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in terms of statistical inference. Models 
must be able to reconstruct the data on 
which they are based, and this should be 
demonstrated clearly when publishing 
models. Second, models must make pre-
dictions (hypotheses) that can be tested 
experimentally. Model predictions may 
or may not be supported by results from 
the experimental studies they motivate. In 
either case, by using models to generate 
testable hypotheses about system function, 
we can better appreciate what is and is not 
known about the mechanisms underlying 
function. All models will fail at some point. 
Such failures can be highly informative, and 
modelers must be willing to communicate 
both the successes and failures of their 
models to the community. By following this 
approach, a closed loop can be established 
in which model-based hypothesis genera-
tion motivates experimental testing and 
model refinement. Third, a goal of mod-
eling should be to fit into the paradigm of 
upward and downward pathways of causal-
ity. That is, if function does not solely reside 
at any one level of biological organization, 
then the process of developing and refining 
models based on data obtained at a specific 
hierarchical level should build toward the 
goal of identifying and accurately capturing 
the behavior of those variables which are 
the connection points between levels. This 
is the only way in which integrative (often 
referred to as multi-scale) models that pro-
vide deep insights into physiological func-
tion will ever be developed. Finally, models 
of disease, which will likely take the form of 
normal physiological systems models oper-
ating in a different parameter regime (Belair 
et al., 1995; Huang et al., 2009), must not 
only be reconstructive and predictive, they 
must guide the way to improved therapies.

Grand ChallenGes
Achieving the expectations regarding 
mechanistically based computational 
models of physiological function in health 
and disease outlined above is itself a grand 

“central principle of  biology.” Because of 
the inherent complexity of real biological 
systems, attempts to intuit their behavior 
using “mental models” often fail. Instead, the 
development and analysis of computational 
models based directly on experimental data 
is proving to be a powerful approach. We 
refer to this as Computational Physiology – 
modeling directed at achieving a quantita-
tive understanding of the normal functional 
processes of an organism, organ, or system. 
Such models provide the foundation for 
understanding perturbed physiological 
function in disease – an approach we refer 
to as Computational Medicine.

Computational modeling is now a core 
component of many scientific disciplines 
including physics, chemistry, econom-
ics, psychology, public health, and most 
recently biology. One power of computa-
tional modeling is that the scale of models 
that can be formulated and analyzed far 
exceeds anything that can be done using 
more traditional paper-and-pencil math-
ematical approaches. This is particularly 
key in the extraordinarily complex realm 
of physiology and medicine. There is no 
question that understanding how function 
emerges as a consequence of connectivity 
both within and across the organizational 
levels of molecules, pathways, cells, tissues, 
and organs is the next major frontier of bio-
medical science, and computation will play 
a key role in achieving this understanding. 
The impact of computational medicine on 
society will be particularly profound. Our 
understanding of disease has only scratched 
the surface, and we will never have the abil-
ity to develop effective, personalized thera-
pies unless we can truly understand the 
link between molecules and phenotypes at 
a quantitative, mechanistic level.

What should we expect of computational 
models in physiology and medicine? First, 
models should have a firm basis in experi-
mental data. To gain deep insights into 
physiological function, models should be 
mechanistic rather than formulated solely 

Overview
The nature of basic biological research has 
been transformed during the past decade. 
This transformation has been driven in 
part by development of new technologies 
for high-throughput data acquisition that 
now make it possible to sequence genomes 
(Metzker, 2009), and to measure RNA 
(Wang et al., 2009) and protein (Maerkl, 
2011) expression levels with ever increasing 
accuracy and lower cost. These extraordi-
nary achievements have contributed to 
advances in genetic medicine (Amberger 
et al., 2009) and the discovery of gene and 
protein signatures of disease (Wood et al., 
2007; Hanash and Taguchi, 2010; Addona 
et al., 2011; Cancer Genome Atlas Research 
Network, 2011; Heidecker et al., 2011; 
Majewski and Bernards, 2011). There is, 
however, growing recognition that the tab-
ulation of molecular building blocks from 
which biological systems are composed is 
not sufficient for understanding the func-
tional properties of these systems. Indeed, 
function does not exclusively arise from 
vertical integration beginning at the level 
of either gene, RNA, or protein. Rather, it is 
becoming clear that the emergent, integra-
tive behaviors of biological systems result 
from complex interactions both within 
and across different hierarchical levels of 
biological organization. As but one exam-
ple, both RNA (Morris, 2011), proteins 
(Licatalosi and Darnell, 2010), electrical and 
mechanical function at the level of cells and 
tissue (Dolmetsch, 2003; Barlow et al., 2006; 
Gundersen, 2011), and external cues includ-
ing environmental factors (Jaenisch and 
Bird, 2003; Laird, 2010) can all feed-back 
to regulate gene expression. This coupling 
between different levels of biological organ-
ization has been referred to by Noble (2006, 
2008, 2009) as upward and downward path-
ways of causation. A consequence is that 
function cannot be considered to reside at 
any one level. Rather, function arises from 
the integrated behavior of the overall sys-
tem, a concept that can be viewed as a new 
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challenge. It is easy to say that the failure 
of a model to predict experimental out-
comes should drive model refinement and 
further experimental testing. However, 
in many instances discrepancies between 
model predictions and experimental out-
comes may suggest that additional biologi-
cal processes must be incorporated into the 
model, or that some existing model compo-
nent needs more precise characterization. 
Doing so may require the development of 
new experimental approaches, which can 
often be a daunting task. An example from 
the field of cardiac electrophysiology was 
the realization that accurate characteriza-
tion and modeling of voltage-dependent 
membrane currents underlying electrical 
excitability of cardiac myocytes was not 
going to be possible using intracellular 
recordings obtained from small tissue sam-
ples (circa 1960s–1970s) due, among other 
things, to an inability to space-clamp cells 
and to prevent accumulation of potassium 
in the extracellular space during repeated 
stimulation. Rather, this characterization 
required that recordings be performed in 
isolated myocytes, a technique that was not 
perfected until the early 1980s. It is also 
easy to say that experimental results must 
drive the refinement of models. However, 
this can often be extremely challenging 
when models incorporate many different 
interacting biological processes. It is not 
enough that the revised model explain 
the new experimental data, it must also 
be shown that as models are refined, they 
continue to reconstruct the legacy data on 
which they were based. Techniques such as 
sensitivity analysis (Marino et al., 2008) or 
use of minimization algorithms to estimate 
model parameters that yield a best fit to 
large constraining data sets (Lillacci and 
Khammash, 2010) can sometimes help. 
However there is no guarantee that these 
methods will converge to a global min-
ima when dealing with high-dimensional 
models.

These general aspects of physiological 
modeling are certainly grand challenges, 
however, there are also emerging research 
areas that deserve special mention. Noting 
these areas is not intended in any way to 
limit the scope of articles that are appro-
priate for this journal. Rather, these are the 
author’s views regarding grand challenges 
that cut across many different areas of com-
putational physiology and medicine.

3d systems BiOlOGy
There is compelling evidence that spa-
tial co-location of proteins that interact 
with one another over nanometer length 
scales to perform biological functions is 
a common biological design motif. These 
regions of co-location are often referred 
to as “nano-domains.” One example is the 
process of calcium-induced calcium-release 
(CICR) in the cardiac myocyte (Winslow 
and Greenstein, 2011). The structural basis 
of this process is that voltage-gated L-type 
calcium (Ca) channels (LCCs) in the cell 
membrane are located in direct opposi-
tion to Ca-binding Ca release channels 
(ryanodine receptors, RyRs) in the closely 
opposed junctional sarcoplasmic reticulum 
(JSR) membrane. These regions of opposi-
tion are known as dyads, and have depth 
(the bounding distance between LCCs and 
RyRs) and diameter of ∼10 and 50–100 nm, 
respectively. Opening of LCCs and influx of 
Ca triggers opening of RyRs and release of 
Ca into the small volume of the dyad. As Ca 
concentration rises, Ca induces inactivation 
of the LCCs, establishing a coupled feed-
forward activation and feed-back inactiva-
tion process. Given the spatial co-location 
of LCCs and RyRs within this nano-domain, 
they function as a coupled unit, with their 
interaction being mediated by 10 s of Ca 
ions, making it a noisy process. They are 
an example of a “protein machine” (Alberts, 
1998), and their functional behavior at the 
nanoscale level ultimately leads to ensemble 
behavior at the macroscopic level that drives 
contraction of the heart. Even subtle disrup-
tions of the spatial arrangement of RyRs and 
LCCs can have significant impact on CICR 
at the cellular level (Tanskanen et al., 2007). 
Such changes occur in heart failure, likely 
contributing to altered function of this pro-
tein machinery, and understanding of this 
altered function will be a key step forward 
in developing new therapeutic approaches 
to treating heart failure (Anderson and 
Mohler, 2009). Other examples of spatially 
dependent protein interactions within 
nano-domains abound. Lipid raft Ras 
nanoclusters with diameter of 6–12 nm, 
consisting of active Ras, the MAPK module 
and scaffolding proteins form transiently 
(∼400 ms) to produce a digital burst of 
active ERK (Harding and Hancock, 2008). 
Ca signaling within nano-domains local-
ized to dendritic spines is known to acti-
vate downstream effectors such as CaMKII 

and cAMP-dependent pathways (Higley, 
2008). To date, systems biology has largely 
explored “flat,” graph-based patterns of 
component interconnections. However, 
the above examples show that to under-
stand integrated systems behavior, we 
must consider how interacting networks of 
genes, proteins, membranes, and filaments 
are arranged in 3D space, how this deter-
mines their interaction dynamics, and how 
these spatial relations are altered in disease. 
A grand challenge is to develop methods 
for modeling the function of these protein 
machines at the nanoscale level, and math-
ematical and computational approaches 
for simplifying these models so that they 
may be incorporated within a multi-scale 
modeling framework, as described below.

multi-sCale mOdelinG
Multi-scale modeling refers to the process 
of modeling physiological function across 
multiple scales of biological organization. 
The power of multi-scale modeling is that it 
can provide insights into how system prop-
erties at the molecular level map to func-
tion at a more macroscopic level. Thus, it 
has the potential to form the long sought 
bridge between genotype and phenotype. 
Application areas include modeling the elec-
tromechanical function of the heart from 
ion channels to cells and organ (Trayanova 
and Rice, 2011), angiogenesis (Qutub et al., 
2009), tumor growth (Hatzikirou et al., 
2011), and bone remodeling (Webster and 
Müller, 2011), to name a few. Without ques-
tion, the most ambitious effort in this area 
is the Virtual Physiological Human project 
(Viceconti et al., 2008), the goal of which is 
to establish a methodological and techno-
logical framework for studying the human 
body as a single complex system.

Multi-scale modeling poses numerous 
mathematical and computational chal-
lenges. Typically, they arise from the dif-
ferent spatio-temporal scales used to model 
at one level versus another, coupled with 
the need to combine these scales. In such 
cases, an appropriate succession of math-
ematical approximations and computa-
tional approaches must be developed in 
order to model across levels. An example 
is the work of Tanskanen and Winslow 
(2006) in developing multi-scale models 
of CICR. Since signaling in nano-domains 
is often mediated by small numbers of mol-
ecules, well outside the regime of the laws 
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of mass-action, the starting point of this 
work was development of a model describ-
ing the motion of individual Ca ions in the 
cardiac dyad. To do this, the Fokker–Plank 
equation specifying the time-evolution 
of the probability that r Ca ions were at 
a given dyadic positions at time t was 
solved by discretizing this equation, yield-
ing a large Markov chain modeling ion 
movement driven by Brownian motion 
in a potential field. This model was fur-
ther simplified by assuming that Ca ions 
were independent and that their binding 
to buffers, receptors, and membranes was 
in equilibrium. Conditioning on a con-
figuration of Ca sources (RyRs and LCCs) 
then reduced the FPE for individual ion 
locations and numbers to a reaction–dif-
fusion equation. Since Ca diffusion on nm 
length scales was several orders of mag-
nitude faster than channel gating, Ca ion 
density in the dyad equilibrated rapidly in 
each LCC and RyR gating state, reducing 
the reaction–diffusion equation to a rela-
tively low-dimensional system of ordinary 
differential equations. Integration of these 
equations into cell models allowed realistic 
description of CICR in larger scale tissue 
and whole heart models. Therefore, the key 
to this multi-scale modeling approach was 
a series of careful approximations regard-
ing independence of signaling molecules 
and successive mathematical approxi-
mations based on time-scale separation. 
Mathematical approaches to multi-scale 
model simplification are likely to vary 
from problem to problem, and with the 
specific modeling approaches employed 
at each level. For example, the concepts of 
tunable resolution and fragmentation are 
used with rules-based modeling, and help 
to eliminate the combinatorial complexity 
of network models (Harmer, 2009; Harmer 
et al., 2010). In addition, multi-scale mod-
eling often requires development of new, 
fast numerical methods (for example, fast 
stochastic simulation methods; Xu and Cai, 
2008), development of specialized high-
performance computing approaches uti-
lizing large-scale parallelization (Markram, 
2006; Reumann et al., 2008), and/or spe-
cialized processor designs (Christley 
et al., 2010). Thus, significant challenges 
remain to be overcome before the use of 
multi-scale models becomes more wide-
spread. Case studies in new application 
areas that test new theories, algorithms, 

and  computational methods will be key to 
building a general approach to multi-scale 
modeling of physiological system function 
in health and disease.

Patient-sPeCifiC mOdelinG
The goal of patient-specific modeling (Neal 
and Kerckhoffs, 2010) is to develop compu-
tational models of pathophysiology using 
data from an individual patient. It has the 
potential to guide the delivery of treatment 
tailored to individual needs. Patient-specific 
modeling is being applied to predicting risk 
of vertebral osteoporotic fracture (Travert 
et al., 2011), 3D finite-element modeling 
of bone grafts (Diederichs et al., 2008), 
computational modeling of intra-aneu-
rism hemodynamics (Castro et al., 2006), 
electromechanical modeling of the failing 
human heart (Aguado-Sierra et al., 2011), 
and tumor growth (May et al., 2011), among 
other applications. Most of this modeling is 
driven by the ever expanding ability to col-
lect high spatio-temporal resolution patient 
image data that can in turn be used to gener-
ate models of the relevant structures. While 
the field holds great promise, it is important 
to select applications in which the biological 
properties that are critical to the predictive 
value of the modeling can be measured. For 
example, it is possible to image the geome-
try and motion of the heart in a patient with 
non-ischemic cardiomyopathy and then fit 
a generic finite-element mechanics model 
to these data. However, it is also known 
that there is extensive spatial remodeling 
of the activity of key proteins controlling 
electrical excitability, Ca dynamics, signal-
ing pathways, and metabolic processes of 
cardiac myocytes in the failing heart. These 
features may be important for modeling 
cardiac electromechanical function in a 
patient-specific manner. There is as yet no 
method for measuring this remodeling in 
the individual patient. For these reasons, 
testing approaches for patient-specific 
modeling in carefully selected animal mod-
els is likely to be important for assessing the 
validity of these approaches.

infOrmatiCs in COmPutatiOnal 
PhysiOlOGy and mediCine
Almost from its inception, the high-
throughput genomics community has had 
a culture of sharing data. Unfortunately, 
this culture does not yet exist within the 
broader physiological community. Despite 

the fact that the National Institutes of 
Health requires that data obtained in grants 
with more than $500,000 in direct costs per 
year be shared, this is almost never done. 
The barrier is both cultural and technical. 
Physiological data is diverse and complex, 
and the software tools for managing these 
data, and ontology for describing physi-
ological experiments and data have not 
yet been developed. Doing so is critically 
important, as these data, collected at the cost 
of hundreds of billions of tax-payer dollars, 
are quite literally being lost. Developing the 
tools for managing, annotating, searching, 
and sharing physiological data is essential 
for the advancement of the disciplines of 
physiology and medicine, and is necessary 
for the development of quantitative models 
of physiological function in health and dis-
ease. One first step has been the recent pro-
posal of a minimum information reporting 
standard for a cardiac electrophysiological 
experiment (Quinn et al., 2011) and a neu-
roscience investigation (Gibson et al., 2009).

There have been recent advances in 
creating software tools for disseminating 
computational models. Model sharing has 
been a difficult thing to achieve. It is not suf-
ficient that model equations be published 
in the peer-reviewed literature because in 
the majority of instances, models are simply 
too complex to avoid errors in either equa-
tions or parameters. The CellML (Beard 
et al., 2009), Systems Biology Markup 
Language (SBML; Hucka et al., 2003), and 
NeuroML (Gleeson et al., 2010) have been 
developed as a way of addressing this prob-
lem. These languages, which are subsets of 
the eXtensible Markup Language (XML), 
support the description of model equations 
and parameters in machine readable form. 
Of course, CellML, SBML, and NeuroML 
model description documents must be 
validated on creation, but once they have 
been, they can be disseminated in an error-
free way and input to a number of different 
simulation tools for execution (Alves and 
Antunes, 2006; Keating et al., 2006). A num-
ber of different model repositories such as 
CellML.org and the BioModels Database 
(Li et al., 2010) have been developed that 
allow users to search for and download 
XML model descriptions. Currently, these 
model description languages are able to 
capture biological systems models that may 
be cast in the form of reaction networks. 
Developing methods by which these model 
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descriptions can be composed into larger, 
potentially multi-scale models is a promis-
ing direction for future research.

COnClusiOn
We are poised at an exciting moment in 
the life sciences, one at which the fruits 
of reductionist biology and the continu-
ing consequences of Moore’s Law and it’s 
impact on computational science are com-
ing together to drive the re-birth of integra-
tive physiology and the creation of a new, 
quantitative, modeling-based approach to 
medicine. As the vanguards of this new 
effort, we must all work together to assem-
ble and understand the Physiome. Frontiers 
in Computational Physiology and Medicine 
will provide the community a unique venue 
to help achieve this goal.
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