-
nant of cell migration fate (Wang et al., 2007). The differences in
F values for the top three parameters are not substantial, but the F
value starts to drop dramatically from EGFR to MEK (the number
4 parameter), indicating that the last four parameters (including
MEK) are likely not as important as the top three.

Table 1 | Variation ranges and corresponding levels of input

parameters.

Input Standard value (nM) Variation range Number of levels

EGF 2.65 0- to 10.0-fold 10

EGFR 80 0- to 2.0-fold 10

PLCγ 10 0- to 2.0-fold 10

PKC 10 0- to 2.0-fold 10

Raf 100 0- to 3.0-fold 12

MEK 120 0- to 4.0-fold 10

ERK 100 0- to 10.0-fold 20

For each input parameter, we also quantify the arithmetic mean
of the 1000 individual ranks (corresponding to the 1000 bootstrap
samples) and the range of rank (last two columns of Table 2).
ERK is the first-ranked parameter for all bootstrap samples in the
tumor volume evaluation. However, tumor expansion rate eval-
uation using sample data shows that ERK is not always the most
sensitive parameter (the range of rank for ERK is 1–3). Moreover,
all other parameters also exhibit different ranks across different
bootstrap samples. This result indicates that the introduction of
bootstrapping into the GSA workflow is necessary to produce non-
biased parameter rankings, especially when only a relatively small
or moderate size of data samples is available.

COMPARISON WITH LOCAL SENSITIVITY ANALYSIS
We performed an analysis on the multiscale model using the LSA
method adopted in Wang et al. (2008). In brief, a sensitivity coef-
ficient (SC) was used as an index to evaluate how a change in
a single pathway component affects the overall system response
at the microscopic level. This coefficient was calculated by the
following equation:

SM
p = (Mi − M0)/M0

(pi − p0)/p0
, (2)

where p represents the parameter that is varied in a simulation
and M, the response of the system; M 0 is obtained by setting
all parameters to their reference values, and thus (Mi − M 0) is
the change in M due to the change in p, i.e., (pi − p0). Similar
to the ANOVA-based sensitivity analysis, the system response M
here also corresponds to either tumor volume or tumor expan-
sion rate, i.e., tumor behavior at the multicellular level. Note here
that two conditions result in a positive SC (taking tumor vol-
ume evaluation as an example): an increased tumor volume with
increasing levels of a parameter, and a decreased tumor volume

Table 2 | Summary of the ANOVA-based results from 1000 bootstrap simulations for F value statistics, with respect to the final number of live

cells – tumor volume (Part I) and the number of simulation steps – tumor expansion rate (Part II).

Rank Input Mean F value SD Mean rank Range of rank

PART I

1 ERK 232.46 17.70 1.00 1

2 MEK 20.47 5.78 2.12 2–5

3 EGF 9.33 3.72 4.38 2–7

4 Raf 8.74 3.07 4.52 2–7

5 PKC 8.35 3.39 4.72 2–7

6 PLCγ 7.29 3.83 5.30 2–7

7 EGFR 5.65 2.30 5.97 2–7

PART II

1 ERK 101.25 7.61 1.17 1–3

2 PLCγ 87.68 8.97 2.28 1–3

3 EGFR 84.38 8.89 2.55 1–3

4 MEK 13.49 3.51 4.16 4–7

5 PKC 7.48 2.50 5.64 4–7

6 EGF 6.83 2.51 5.89 4–7

7 Raf 5.85 1.89 6.31 4–7
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with decreasing levels of a parameter. For instance, if the tumor
volume is increased (i.e., Mi > M 0) and a certain parameter value
is increased as well (i.e., pi > p0), then by using Eq. 1, the resultant
SC will be positive. Similarly, two conditions result in a negative
SC: an increased tumor volume with decreasing levels of a para-
meter, and a decreased tumor volume with increasing levels of
a parameter.

Parameter variation ranges for this LSA analysis were the same
as those listed in Table 1. For each parameter, we created 101 varia-
tions, from 0 to its maximum value with increments of 1.0% of the
maximum value. Taking EGF variation as an example, variation
values were [0, 0.1, 0.2, . . ., 10.0]-fold of the parameter’s refer-
ence value. Note that the reference value for each parameter, i.e.,
a variation of 1.0-fold, was discarded when calculating SC values
using Eq. 2. Only one parameter was varied when running a sim-
ulation, and all other parameters were held fixed at their reference
values. Figure 4 illustrates the SCs of each input parameter. In
tumor volume evaluation, MEK appears to be the most sensitive
parameter in the model, with the maximum absolute value of a
SC of 2.36 occurring at a variation of 0.96-fold of MEK’s refer-
ence value. In tumor expansion rate evaluation, three parameters,

EGFR, PLCγ, and PKC, are identified to have the most signifi-
cant impact on tumor expansion. A variation of 1.02-fold of the
reference values of the three parameters results in the maximum
absolute SC value, i.e., 4.48. In fact, ERK with a variation of 1.02-
fold of its reference value also results in a SC value of 4.48 (data
not shown). This result signifies that, with respect to tumor expan-
sion rate evaluation, the LSA cannot discriminate between the
importance of these parameters to the model. The overall ranking
results from this LSA differed from what we obtained with the
ANOVA-based GSA.

VALIDATION WITH MULTIVARIATE LINEAR REGRESSION ANALYSIS
Sobie (2009) developed a method using multivariate linear regres-
sion analysis combined with parameter randomization to quantify
parameter sensitivities in electrophysiological models, and then
demonstrated the power of this method to compare the relative
effects of different parameters in determining outputs of com-
plex non-linear computational models. Because it allows multiple
parameters to vary at the same time, this method belongs to the
GSA category. We used Sobie’s regression-based method to validate
our ANOVA-based ranking results by performing another set of

FIGURE 4 | Plots of sensitivity coefficients for the seven input

parameters with respect to (A) tumor volume and (B) tumor expansion

rate. The variation range for each parameter is listed inTable 1. SC stands for
sensitivity coefficient. The first number in the parentheses in each sub-plot is
the variation (in fold) of a corresponding parameter that results in the

maximum absolute value of the sensitivity coefficients, and the second
shows the sensitivity coefficient value. For example, for the EGF sub-plot in
(A), “(0.3, −1.47)” means that, in tumor volume evaluation by varying EGF
concentrations, the maximum absolute value of sensitivity coefficients is
−1.47, and it occurs at a 0.3-fold variation of the EGF reference value.

www.frontiersin.org July 2011 | Volume 2 | Article 35 | 7

www.frontiersin.org
http://www.frontiersin.org/computational_physiology_and_medicine/archive


Wang et al. ANOVA-Based global sensitivity analysis

analysis on the original sample (containing 2000 sets of parame-
ter combinations). Ranking results are shown in Figure 5. The
regression coefficients indicate how changes in input parame-
ters lead to changes in outputs, and examining these coefficients
allows for an assessment of the relative contributions of the vari-
ous parameters. In tumor volume evaluation (Figure 5A), ERK
is the most sensitive parameter, followed by MEK. In tumor
expansion rate evaluation (Figure 5B), ERK, EGFR, and PLCγ

are the top 3 parameters in the order of their importance. Com-
paring Figure 5 with Table 2 confirms that the ranking results
produced by both regression- and ANOVA-based analyses are in
good agreement.

DISCUSSION AND FUTURE WORK
We have presented an applicable GSA method for multiscale cancer
models with the use of a number of support techniques, including
LHS sampling, Bootstrap resampling, and ANOVA. We exempli-
fied the applicability of this method using a previously developed
2D multiscale NSCLC model (Wang et al., 2007). The effects of the
input parameters on model outputs were quantified by simultane-
ously varying all of the parameters over the entire parameter space.
Moreover, the computing time required for prioritizing the impor-
tance of parameters was considerably reduced by the introduction
of Bootstrap resampling. The final parameter ranking results indi-
cate that ERK is the most critical parameter at the molecular scale,

FIGURE 5 | Regression coefficients for the seven input parameters

with respect to (A) tumor volume and (B) tumor expansion rate. (A)

Increase in ERK and MEK leads to a bigger tumor volume, whereas
changes in other parameters have little effect. (B) Increase in ERK and
decreases in EGFR and PLC lead to a larger number of simulation steps
(i.e., slower tumor expansion rate), whereas changes in other parameters
have little effect. RC stands for regression coefficient.

chiefly regulating the two tumor growth indices, i.e., tumor vol-
ume and expansion rate, on the multi-cellular level. The ranking
results from the GSA and LSA were different, but we believe the
GSA-based analysis provides more convincing and realistic results
because, unlike with LSA, multiple parameters are allowed to
change simultaneously. This finding therefore supports therapeu-
tic efforts that seek to target ERK to control overall tumor growth
in NSCLC.

ERK, the decision molecule for cell proliferation, appears to
have the most significant impact on both tumor growth indices.
It is counterintuitive that ERK is more important than PLCγ

in regulating the tumor’s spatial expansion rate because PLCγ

is used as the key component for determining a migratory
phenotypic switch. However, many experimental studies have
observed that the activation of ERK signaling is directly asso-
ciated with both cancer growth and metastasis in a number of
cancer types, including lung cancer (Tan et al., 2004; Cheng
et al., 2008; Ming et al., 2009). Hence, our in silico analysis
results, to some degree, are in agreement with these experi-
mental findings. As noted before, a sensitivity analysis method
may produce different parameter rankings with respect to either
tumor growth index, and this is precisely what we find in our
cross-scale analysis (Table 2). In tumor expansion rate eval-
uation, PLCγ and EGFR have demonstrated their importance
with the ANOVA-based GSA, and thus they are also (in addi-
tion to ERK) considered important parameters. It is different
from tumor volume evaluation, where only ERK demonstrates a
dominating position.

In both tumor volume and expansion rate evaluation, PKC is
assigned the lowest ranking with the ANOVA-based GSA, and thus
is deemed to be a less-important parameter. However, this finding
conflicts with the LSA analysis, where PKC was observed to be one
of the most sensitive parameters affecting tumor expansion rate.
Since the LSA method only varied a single parameter at a time
while keeping all others fixed, we believe it only accessed the base-
line of the effect of perturbations in each individual parameter.
Furthermore, the ranking results produced by the ANOVA-based
GSA were mostly consistent with the results of the multivariate
regression analysis (Figure 5). Thus, very cautiously extrapolat-
ing the findings of this theoretical study, ERK appears to be a
more valuable therapeutic target than PKC in regulating tumor
expansion.

The LSA carried out in this study is not a thorough analysis.
Rather, the main purpose of performing LSA here is to demon-
strate that the LSA and our ANOVA-based GSA produce differ-
ent parameter ranking results. There are discontinuities in SC
values for some parameters, e.g., for the “sudden” peak for EGFR
and PLCγ in Figure 4B. This outcome is not a system error,
but indicates that the parameter is highly sensitive around that
concentration value. In fact, other systems models also exhibit
this behavior – for example (Hornberg et al., 2005). Moreover,
a small variation in a parameter’s reference value resulted in a
relatively big change on model output (e.g., PKC and MEK in
Figure 4A, and EGFR, PLCγ, PKC, and MEK in Figure 4B).
This result is not surprising either, because many other biolog-
ical systems have shown this response behavior to system input
(Calabrese, 2005).
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In summary, we have presented a readily applicable, integrated
GSA method to identify and rank critical parameters at the mol-
ecular level that have significant impact on tumor volume and
expansion rate at the microscopic level. Applying the method to a
previously developed multiscale lung cancer model, ERK is found
to be the most critical molecule in regulating both tumor growth
indices, thus indicating its potential to serve as a therapeutic target
in treating NSCLC. In the future, we plan on taking into account
other types of GSA methods since there is no single ultimate
method that best fits all types of systems biology models. Then,
a consistently high ranking confirmed by different GSA meth-
ods may even more convincingly confirm the value of a molecule

to serve as a therapeutic target in pharmacological drug discov-
ery efforts. Such an approach is helpful and necessary, especially
when the resulting parameter rankings differ from each other.
Additionally, kinetic rate constants will also be considered as mol-
ecular parameters, and their cross-scale effects will be examined
together with the signaling pathway component concentrations.
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