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Insect water balance plays an important role in determining energy budgets, activity
patterns, survival, and population dynamics and, hence, geographic distribution. Tsetse
(Glossina spp.) are important vectors of human and animal disease occupying a wide
range of habitats in Africa and are notable for their desiccation resistance in xeric envi-
ronments. Here, we measure water balance and related traits [water loss rate (WLR),
body water content (BWC), body lipid content (BLC) and body mass] in adult flies across a
range of temperature (20–30˚C) and relative humidity (0–99%) combinations in four tsetse
species from both xeric and mesic habitats. WLRs were significantly affected by measure-
ment under different temperature and relative humidity combinations, while BWC, BLC,
and body mass were less affected. These results provide support for mass-independent
inter- and intra-specific variation in WLRs and survival times. Furthermore, water balance
responses to variation in temperature and relative humidity are complex in Glossina, and
this response varies within and among species, subgroups, and ecotypes in terms of both
magnitude of effects and the direction of change. Different effects of temperature and rel-
ative humidity within and among experimental conditions and species suggests cuticular
permeability and saturation deficit are likely to be key factors in forecasting tsetse water
balance responses to climate variability. This complicates potential forecasting of tsetse
distribution in the face of climate change.
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INTRODUCTION
Water balance plays a critical role in determining insect fitness,
geographic range, and, in the case of disease vectors, disease
dynamics in the face of climate change (Danks, 2000; Chown and
Nicolson, 2004; Chown et al., 2011). Climate change is typically
interpreted in terms of variation in mean ambient temperature.
However, it is increasingly apparent that regional variation in tem-
perature and humidity are likely to be significant in understanding
the impacts on insect populations (Easterling et al., 2000; Tebaldi
and Sansó, 2009; Benoit and Denlinger, 2010). Terrestrial insects
face considerable challenges in balancing water gained and lost
largely due to their high surface area to volume ratio (Hadley,
1994).

Four main physiological mechanisms provide resistance or
tolerance to dehydration in xeric (dry) environments. First, cutic-
ular hydrocarbons form a barrier of hydrophobic bonds that
increase desiccation resistance (Edney, 1977; Jurenka et al., 2007;
Bazinet et al., 2010). Insects can thus exploit this low cuticular
permeability by reducing metabolic rate (e.g., through quies-
cence, alteration of gas exchange patterns or water conservation in
the sub-elytral chamber; e.g., Terblanche et al., 2010; reviewed
in Chown et al., 2011; but see also discussion in Woods and
Smith, 2010). This is further maximized by behavioral avoid-
ance of desiccating conditions, such as limiting activity to a time

of day when desiccation is least likely (e.g., Kessler and Guerin,
2008). However, for each species an environment-specific transi-
tion temperature may exist beyond which cuticular lipids melt,
resulting in rapidly increased cuticular permeability and, ulti-
mately, accelerated water loss (Benoit, 2010; Gibbs, 2011). Second,
insects increase the quantity of water available in their bodies to
resist dehydration by (i) ingestion of free standing water or nec-
tar, (ii) absorbing water from the ambient environment, (iii) the
conversion of metabolic water, or (iv) increasing body size over
evolutionary time-scales (reviewed in Hadley, 1994; Benoit and
Denlinger, 2010; Chown et al., 2011; Yoder et al., 2011). Higher
carbohydrate content can increase bound water reserves and has
been associated with desiccation resistance in some insects (see,
e.g., Gibbs et al., 1997; Marron et al., 2003). The complemen-
tary provision of water through metabolism may include alter-
ing metabolic fuels, e.g., from lipids to carbohydrates, to yield
higher metabolic water or decreased mass-specific metabolic rate
to limit respiratory water loss (e.g., Marron et al., 2003; Terblanche
et al., 2010, but see discussions in Woods and Smith, 2010).
Third, insects enhance desiccation tolerance by production of
cellular compounds which maintain cell function under dehydra-
tion stress (e.g., heat shock proteins, Lopez-Martinez et al., 2009;
Benoit and Denlinger, 2010). Finally, rapid, intra-individual phe-
notypic adjustments are a wide-spread physiological mechanism
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employed to enhance desiccation tolerance or resistance under
dehydrating conditions (e.g., Woods and Harrison, 2001; Hoff-
mann et al., 2003; Terblanche and Kleynhans, 2009; Bazinet et al.,
2010; Terblanche et al., 2010; reviewed in, e.g., Chown et al.,
2011).

Generally, insects from xeric environments are either more des-
iccation resistant or desiccation tolerant than insects from mesic
(moist) environments (Edney, 1967; Hadley, 1994; Le Lagadec
et al., 1998; Gibbs and Matzkin, 2001; Hoffmann et al., 2003;
Matzkin et al., 2009). However, insects from stable mesic environ-
ments might experience lower dehydration stress, resulting in an
increased water loss rate (WLR) when exposed to xeric conditions
(e.g.,Yoder et al., 2011). Water balance traits can drive evolutionary
processes, especially in insects associated with xeric environments,
resulting in physiological diversification among individuals, pop-
ulations, or species (Gibbs et al., 1997; Hoffmann and Harshman,
1999; Woods and Harrison, 2001; Chown and Terblanche, 2007;
Gefen and Gibbs, 2009; Kleynhans and Terblanche, 2009; Matzkin
et al., 2009; Simard et al., 2009; Benoit and Denlinger, 2010). Water
balance trait variation can also extend to larger geographic scales
(e.g., continental or global; Addo-Bediako et al., 2001; Chown,
2002; Hoffmann et al., 2003; Marron et al., 2003; Kleynhans and
Terblanche, 2009).

Tsetse (genus Glossina) consists of 22 species which occupy a
wide range of habitats in sub-Saharan Africa. Given their critical
importance as a major vector of tropical human and animal dis-
ease (trypanosomiases), understanding the physiological drivers
of tsetse water balance is crucial for predicting disease dynam-
ics under climate change scenarios. Tsetse are classified into three
major subgroups on the basis of morphological differences in the
structure of the male genitalia (Rogers and Randolph, 1986; Leak,
1999). The three subgroups can also be differentiated by variation
in physiology, behavior, and ecological characteristics related to
sensitivity to moisture availability (Bursell, 1960). Tsetse popula-
tion dynamics is affected by temperature and relative humidity
variation in the field (Hargrove, 2004; Rogers and Robinson, 2004;
Terblanche et al., 2008). Marked variation in daily and seasonal
temperature and relative humidity has been measured in tsetse-
occupied habitats (e.g., Hargrove, 2001, 2004; Jurenka et al., 2007).
Tsetse can experience mean temperatures between 20 and 30˚C
within a single species’ geographic range (e.g., Terblanche et al.,
2006), with 1.2–5.6˚C variation occurring seasonally (Jurenka
et al., 2007) and varying by up to 20˚C daily within a single location
(Terblanche et al., 2008). Saturation deficits between 1 and 36 mB
have been observed (e.g., Figure 7.3 in Hargrove, 2004) while rela-
tive humidity can also vary substantially at either low or high mean
temperatures (Jurenka et al., 2007). Thus, a wide range of satura-
tion deficits can be experienced over the average flies’ lifetime,
across a species’ geographic range, or among species. Early studies
concluded that adult water balance was not an important factor
in the occupancy of xeric environments (Bursell, 1959), although
water balance physiology is clearly important to the pupal stage
(Bursell, 1958; Kleynhans and Terblanche, 2009). This former view
contrasts strongly with much of the modern water balance litera-
ture (e.g., Terblanche et al., 2006; reviewed in Chown et al., 2011)
and we suggest that this conclusion may have been reached prema-
turely without due consideration of plastic physiological responses

and the range of potential conditions which affect WLRs (see also
Terblanche and Kleynhans, 2009). Moreover, it is likely that the
entire Glossina genus could be adapted to xeric environments
thereby masking inter-specific variation measured under a sin-
gle set of conditions. Indeed, much of the early comparative work
on tsetse water balance physiology focused on inter-specific com-
parisons made from measurements undertaken under a single or a
few controlled relative humidity conditions at a single temperature
(e.g., Bursell, 1959). Adult tsetse feed solely on blood which leads
to them facing a set of unique challenges in suppressing dehydra-
tion in the off-host environment and maintaining a positive water
balance while actively seeking a blood meal, mates, or producing
offspring (see discussions in Benoit and Denlinger, 2010).

Here we measure aspects of water balance physiology in adults
of four ecologically diverse species of tsetse under a range of
environmentally-relevant combinations of temperature and rel-
ative humidity. We aim to answer three main questions regarding
water balance physiology of tsetse. (1) How does a species, water
balance physiology respond to changes in temperature and rel-
ative humidity? (2) Does the interaction between temperature
and relative humidity elicit a consistent physiological response
among individuals and among species in terms of magnitude and
direction of change? This can be rephrased to ask if water bal-
ance responses to temperature and relative humidity are similar
between species or ecotypes. (3) What conclusions can be drawn
regarding the interplay of temperature and relative humidity on
intra-specific survival times? If species, or ecotypes respond sim-
ilarly for a given trait, then this would allow predicted climate
change impacts to be generalized across tsetse species, or one could
use data from a single species to forecast environmental effects
across species. However, in combination, temperature and relative
humidity may behave synergistically, eliciting complex physiologi-
cal responses (Gibbs et al., 1997; Gibbs and Matzkin, 2001; Chown
et al., 2011). If, on the other hand, tsetse species differ in their water
balance physiology and responses to varying moisture and tem-
perature, then forecasting climate change responses for the entire
range of species will be considerably more complex.

MATERIALS AND METHODS
STUDY ORGANISMS
We measured traits of water balance physiology in adults of
Glossina brevipalpis Newstead (mesic), G. morsitans centralis West-
wood (xeric), G. pallidipes Austen (xeric), and G. palpalis gam-
biensis Vanderplank (mesic; Diptera, Glossinidae). Pupae were
received from a laboratory colony maintained at the Entomol-
ogy Unit, FAO/IAEA Agriculture and Biotechnology Laboratory,
Seibersdorf, International Atomic Energy Agency, Vienna, Austria,
or from a laboratory colony maintained at the Onderstepoort Vet-
erinary Institute, Pretoria, South Africa (G. brevipalpis). The pupae
(22–25 days old) were received via air cargo in well insulated non-
airtight containers kept under controlled temperature conditions
during transportation (typically <2 days of transport, tempera-
ture range 18–24˚C controlled by two phase changing agents).
Species were chosen to represent the three main tsetse subgroups:
fusca (G. brevipalpis), palpalis (G. p. gambiensis), and morsitans
(G. m. centralis and G. pallidipes). The fusca group resides in
forests (mesic) and is the most ancestral of the three groups. The
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palpalis group is also associated with mesic habitats and the mor-
sitans group with xeric savannahs. Here, ecotypes were assigned
according to Kleynhans and Terblanche (2009).

Upon arrival, puparia were kept in a dark climate chamber
(Labcon, South Africa) at 25˚C and 76% relative humidity until
emergence. Once the flies emerged, they were transferred into
mesh cages and fed three times, every second day, using defib-
rinated, infection free bovine blood on a membrane-tray system
(similar to methods described previously in Terblanche et al., 2004,
2005). After the third blood meal, adults were kept under con-
trolled conditions (optimal, standard rearing conditions: 25˚C,
76% relative humidity) for a further 24 h before experiments
begun. Water lost by excretion was negligible (see Bursell, 1960).
Each treatment group (n = 30) emerged on the same day to
standardize age across treatments. Treatments were conducted in
random order.

EXPERIMENTAL TREATMENTS
Water balance traits were determined at three temperatures:
21 ± 1.0, 25 ± 1.0, or 29 ± 1.0˚C; and three relative humidities: <5
(0%), 73–77 (76%), or >95 (99%). Treatments and corresponding
saturation deficits include the following temperature (in ˚C), rela-
tive humidity (in %) combinations: 21,99 (CW); 25,99 (IW); 29,99
(HW); 21,76 (CI); 25,76 (II); 29,76 (HI); 21,0 (CD); 25,0 (ID); and
29,0 (HD) where C = cold, W = wet, I = intermediate, H = hot,
and D = dry. Saturation deficit is an index of the evaporative
capability of the air calculated as:

SD = SVP − AVP (1)

where SD is the saturation deficit (in mB), SVP is the satura-
tion vapor pressure (in mB) and AVP is the actual vapor pressure
(in mB). The SVP is a function of temperature (in ˚C) and
the actual vapor pressure is a function of relative humidity (in
%). Temperature and relative humidity were recorded during all
experiments using Thermocron iButtons (DS1402D-DR8, Dallas
Semiconductors; ±0.5˚C and 1% accuracy at a 10-min sampling
rate).

Individual adult flies were placed separately into numbered
50 ml pill vials with ventilation holes to achieve complete desicca-
tion. Pill vials were randomly placed within airtight plastic 500 ml
desiccation jars. A 100-ml vial inside the jar contained silica gel
(0%), saturated sodium chloride (NaCl, 76%), or Millipore fil-
tered, doubly distilled water (99%) to control relative humidity
(see methods in Terblanche and Kleynhans, 2009). Care was taken
to ensure that all treatment groups were handled for the same
duration during transfer from the climate chamber to the vials and
spent a similar amount of time outside the desiccating conditions
during weighing (∼20–30 min per group). Gender ratios were not
strictly controlled but accounting for size in statistical analyses
typically eliminates sex effects on water balance physiology (see,
e.g., Terblanche et al., 2006).

PHYSIOLOGICAL WATER BALANCE TRAITS
Treatments were performed for 24 h in the dark to suppress activ-
ity which can affect WLR. Bursell (1957a) concluded that rela-
tive humidity and hunger state affected tsetse activity. However,
Terblanche et al. (2006) suggest that differences in activity levels do

not account for WLR variation among populations or temperature
treatments. Activity might affect the measured WLR estimates in
response to stressful conditions (see Gibbs et al., 2003) or acclima-
tion (see Hadley, 1994; Terblanche et al., 2006). However, during
experimental treatments the adult flies did not show any signif-
icant differences in observed activity levels between treatments
or species (and see Terblanche et al., 2006). We calculated WLR,
body water content (BWC), and body lipid content (BLC) gravi-
metrically. Weighing took place for each fly individually on an
electronic microbalance to 0.1 mg (Mettler Toledo AX504). Body
mass was recorded at the start of the experiment (Mbi) and after
exposure to various controlled temperature and relative humid-
ity treatments (Mba). WLR was calculated by subtracting Mba

from Mbi and dividing the difference by the treatment time (in h).
Tsetse were dried to a constant mass at 50–60˚C for approximately
72 h and re-weighed to determine dry mass (DM). The BWC
was calculated as the difference between Mbi and DM. Finally,
body lipids were extracted using three chloroform:methanol (1:1
ratio) washes, once per day, baking dry at 50–60˚C for approx-
imately 72 h after the final wash and subsequent weighing.
BLC was the difference between the mass after lipid extraction
and DM.

SURVIVAL TIME ESTIMATION
Survival time was estimated given that the conversion rate of lipids
to metabolic water is 1.08 and the critical lipid content is 4.2% of
DM (Bursell, 1959). Furthermore, survival time is a function of
all available water reserves and the rate at which water is lost,
calculated as:

S = ((1.08 × (BLC − (0.042 × DM)) + (BWC − ∂))

WLR
(2)

where S is survival time (in h), BLC is body lipid content (in mg),
DM is dry mass, BWC is the body water content (in mg), ∂ is a
constant critical BWC, and WLR is water loss rate (in mg/h). The
critical BWC is given by Bursell (1959) as 0.0657 mg for G. bre-
vipalpis, 0.0645 mg for G. m. centralis, 0.0661 mg for G. pallidipes,
and 0.0656 mg for G. p. gambiensis. To our knowledge, tsetse have
an exclusively proline-driven metabolism and their capacity for
carbohydrate metabolism is limited (Norden and Paterson, 1969;
Bursell et al., 1974; Bursell, 1977). Therefore, it is unlikely that
tsetse rely on carbohydrate-bound water to increase BWC, and it
is also unlikely that changes in metabolic pathways (e.g., from car-
bohydrates to lipids) are used to increase net water content and
thereby increase survival times. Consequently, these latter factors
were omitted from the estimation of survival time.

STATISTICAL ANALYSIS
The response of WLR, BWC, and BLC in response to variation in
temperature, relative humidity or the interaction of temperature
and relative humidity was analyzed using type 3 generalized lin-
ear models (GLZ; ProcGenmod; SAS Enterprise Guide version 4.1,
SAS Institute, Inc., Cary, NC, USA) with a normal distribution of
errors and an identity link function. Survival time was analyzed
in a similar manner to investigate the survival time in response to
variation in species, temperature, and relative humidity. In all GLZ
analyses, deviance was scaled to 1 to correct for overdispersion. The
four tsetse species exhibit substantial intra-specific size variation.
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To control for potential size variation among treatment groups,
Mbi of each tsetse was incorporated as a covariate as a standard
measure of individual size. We used STATISTICA (v. 10, Stat-
soft, Tulsa, USA) to calculate the size adjusted or least-square
mean results for graphs. Overlap in 95% CLs was used to test
for statistically significant homogeneity among treatment groups
or species.

RESULTS
WATER LOSS RATE
In all four species examined, WLRs were significantly affected by
body mass of individuals, test temperature, and relative humidity
(Table 1; Figure 1A). Glossina brevipalpis (mesic), G. m. cen-
tralis (xeric), and G. p. gambiensis (mesic) also showed significant
interaction effects between temperature and relative humidity,
although this was not the case for G. pallidipes (xeric). After
adjustment for the mean mass across all four species (mean
Mbi = 33.99 mg), G. brevipalpis lost significantly more water at
29˚C, 0 and 76% relative humidities relative to all other species
measured at these conditions. G. brevipalpis lost water signifi-
cantly slower under moist conditions (i.e., at saturation deficits
lower than 30.22 mB) than the other species (Figure 2).

All species lost water slower than expected at low saturation
deficits and higher than expected at higher saturation deficits
(Figures 3A–D). Generally, WLR for G. m. centralis were lower
at lower saturation deficits (Figure 3B). Furthermore, G. bre-
vipalpis showed a general positive association between WLR and
temperature and a negative association between WLR and relative
humidity. WLR increased significantly with higher temperature at
0% relative humidity and decreased significantly with increased
relative humidity at 25 and 29˚C. In G. m. centralis at 25˚C and
0% relative humidity, WLR was significantly higher relative to the
other treatments. G. pallidipes showed the same general pattern,
losing significantly more water at 25˚C than at other temperatures,
irrespective of relative humidity. For this species, WLR was signif-
icantly higher at 0% relative humidity than at all other values,
irrespective of temperature. G. p. gambiensis lost water signifi-
cantly faster at 29˚C, 0% relative humidity compared to all other
treatments. In summary, within-species variation in WLR is sig-
nificantly influenced by temperature and relative humidity in G.
brevipalpis (fusca group, mesic ecotype). At an intermediate tem-
perature (25˚C), G. m. centralis (morsitans group, xeric ecotype)
WLR increases with decreased relative humidity. WLR is signifi-
cantly higher at 0% relative humidity in G. pallidipes (morsitans
group, xeric ecotype) and higher temperatures (29˚C) at 0%, and
76% relative humidity treatments results in a significant increase
in WLR of G. p. gambiensis (palpalis group, mesic ecotype).

Even after adjustment for body size within each species (i.e.,
among treatment groups), there was significant variation in WLR
across treatments (Figures 1 and 2), even within ecotype groups.
Specifically, WLR of xeric species differed significantly among five
of the nine experimental treatments and mesic species differed
significantly in all but three experimental treatments (Figure 2).

BODY WATER CONTENT
As expected, initial body mass generally did not vary among
treatments within each species (Figure 1D). Mass-independent

variation in BWC with temperature and relative humidity was sig-
nificant for all species, although these effects were less pronounced
than in the case of WLR (Table 1; Figure 1B). The main effect of
relative humidity did not significantly affect BWC in G. m. centralis
(Table 1). Generally, G. pallidipes had a lower BWC (∼12.5%)
relative to all other species across treatments (Figure 1B). G. bre-
vipalpis had significantly lower BWC than G. p. gambiensis at 29˚C,
0 and 76% relative humidity.

BODY LIPID CONTENT
There was a significant interaction effect between temperature
and relative humidity on BLC in G. brevipalpis and G. pal-
lidipes, but no significant interaction effect in G. m. centralis or
G. p. gambiensis. Only the main effect of temperature was sig-
nificant for G. p. gambiensis (Table 1). In G. pallidipes, BLC
was significantly lower at 29˚C relative to 21˚C across rela-
tive humidity treatments. By contrast, BLC was significantly
higher in G. brevipalpis at 29˚C than at 21 or 25˚C across rel-
ative humidity treatments with the exception of 99% relative
humidity where no significant differences in BLC were observed
(Figure 1C).

SURVIVAL TIME
The estimated time to death by water and lipid exhaustion is a
function of all three traits of water balance (WLR, BWC, and BLC)
and provides a good indication of overall water balance, assuming
negligible activity effects. Lower WLR, higher BWC, and higher
BLC should all potentially result in increased survival time (see,
e.g., discussion in Chown et al., 2011). Body mass had a signif-
icant influence on survival time (Table 2, covariate mean mass:
33.99 mg) and survival time varied among species and treatments
when adjusted for differences in body size (Table 2). Moreover,
the interaction effects of temperature and humidity also influ-
enced survival time significantly (Table 2, Figure 4). However,
since we were interested in the ecologically relevant variation in
survival time among species, we also investigated survival time
without adjusting for body mass (Figure 4). This suggested that the
precise temperature and relative humidity combinations affected
survival time of the different species and ecotype groups in a
complex manner, and was not simply a consequence of body
size variation. The slope of the relationship between temperature
and survival time was generally negative. However, within-species
slopes differed and were occasionally positive with increased tem-
perature, for example, at 99% relative humidity in G. m. centralis.
Glossina brevipalpis survived significantly longer than all other
species at 21˚C compared to the other temperature treatments
at 0 and 76% relative humidity and at 99% relative humidity
across all temperature treatments. G. p. gambiensis had signifi-
cantly lower survival time relative to all species tested at 21˚C,
76%; 29˚C, 76%, and all temperature treatments at 99% relative
humidity.

Glossina brevipalpis (mesic) survived significantly longer than
G. p. gambiensis (mesic) and G. m. centralis (xeric) survived
significantly longer than G. pallidipes (xeric) at 29˚C, 0% rela-
tive humidity. This suggests within-ecotype variation and higher
resistance to desiccation through water balance traits in hot,
dry environments in G. brevipalpis (mesic) and G. m. centralis
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Table 1 | Summary of generalized linear model results [degrees of freedom (d.f.), chi-square (χ2) statistic, and corresponding P -value (P )] for

water loss rate (WLR in mg/h), body water content (BWC in mg), and body lipid content (BLC in mg) as dependent variables, initial body mass

as a continuous predictor and relative humidity, temperature, or temperature and relative humidity interaction effect (indicated with ×) as

independent variables.

Species Trait Parameter d.f. χ2 P

G. brevipalpis WLR Body mass 1 349.51 <0.0001

Humidity 2 165.44 <0.0001

Temperature 2 133.94 <0.0001

Humidity × temperature 4 22.32 0.0002

BWC Body mass 1 5857.33 <0.0001

Humidity 2 21.11 <0.0001

Temperature 2 20.44 <0.0001

Humidity × temperature 4 23.66 <0.0001

BLC Body mass 1 129.78 <0.0001

Humidity 2 38.37 <0.0001

Temperature 2 100.56 <0.0001

Humidity × temperature 4 55.55 <0.0001

G. m. centralis WLR Body mass 1 146.91 <0.0001

Humidity 2 77.31 <0.0001

Temperature 2 30.59 <0.0001

Humidity × temperature 4 55.07 <0.0001

BWC Body mass 1 5859.05 <0.0001

Humidity 2 2.07 0.3551

Temperature 2 33.03 <0.0001

Humidity × temperature 4 17.53 0.0015

BLC Body mass 1 75.62 <0.0001

Humidity 2 5.8 0.055

Temperature 2 4.33 0.1146

Humidity × temperature 4 8.36 0.0791

G. pallidipes WLR Body mass 1 51.16 <0.0001

Humidity 2 127.17 <0.0001

Temperature 2 84.35 <0.0001

Humidity × temperature 4 4.56 0.3353

BWC Body mass 1 760.58 <0.0001

Humidity 2 14.72 0.0006

Temperature 2 75.75 <0.0001

Humidity × temperature 4 217.32 <0.0001

BLC Body mass 1 32.33 <0.0001

Humidity 2 13.7 0.0011

Temperature 2 114.64 <0.0001

Humidity × temperature 4 74.53 <0.0001

G. palpalisgambiensis WLR Body mass 1 212.77 <0.0001

Humidity 2 90.43 <0.0001

Temperature 2 91.99 <0.0001

Humidity × temperature 4 205.29 <0.0001

BWC Body mass 1 13473.6 <0.0001

Humidity 2 41.64 <0.0001

Temperature 2 20.95 <0.0001

Humidity × temperature 4 123.26 <0.0001

BLC Body mass 1 38.01 <0.0001

Humidity 2 0.89 0.642

Temperature 2 32.27 <0.0001

Humidity × temperature 4 7.54 0.1099

Traits were measured for G. brevipalpis (mesic), G. morsitans centralis (xeric), G. pallidipes (xeric), and G. palpalis gambiensis (mesic). Non-significant effects are

indicated in bold.
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FIGURE 1 | Mean (±95% confidence intervals) results of Glossina

brevipalpis (mesic),G. morsitans centralis (xeric), G. pallidipes (xeric),

and G. palpalis gambiensis (mesic) (A) water loss rate (least-squares

means in mg/h), covariate mean body mass = 33.99 mg, (B) body water

content (as a % of initial body mass), (C) body lipid content (as a % of

initial body mass), and (D) initial body mass (in mg). Water balance traits
were measured at three different relative humidities and three different
temperatures.

(xeric). Furthermore, G. brevipalpis survived significantly longer
than G. p. gambiensis, except at 25˚C, 0% relative humidity,
which suggests variation in desiccation resistance within the mesic
ecotype.

DISCUSSION
Here, we measured water balance and related traits (WLR, BWC,
and BLC) in adult flies across a range of temperature (20–
30˚C) and relative humidity (0–99%) combinations in four tsetse
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FIGURE 2 | Means (±95% confidence intervals) water loss rates

(% of initial body mass lost per hour) across a range of

saturation deficits corresponding to the respective temperature and

relative humidity treatments for xeric (left) G. pallidipes and

G. morsitans centralis and mesic (right) Glossina brevipalpis and

G. palpalis gambiensis. Treatments and corresponding saturation deficits (in
mB) include the following temperature (in ˚C), relative humidity (in %)
combinations: 21,99 (CW); 25,99 (IW); 29,99 (HW); 21,76 (CI); 25,76 (II); 29,76
(HI); 21,0 (CD); 25,0 (ID); and 29,0 (HD) where C, cold; W, wet; I,
intermediate; H, hot; and D, dry.

FIGURE 3 | General regression model results of the least-squares means

fit for the nine distinctive treatments. The observed vs.
regression-predicted water loss rate (% of initial body mass per hour) per

individual are plotted for (A) Glossina brevipalpis (mesic), (B) G. morsitans
centralis (xeric), (C) G. pallidipes (xeric), and (D) G. palpalis gambiensis
(mesic).

species from both xeric and mesic habitats. In addition, we
applied a simplified mathematical model to calculate survival
time of a resting fly as a function of the measured water bal-
ance traits. One of the major outcomes of this work is that

the results showed that the exact conditions under which the
measurements of WLR were made either amplified or reduced
variation within and among species, with the greatest differ-
ences found at low relative humidity and varying temperature
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(Figure 1). One might reason that this is simply a consequence
of changes in saturation deficit. However, as the subsequent
analyses showed, this was not the case since WLRs were some-
times higher (and lower) than expected for a given saturation
deficit (Figure 3). In sum, the results therefore suggest that both
cuticular permeability, perhaps owing to temperature-dependent
cuticular lipid phase changes (Gibbs, 2011), and saturation
deficit together set WLR under a particular set of environmental
conditions.

Water loss rates were significantly affected by measurement
under different temperature and relative humidity combinations,
while BWC, BLC, and mass were less strongly affected. The marked
variation in WLR suggests that hot, dry environments are sub-
optimal for G. brevipalpis (Figure 1A). Furthermore, G. bre-
vipalpis lost water slower than all other species in moist treatment

Table 2 | Summary of generalized linear model results [degrees of

freedom (d.f.), chi-square (χ2) statistic and corresponding P -value (P )]

(normal distribution of errors and identity link function) for time to

death (in h) as dependent variable, initial body mass (in mg) as a

continuous predictor and relative humidity (in %), temperature (in ˚C),

and species main and interaction effects (indicated with ×) as model

parameters.

Parameter d.f. χ2 P

Body mass 1 502.39 <0.0001

Species 3 235.99 <0.0001

Humidity 2 387.32 <0.0001

Temperature 2 84.73 <0.0001

Species × humidity 6 125.94 <0.0001

Species × temperature 6 102.23 <0.0001

Humidity × temperature 4 35.19 <0.0001

Species × humidity × temperature 12 64.66 <0.0001

conditions (Figure 2), which suggests the species is desiccation
resistant and that there is within-ecotype variation in WLR
responses. Furthermore, WLRs found here are similar to previous
measurements by Terblanche et al. (2006) on G. pallidipes (24˚C,
0% relative humidity) and Bursell (1957a,b) on G. morsitans (25˚C,
99% relative humidity) if compared under similar measurement
conditions. These results provide support for mass-independent
inter- and intra-specific variation in WLR and survival times.
Therefore, water balance responses to variation in temperature
and relative humidity are complex in Glossina, and this response
varies within and among species, subgroups, and ecotypes in terms
of both magnitude of effects and the direction of change.

Variation in the response of BWC suggests within-ecotype vari-
ation between mesic species and tighter regulation of water balance
in hot, dry environments in G. p. gambiensis. There was no consis-
tent pattern in BLC across treatments for each species, as might be
expected given the short duration of the treatments and Bursell’s
(1959) finding that relative humidity does not have a major effect
on the amount of lipid in a fly. On average, 0.8 mg fat is metabol-
ically oxidized in 16 h, producing 0.86 mg water (Bursell, 1959).
Lipid consumption increases in dry air as a consequence of the
orthokinetic reaction to relative humidity and is directly posi-
tively correlated with tsetse metabolism (Bursell, 1957b). Thus the
BLC variation observed in these experiments is likely to be a con-
sequence of the temperature dependence of metabolic rate (e.g.,
Terblanche and Chown, 2007). However, it has been argued that
lipid reserves should not become depleted in dry air before death
occurs by desiccation in any species of tsetse (Jack, 1939; Bursell,
1959).

Species from mesic environments did not always survive the
longest in high relative humidity conditions and those from xeric
environments did not always perform best at low relative humid-
ity perhaps suggesting complex evolutionary trade-offs among
currently occupied environments. However, G. p. gambiensis

FIGURE 4 | Means (±95% confidence intervals) for estimated survival

time (in h) for Glossina brevipalpis (mesic), G. m. centralis (xeric),

G. pallidipes (xeric), and G. p. gambiensis (mesic) across the range of

temperature and relative humidity treatments. Mesic species are
presented by squares and xeric species by triangles. Survival time is

calculated as the sum of the metabolic water yield from lipids (in mg), given
the critical lipid mass (see Materials and Methods for details) and the initial
body water content (in mg; see Materials and Methods for details), given the
critical body water content of each species. This is divided by the rate of water
loss (in mg H2O/h) under resting conditions. All symbols are offset for clarity.
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survived all experimental conditions poorly, which is in agree-
ment with its mesic classification. In particular, at 99% relative
humidity and at any temperature survival time was in the range
of 30–40 h, a value approximately half that of G. brevipalpis.
Thus, it seems that G. brevipalpis has at least partly overcome
its mesic habitat restriction on the basis of its increased body size
(Figures 1D and 4). Activity levels could confound our simpli-
fied estimates of survival time, especially under field conditions.
However, the survival time calculations presented her consider
water loss for the resting state of the adult fly for the purpose
of inter-species comparison. We are therefore of the opinion that
our estimates of survival time reflect the maximum likely survival
time and probably overestimate survival time in the wild where a
higher activity, higher WLR and, consequently, lower survival time
might be expected, especially over longer durations. Thus, species-
specific, temperature-dependent activity levels could in the future
be included to make the survival time estimates more accurate.

Different effects of temperature and relative humidity within
and among experimental conditions and species suggests cutic-
ular permeability and saturation deficit are likely to be key
factors in forecasting tsetse water balance responses to climate
variability. Climate change is often viewed in terms of its pro-
jected effects on ambient temperature only (e.g., Deutsch et al.,
2008) although it is becoming clear that such an approach
may provide limited insights into realized ectotherm responses
(e.g., Bonebrake and Mastrandrea, 2010; Clusella-Trullas et al.,
2011). However, relative humidity is also likely to be affected,
based in part on projected rainfall, fog, and cloud cover
changes (e.g., Adler et al., 2008; Tebaldi and Sansó, 2009; Zhou
et al., 2009). Ultimately, both relative humidity and temperature
could change in different ways depending on the exact geo-
graphic location (see, e.g., Walther et al., 2002; Knapp et al.,
2008; Bonebrake and Mastrandrea, 2010; Fung et al., 2011 and

discussions in Chown et al., 2011; Clusella-Trullas et al., 2011).
This study shows that due consideration of the synergistic impacts
of temperature and moisture availability is important since the two
potential stressors interact in fairly unexpected ways to affect mea-
sured WLRs. Moreover, given the survival time estimation results
presented here, this interaction may have far-reaching implications
for tsetse population dynamics, and hence, vector responses to cli-
mate change. In particular, in the four tsetse species we examined,
which represented three different subgroups and two ecotypes,
species WLR did not respond similarly to temperature and rela-
tive humidity variation. Perhaps the most surprising outcome is
the difference in WLRs and survival time under desiccating condi-
tions for two xeric species and two mesic species (contra Hoffmann
et al., 2003), which one might have expected to respond rela-
tively similarly, at least in the form and direction of the responses
(though see also Terblanche and Kleynhans, 2009), especially after
accounting for size effects. Here, we show that extrapolating water
balance responses to temperature and relative humidity among
species or even among ecotypes should probably be undertaken
with caution. Future efforts to model tsetse species responses to
climate change may therefore require species-specific information
if water balance physiology is to be incorporated into mechanistic
models (see, e.g., Kearney et al., 2009). This will likely increase
the accuracy of predictions for the vector, thereby enabling better
disease intervention planning in future.
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