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Aim: Transmural differences in sarcomeric protein composition and function across the
left ventricular (LV) wall have been reported. We studied in pigs sarcomeric function and
protein phosphorylation in subepicardial (EPI) and subendocardial (ENDO) layers of remote
LV myocardium after myocardial infarction (MI), induced by left circumflex coronary artery
ligation. Methods: EPI and ENDO samples were taken 3 weeks after sham surgery (n = 12)
or induction of MI (n = 12) at baseline (BL) and during β-adrenergic receptor (βAR) stimula-
tion with dobutamine. Isometric force was measured in single cardiomyocytes at various
[Ca2+] and 2.2 μm sarcomere length. Results: In sham hearts, no significant transmural
differences were observed in myofilament function or protein phosphorylation. Myofila-
ment Ca2+-sensitivity was significantly higher in both EPI and ENDO of MI compared to
sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely
in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells.
The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI
hearts, and a trend toward increased N2B-proportion appeared in MI EPI, but not MI Endo.
Analysis of myofilament protein phosphorylation did not reveal significant transmural differ-
ences in phosphorylation of myosin binding protein C, desmin, troponinT, troponin I (cTnI),
and myosin light chain 2 (MLC-2) both at BL and during βAR stimulation with dobutamine
infusion. A significant increase in MLC-2 phosphorylation was observed during dobuta-
mine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was
twofold lower in MI than in sham. Conclusion: Myofilament dysfunction is present in both
EPI and ENDO in post-MI remodeled myocardium, but shows a high degree of qualitative
heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric
properties likely contribute differently to systolic vs. diastolic global LV dysfunction after MI.
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INTRODUCTION
Upon electrical activation of cardiac muscle, cells calcium is
released from the sarcoplasmic reticulum which initiates con-
traction of the sarcomeres upon binding of calcium to the tro-
ponin complex. This process of excitation-contraction coupling
involves tight regulation of mechanisms involved in excitation,
calcium handling, and sarcomeric contraction. Excitation of the
healthy heart is characterized by heterogeneity across the ventric-
ular wall evident from the difference in duration of the action
potential between subepicardial and subendocardial ventricular
cells (Litovsky and Antzelevitch, 1989; Glukhov et al., 2010).
This heterogeneity underlies optimal timing of ventricular exci-
tation, and loss of this electrophysiologic heterogeneity is thought
to contribute to arrhythmias in cardiac disease (Glukhov et al.,
2010).

Apart from heterogeneity in excitation, transmural differences
have been reported in mechanisms involved in sarcomeric con-
traction. For example, a transmural gradient in myosin light chain
2 (MLC-2) phosphorylation has been reported in rodent studies
(Davis et al., 2001; Cazorla et al., 2005; Rajashree et al., 2005),
which has been proposed to underlie the wringing motion (i.e.,
torsion) of the heart to eject blood (Davis et al., 2001). A study in
pig myocardium showed subtle differences in the composition of
myosin heavy chain isoforms across the ventricular wall (Stelzer
et al., 2008). A significantly higher expression of the fast α-myosin
heavy chain isoform in subepicardial fibers (13% of total MHC)
compared to subendocardial fibers (3% of total MHC) correlated
with faster rates of delayed force development and force decay,
and may underlie appropriate timing of force generation across
the ventricular wall (Stelzer et al., 2008).
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To our knowledge there are no studies available that inves-
tigated whether transmural differences exist in the responses
of myofilament function and sarcomeric protein phosphoryla-
tion to cardiac pathology in large mammals. In previous stud-
ies (Van der Velden et al., 2004; Duncker et al., 2009; Boontje
et al., 2011) we found a reduced force-generating capacity and an
increased Ca2+-sensitivity in cardiomyocytes isolated from post-
infarct subendocardial remodeled myocardium. In the present
study we investigated if alterations in sarcomeric functional prop-
erties are different between the subepi- and subendo-cardial layer
of remodeled myocardium 3 weeks after myocardial infarction in
a pig model. As phosphorylation of sarcomeric proteins is an
important regulator of myocardial contraction, and perturbations
in phosphorylation frequently underlie impaired cardiac func-
tion in cardiac pathologies, force measurements in single Triton-
permeabilized cardiomyocytes were combined with analysis of
the transmural phosphorylation pattern of sarcomeres. Moreover,
to investigate transmural protein phosphorylation patterns dur-
ing cardiac stress, as occurs upon activation of the β-adrenergic
receptor pathway, biopsies were obtained during dobutamine
stimulation.

MATERIALS AND METHODS
MYOCARDIAL INFARCTION MODEL
Experiments were performed in accordance with the Guide for
the Care and Use of Laboratory Animals (NIH Publication 86-23,
revised 1996), and with approval of the local ethics committee
for animal experiments approved procedures. Twenty-four 2–
3 month old Yorkshire–Landrace pigs of either sex entered the
study. Pigs were sedated (ketamine, 20 mg/kg IM, and midazolam,
0.5 mg/kg IM), anesthetized (thiopental, 10 mg/kg IV), intubated,
and ventilated with O2 and N2O to which 0.1–1% (vol/vol) isoflu-
rane was added (Van Kats et al., 2000; Haitsma et al., 2001).
Anesthesia was maintained with midazolam (2 mg/kg followed by
1 mg/kg/h IV) and fentanyl (10 μg/kg/h IV). Under sterile con-
ditions, the chest was opened via the fourth left intercostal space
and a 4 cm incision was made in the pericardium at the site of
the origin of the left circumflex coronary artery (LCx). Then, the
LCx was dissected out and a suture was placed around it. The LCx
was permanently ligated to produce a myocardial infarction (MI,
n = 12), whereas in the animals from the sham group (n = 12) the
suture was removed. The chest was closed and the animals were
allowed to recover, receiving analgesia (0.3 mg buprenorphine IM)
for 2 days and antibiotic prophylaxis (25 mg/kg amoxicillin and
5 mg/kg gentamycin IV) for 5 days.

IN VIVO MEASUREMENTS AND STORAGE OF CARDIAC TISSUE
SAMPLES
Three weeks after surgery, pigs were sedated (ketamine, 20 mg/kg
IM and midazolam, 0.5 mg/kg IM). 2D echocardiographic record-
ings of the left ventricular (LV) short axis at midpapillary level were
obtained (ALOKA ProSound SSD-4000; Japan) and stored for off-
line analysis (Van Kats et al., 2000; Van der Velden et al., 2004).
LV end-diastolic cross-sectional area and 2-D LV end-systolic
cross-sectional area were determined, and LV ejection fraction was
calculated as (end-diastolic area – end-systolic area)/end-diastolic
area ×100%.

Subsequently, pigs were anesthetized (pentobarbital, 20 mg/kg
IV), intubated and ventilated with O2 and N2 (Van Kats et al.,
2000; Van der Velden et al., 2004). Anesthesia was maintained with
pentobarbital (10–15 mg/kg/h IV). Animals were instrumented to
allow closed-chest monitoring of heart rate, cardiac output, mean
aortic and pulmonary artery blood pressures, LV pressure and its
first derivative dP/dt, to assess dP/dtmax and indices of diastolic
function, including LVdP/dtmin, Tau and LV end-diastolic pres-
sure (LVEDP; Van Kats et al., 2000; Van der Velden et al., 2004).
Subsequently, a midline sternotomy was performed and the heart
was suspended in a pericardial cradle. In six Sham and six MI
swine, hearts were then arrested and immediately excised. Subepi-
cardial (EPI) and subendocardial (ENDO) samples were obtained
from remote non-infarcted myocardium of the LV anterior free
wall and immediately frozen in liquid nitrogen.

To determine changes in myofilament protein phosphorylation
upon β-adrenergic receptor stimulation, transmural needle (thru-
cut) biopsies were taken from 12 different animals (six sham and
six MI) before (basal) and at the end of two consecutive 10 min
intravenous (IV) infusions of dobutamine (2 and 10 μg/kg/min:
Dob2 and Dob10) from the LV anterior free wall myocardium (in
MI pigs: remodeled non-infarcted tissue). The transmural biop-
sies were cut to obtain EPI and ENDO tissue samples, which were
subsequently frozen and stored in liquid nitrogen. In MI pigs
biopsies were taken randomly from anywhere in the remodeled
anterior LV wall, covering as much as 30% of the non-infarcted
left ventricle.

CARDIOMYOCYTE MEASUREMENTS
Single cardiomyocytes were obtained via mechanical isolation in
cold relaxing solution containing (in mM) free Mg2+ 1, KCl 100,
EGTA 2, Mg-ATP 4, imidazole 10 (pH 7.0, adjusted with KOH).
Subsequently, cells were incubated for 5 min in relaxing solution
with Triton X-100 (0.5%) to remove all membranes as described
previously (Boontje et al., 2011). Isometric force was measured
at various calcium concentrations at 15˚C and sarcomere length
of 2.2 μm. The diameters of the cardiomyocyte were measured
microscopically, in two perpendicular directions. Cross-sectional
area was calculated assuming an elliptical cross-section. Relax-
ing and activating solutions for force measurements contained,
respectively (in mM): MgCl2: 6.48 and 6.28, Na2ATP: 5.89 and
5.97, EGTA: 7.0 and 0, CaEGTA: 0 and 7.0. In addition, both
contained 14.5 mM phosphocreatine and 60 mM BES (pH 7.1,
adjusted with KOH; Verduyn et al., 2007). The ionic strength of
the solutions was adjusted to 180 mM with K-propionate. The
pCa, i.e., −log10[Ca2+], of the relaxing and activating solution
(pH 7.1) was 9 and 4.5, respectively. Solutions with intermedi-
ate free [Ca2+] were obtained by mixing of the activating and
relaxing solutions. Isometric force was measured after the prepa-
ration was transferred from relaxing to activating solution, by
moving the stage of the inverted microscope. When steady force
was reached, the myocyte was reduced in length by 20% within
2 ms using the piezoelectric motor and restretched after 30 ms
(slack test). As a result of this intervention, force first dropped to
zero and then quickly redeveloped to the original steady-state level.
Subsequently, the myocyte was returned to the relaxing solution,
and a second slack test (10 s duration) was performed allowing
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the determination of passive force (F pas). Active isometric force
was calculated from the force level in activating solution – F pas.
After maximal activation (pCa 4.5) 4–5 measurements were car-
ried out at submaximal [Ca2+] followed by a maximal activation.
Force values obtained in solutions with submaximal [Ca2+] were
normalized to the interpolated maximal force values.

TITIN ISOFORM COMPOSITION
To determine titin isoform composition, thawed tissue samples
were homogenized in a modified Laemmli buffer (Krüger et al.,
2010), heated (3 min at 96˚C and centrifuged. Samples were sepa-
rated on agarose-strengthened 1.8% sodium dodecyl sulfate poly-
acrylamide gels followed by SYPRO Ruby total-protein staining.
All samples were run in triplicate. The stiff N2B and compliant
N2BA titin isoforms were scanned and quantified by densitome-
try LAS-4000 system and Multi Gauge V3.2 software (Fuji Science
Imaging Systems), mean values for each heart tissue were calcu-
lated, and the “mean of the mean” was determined for all groups
(EPI and ENDO in sham and MI). Titin isoform composition is
presented in relative values (N2B + N2BA = 100%).

MYOFILAMENT PHOSPHOPROTEOME
EPI and ENDO tissue (∼0.5–1.0 mg dry weight) from needle biop-
sies was tri-chloro acetic acid (TCA) – treated as described pre-
viously (Zaremba et al., 2007). Phosphorylation status of myofil-
ament proteins was determined using Pro-Q Diamond phospho-
staining (Molecular Probes). In short, samples were separated on a
gradient gel (Criterion tris–HCl 4–15% gel, BioRad) and proteins
were stained for 1 h with Pro-Q Diamond Phosphoprotein Stain.
Fixation, washing and de-staining were performed according to
the manufacturers guidelines. Staining was visualized using the
LAS-3000 Image Reader (FUJI; 520 nm/575 nm Ex/Em; 2 min illu-
mination) and signals were analyzed with AIDA software (Raytest).
All protein signals were within the linear range. Subsequently gels
were stained overnight with SYPRO Ruby stain (Molecular Probes)
and visualized with the LAS-3000 (460 nm/605 nm Ex/Em; 2 s illu-
mination). Since illumination of Pro-Q Diamond-stained gels for
2 s did not reveal any signal, the signals obtained upon SYPRO
Ruby staining are not tainted by Pro-Q signals.

STATISTICAL ANALYSIS
Data are given as mean ± SEM. Baseline (BL) data in both
groups were compared using two-way (group × layer) ANOVA,
followed by post hoc Bonferroni analysis. Dobutamine effects
were tested using three-way (dobu × group × layer) followed by
two-way (dobu × layer within each group) ANOVA followed by
post hoc paired or unpaired t -testing with Bonferroni correction,
as appropriate. Significance was accepted when P < 0.05.

RESULTS
CARDIAC REMODELING AND PUMP FUNCTION
Three weeks after myocardial infarction, significant LV remod-
eling had occurred, reflected in significant dilation, and hyper-
trophy of the surviving LV myocardium (Table 1). LV systolic
dysfunction was evidenced by reductions in ejection fraction and
LVdP/dtmax. Impaired diastolic function was evident from the
increased Tau (early diastole) and increased LVEDP (late dias-
tole) in MI compared to sham animals. Pulmonary artery pressure

Table 1 | Anatomical and hemodynamical data measured with

closed-chest.

SHAM (n = 12) MI (n = 12)

ANATOMICAL DATA

BW (kg) 30 ± 1 30 ± 1

LV weight (g) 88 ± 5 102 ± 3*

LV weight/BW (g/kg) 2.9 ± 0.1 3.5 ± 0.1*

LV end-diastolic area (mm2) 913 ± 54 1342 ± 133*

LV end-systolic area (mm2) 426 ± 37 830 ± 114*

2D-Ejection fraction (%) 53 ± 3 39 ± 4*

HEMODYNAMIC DATA

Cardiac output (L/min) 3.7 ± 0.3 3.0 ± 0.1*

Heart rate (HR, bpm) 112 ± 5 124 ± 12

Mean aortic pressure (mmHg) 92 ± 5 98 ± 4

Mean pulmonary artery pressure (mmHg) 18 ± 1 28 ± 2*

LVdP/dtmax (mmHg/s) 2002 ± 119 1717 ± 68*

LVdP/dtmin (mmHg/s) −2199 ± 164 −1915 ± 104

Tau (ms) 34 ± 1 45 ± 4*

LV end-diastolic pressure (mmHg) 6 ± 2 15 ± 2*

n, Number of animals; BW, body weight; LV, left ventricle. ∗P < 0.05; MI vs. sham

in one-tailed Student’s t-test.

was significantly increased in the MI group, likely as a result of
pulmonary congestion (Table 1).

NO TRANSMURAL DIFFERENCES IN FORCE CHARACTERISTICS IN
EITHER SHAM OR MI HEARTS
Force measurements were performed at a sarcomere length of
2.2 μm in single Triton-permeabilized cardiomyocytes from six
sham hearts (14 EPI and 14 ENDO cells; 2–3 cells/cardiac sam-
ple) and from six MI hearts (19 EPI and 21 ENDO cells; 2–
5 cells/cardiac sample). Cardiomyocyte data were averaged per
heart and the group averages, shown in Figure 1, were based on
the mean values per heart. No differences were found between
maximal force (F max; Figure 1A), passive force (F pas; Figure 1B),
Ca2+-sensitivity of force (pCa50; Figure 1C), and steepness of
the force–calcium relation (nH) between EPI and ENDO cells
from either sham (respectively, 3.41 ± 0.14 and 3.25 ± 0.17) or
(respectively, 3.12 ± 0.19 and 2.75 ± 0.25) hearts.

DIFFERENCES IN FORCE CHARACTERISTICS BETWEEN SHAM AND MI
Maximal force-generating capacity
Force measurements at maximal calcium activation revealed a sig-
nificantly lower maximal force development in ENDO cells from
MI compared to sham hearts (Figure 1A). F max tended to be some-
what lower in EPI cells from MI hearts as well, but this difference
was not statistically significant (P > 0.20).

Passive stiffness and titin isoform composition
Increased passive stiffness of cardiomyocytes has been associated
with high LVEDP and diastolic dysfunction of the heart (Bor-
bély et. al, 2005). Although differences in F pas between EPI and
ENDO cells within each group were not significant, a diverse trans-
mural pattern in cardiomyocyte stiffness was observed in sham
and MI hearts evident from a trend toward higher F pas in ENDO
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compared to EPI in sham, while the opposite was observed in
MI (Figure 1B; interaction P < 0.05 in two-way ANOVA). Com-
pared to EPI cells from sham, EPI cells from MI hearts showed a
significantly higher F pas.

To investigate if changes in titin isoform composition under-
lie the observed differences in passive force, titin analyses were
performed using agarose-strengthened SDS-PAGE as shown in
Figure 2A. Titin is composed of two isoforms, the stiff N2B,
and the more compliant N2BA isoform. Our analyses revealed a
significantly higher proportion of the stiff N2B isoform in EPI
compared to ENDO, both in sham and MI (P < 0.05, EPI vs.
ENDO in two-way ANOVA). There was a trend toward increased
N2B-proportion in MI EPI vs. Sham EPI (P = 0.17), but not in MI
ENDO vs. Sham ENDO (Figure 2B).

Myofilament Ca2+-sensitivity
Force measurements were performed at maximal and submaximal
calcium concentrations to determine Ca2+-sensitivity of myofila-
ments. A significantly higher pCa50 was found in both layers of MI
hearts compared to sham (Figure 1C). No significant differences
were found in the steepness of the force–calcium relation between
sham and MI cardiomyocytes.

FIGURE 1 | Sarcomeric function. Force measurements were performed at
a sarcomere length of 2.2 μm in Triton-permeabilized EPI and ENDO cells
from six sham and six MI hearts. Force characteristics did not differ
between EPI and ENDO cells within each group. (A) Maximal force (F max)
was significantly lower in ENDO cells from MI compared to sham, while
passive force [(B) F pas] was significantly higher in EPI cells from MI
compared to sham. (C) In both EPI and ENDO cells, Ca2+-sensitivity (pCa50)
was significantly higher in MI than in sham. ∗P < 0.05, MI vs. sham.

TRANSMURAL PROTEIN COMPOSITION
Figure 3 shows EPI and ENDO samples separated by 1D-gel
electrophoresis from post-infarct remodeled myocardium taken
at BL and during β-adrenergic receptor stimulation with low
(Dob2) and high (Dob10) concentrations of dobutamine. Gels
were stained with SYPRO Ruby to determine total-protein levels
(Figure 3A) and with Pro-Q Diamond stain to assess phospho-
rylated proteins (Figure 3B). Phosphorylation signals of proteins
were normalized to SYPRO-stained cardiac myosin binding pro-
tein C (cMyBP-C) to correct for small differences in sample loading
on the gel as described before (Zaremba et al., 2007; Duncker et al.,
2009). Analysis of sarcomeric protein phosphorylation profiles did
not reveal any differences between EPI and ENDO samples in both
sham and MI hearts (Figures 4 and 5).

Baseline
Baseline phosphorylation of the downstream targets of the β-
adrenergic receptor, cMyBP-C and cardiac troponin (cTnI), did
not differ between sham and MI samples (Figure 4). In addition,

FIGURE 2 | (A) Representative Sypro-stained gel with ENDO and EPI
samples from sham and MI hearts, demonstrating the two different titin
isoforms (three to four samples in each group). (B) The proportion of N2B
isoform was significantly higher in EPI compared to ENDO in both groups
(#P < 0.05, EPI vs. ENDO in two-way ANOVA). Relative expression of the
stiff N2B isoform tended to be higher in EPI from MI compared to sham,
but the difference was not significant.
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FIGURE 3 | Protein analysis by 1D-gel electrophoresis. SYPRO Ruby
[protein level, (A)] and Pro-Q Diamond [phosphorylation status, (B)] stained
gel of subepicardial (EPI) and subendocardial (ENDO) samples from a sham
heart taken at baseline (BL) and during dobutamine (Dob2 and Dob10, 2 and
10 μg/kg/min) illustrates increased phosphorylation of the protein kinase A
target proteins, myosin binding protein C (cMyBP-C) and troponin I (cTnI)
upon dobutamine. Abbreviations: MHC, myosin heavy chain; cTnT, troponin
T; MLC-2, myosin light chain 2.

no differences in troponin T and desmin phosphorylation were
found between sham and MI hearts (not shown). However, MLC-
2 phosphorylation in MI myocardium was significantly lower in
both EPI and ENDO samples compared to sham (Figure 4).

Effect of dobutamine
Dobutamine increased phosphorylation of cMyBP-C and cTnI
evident from the Pro-Q Diamond-stained gel in Figure 3. The
increase in cMyBP-C phosphorylation was similar in EPI and

FIGURE 4 | Baseline protein phosphorylation. No differences were found
in phosphorylation level of cardiac myosin binding protein (cMyBP-C),
troponin I (cTnI), and myosin light chain 2 (Mlc-2) between subepicardial
(EPI) and subendocardial (ENDO) samples from 6 Sham en 6 MI swine.
MLC-2 phosphorylation was significantly lower in both EPI and ENDO of MI
hearts compared to sham. n, number of heart samples. ∗P < 0.05, MI vs.
sham.

ENDO samples from both MI and sham hearts (Figure 5). How-
ever, although dobutamine significantly increased cTnI phos-
phorylation in both EPI and ENDO of remodeled post-MI
myocardium, the magnitude of the increase was lower compared
to sham: a fourfold increase in MI compared to a ninefold increase
in sham (Figure 5). Phosphorylation of MLC-2 slightly, but sig-
nificantly increased in sham myocardium, while no effect was
observed in MI (Figure 5). As a consequence, after β-adrenergic
receptor stimulation with dobutamine MLC-2 phosphorylation
remained significantly lower in MI compared to sham.

DISCUSSION
Our study revealed transmural changes in sarcomeric proper-
ties 3 weeks after myocardial infarction in a large animal model.
Although the functional sarcomeric properties were not differ-
ent between subepi- and subendo-cardial layers of healthy sham
hearts, myocardial infarction induced diverse changes in myocar-
dial function in the EPI and ENDO layers of the remodeled ventri-
cles. A significant reduction in maximal force was observed solely
in ENDO, while passive cardiomyocyte stiffness was significantly
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FIGURE 5 | Dobutamine-induced changes in protein phosphorylation.

Transmural samples were taken at baseline and after dobutamine
stimulation from the same heart (six hearts in each group). Transmural
biopsies were cut to obtain subepicardial (EPI) and subendocardial (ENDO)
tissue samples. Dobutamine significantly increased phosphorylation of
cardiac myosin binding protein C (cMyBP-C) to a similar extent in sham and
MI myocardium. The dobutamine-induced increase in troponin I (cTnI)
phosphorylation was larger in sham compared to MI myocardium for both
EPI and ENDO tissue. A significant increase in myosin light chain 2 (MLC-2)
phosphorylation was observed in sham myocardium upon dobutamine,
which was not observed in MI samples. For all proteins no differences were
observed between EPI and ENDO samples of the heart. #P < 0.05, effect
dobutamine in two-way ANOVA.

increased only in EPI. The implications of these findings will be
discussed.

TRANSMURAL SARCOMERIC PROPERTIES IN THE HEALTHY PIG HEART
No significant transmural differences were observed in functional
properties and protein phosphorylation of the sarcomeres across
the LV wall in healthy pig hearts. In line with our data, Stelzer
et al. (2008) did not find differences in sarcomeric protein phos-
phorylation and BL functional properties such as maximal and
passive force and Ca2+-sensitivity of force development between
ENDO and EPI samples from pigs. In rat studies, a higher passive
force development was observed in ENDO compared to EPI cells
(Cazorla et al., 2000a, 2005; Ait Mou et al., 2008). In our study,
passive force tended to be higher in ENDO compared to EPI cells
in the sham group, but the difference was not significant. Con-
versely, a transmural difference in passive force in rat myocardium
was evident at a relatively high sarcomere length of 2.3 μm, but
was not seen at 2.1 μm (Cazorla et al., 2005). Our functional data
were obtained at a sarcomere length of 2.2 μm, which may explain

the absence of a significant difference in passive force between EPI
and ENDO layers in healthy myocardium. Unexpectedly, then, our
titin analyses showed a lower proportion of the stiff N2B titin iso-
form in ENDO compared to EPI (Figure 2B). Similarly, Cazorla
et al. (2000b) reported significantly higher levels of the N2B iso-
form in EPI compared to ENDO layers in pig myocardium. As
passive stiffness of the sarcomeres is based on isoform composi-
tion and phosphorylation status of titin (Krüger and Linke, 2009;
LeWinter and Granzier, 2010), a higher passive stiffness in ENDO
compared to EPI layers of the heart may involve differences in titin
phosphorylation.

In addition to the transmural differences in functional sarcom-
eric properties in rodent studies, a transmural gradient in MLC-2
phosphorylation was found both in mice and rat (Davis et al., 2001;
Aït Mou et al., 2009). The difference between large mammals and
rodents may be explained by the differences in BL phosphoryla-
tion among species, as BL phosphorylation values are relatively
low in pigs compared to rat and mice (Hamdani et al., 2008).
In addition, a recent study by Scruggs et al. (2010) revealed two
phosphorylation sites on MLC-2 in mouse myocardium (Serines
14 and 15), while only one phosphorylation site (Serine 15) was
found in human cardiac tissue. Increases in MLC-2 phosphoryla-
tion have been found upon increased stretch (Cazorla et al., 2005),
increased heart rate (Silver et al., 1986; Fitzsimons et al., 1989; Lam-
berts et al., 2007), and/or upon β-adrenergic activation of the heart
(Westwood and Perry, 1981; Scruggs et al., 2009). In large mam-
mals, transmural phosphorylation differences may only become
apparent upon cardiac activation at higher protein phosphoryla-
tion levels. To address this possibility, we analyzed the transmural
phosphorylation pattern in our pig model upon stimulation of
the β-adrenergic receptor pathway with dobutamine. Apart from
increased phosphorylation of the protein kinase A (PKA) tar-
get proteins cMyBP-C and cTnI, dobutamine stimulation also
increased MLC-2 phosphorylation in healthy sham pigs, consis-
tent with previous studies in rodents (Westwood and Perry, 1981;
Scruggs et al., 2009). However, also during strong β-adrenergic
receptor stimulation, no differences in protein phosphorylation
were observed between EPI and ENDO samples indicating that
a transmural gradient from the subepicardial to subendocardial
layer in MLC-2 phosphorylation, but also in cMyBP-C, cTnI, is
not a major determinant of myocardial pump function in large
mammals.

TRANSMURAL DIFFERENCES IN SARCOMERIC PROPERTIES AFTER
MYOCARDIAL INFARCTION
Myocardial infarction induced diverse changes in maximal and
passive force development of cells isolated from remodeled EPI
and ENDO layers, while in both layers a significant increase in
myofilament Ca2+-sensitivity was found.

Consistent with our previous studies (Van der Velden et al.,
2004; Duncker et al., 2009) force measurements in single car-
diac cells revealed depressed maximal force-generating capacity
in post-infarct remodeled hearts (Figure 1A). The present study
showed a significant reduction in maximal force-generating capac-
ity of cells only in the ENDO layer of post-MI remodeled hearts.
The mechanism of reduction in maximal force in heart failure
models is a matter of ongoing research, but most likely involves
altered phosphorylation of sarcomeric proteins. Belin et al. (2007)
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provided evidence for enhanced protein kinase C-mediated pro-
tein phosphorylation in reducing maximal force. In addition,
reduced MLC-2 phosphorylation has been associated with a sig-
nificant reduction in the maximal force of contraction (Scruggs
et al., 2009). Reduced MLC-2 phosphorylation was present in
both layers of the post-infarct remodeled pig heart. Also in human
studies we have observed lower MLC-2 phosphorylation in end-
stage failing myocardium compared to non-failing donor hearts
(Van der Velden et al., 2003). Low MLC-2 phosphorylation has
been associated with high phosphatase expression/activities (Neu-
mann et al., 1997; Duncker et al., 2009) and has been linked
with depressed contractility and cardiac hypertrophy (Sanbe et al.,
1999; Dias et al., 2006). As phosphorylation of MLC-2 exerts an
important modulating effect on contractile performance (Col-
son et al., 2010; Scruggs and Solaro, 2011) both low BL MLC-2
phosphorylation and the absence of an increase in MLC-2 phos-
phorylation upon β-adrenergic phosphorylation in post-infarct
remodeled myocardium may underlie depressed systolic function
(i.e., lower LVdP/dtmax and stroke volume) in MI pigs.

We observed a significant increase in passive force develop-
ment only in EPI cells of post-MI remodeled myocardium, which
may involve a change in titin isoform composition or alterations
in titin phosphorylation (Borbély et al., 2009; Krüger and Linke,
2009; Williams et al., 2009; LeWinter and Granzier, 2010). Inter-
estingly, Jaber et al. (2008) observed a reduction in the compliant
titin isoform N2BA and an increase in myofiber passive stiffness
only in the subepicardial layer of dogs with tachypacing-induced
heart failure. In line with a significantly higher passive force in
EPI cells from MI hearts (Figure 1B), the percentage of stiff N2B
in the epicardial layer tended to be higher in MI compared to
sham (Figure 2B). As indicated above, altered passive stiffness dur-
ing cardiac disease may also involve changes in phosphorylation
of titin, an issue that warrants further research. Increased pas-
sive stiffness of the sarcomeres has been associated with increased
LVEDPs and diastolic heart failure (Borbély et al., 2005). The high
passive stiffness in EPI cells may in part underlie the significantly
increased LVEDP observed in MI pigs (Table 1) and contribute to
dysfunction during late diastole.

The enhanced Ca2+-sensitivity, which was observed in both
layers, may contribute to early diastolic dysfunction evident from
the significant increase in Tau in MI compared to sham ani-
mals. In addition to a high Ca2+-sensitivity, perturbations in
Ca2+-handling impair myocardial relaxation, which may result
from alterations in the β-adrenergic receptor pathway (recently
reviewed by Wittköpper et al., 2011). The increase in myofilament
Ca2+-sensitivity after MI has been ascribed to down-regulation
and desensitization of the β-adrenergic receptor pathway as the
high Ca2+-sensitivity in post-infarct cardiomyocytes could be nor-
malized to sham values upon treatment with exogenous PKA (Van
der Velden et al., 2004; De Waard et al., 2007). However, consistent
with our previous study in subendocardial tissue, in the present
study we did not find a significantly lower BL phosphorylation of

the PKA target proteins cMyBP-C and cTnI in subepicardial tis-
sue as well (Figure 4). Phosphorylation of cTnI even tended to be
somewhat higher in MI compared to sham samples, which most
likely reflects activities of other (possibly up-regulated) kinases.
The only evidence for reduced β-adrenergic receptor signaling
was the blunted increase in cTnI phosphorylation in both EPI
and ENDO layers of MI hearts compared to sham, indicative
for reduced phosphorylation of cTnI at PKA sites (Figure 4).
In our previous study, we have shown with Western blot analy-
sis that phosphorylation of PKA sites on cTnI is indeed lower in
MI compared to sham ENDO samples taken during dobutamine
stimulation (Boontje et al., 2011). In contrast to cTnI, the increase
in cMyBP-C phosphorylation upon dobutamine was similar in MI
and sham groups (Figure 5) and may involve activation of Ca2+-
dependent calmodulin kinase II to compensate for reduced PKA-
mediated phosphorylation (Boontje et al.,2011). The exact mecha-
nism underlying enhanced myofilament Ca2+-sensitivity observed
in different animal models remains incompletely understood but
likely involves site-specific phosphorylation of sarcomeric pro-
teins and has been extensively discussed elsewhere (Marston and
de Tombe, 2008; Solaro and van der Velden, 2010).

CONCLUSION
Our study showed no transmural differences in sarcomere func-
tion at BL in sham hearts. In contrast to rodent studies we did not
observe a transmural difference in MLC-2 phosphorylation in pig
hearts both at BL and upon dobutamine infusion indicating that
a transmural MLC-2 phosphorylation gradient is not prerequi-
site for proper cardiac pump function in large mammals. We did
find a small and significant increase in MLC-2 phosphorylation
upon activation of β-adrenergic receptors in sham hearts, which
was absent in MI and may underlie impaired cardiac performance
during increased stress in post-infarct hearts.

After MI a significantly lower F max was observed only in
ENDO cells and a higher F pas in EPI, while myofilament Ca2+-
sensitivity was increased in both layers. These heterogeneous trans-
mural changes in sarcomeric properties in post-infarct remodeled
myocardium likely contribute differently to systolic vs. diastolic
dysfunction. Thus, the reduction in maximal force-generating
capacity in ENDO cells may contribute to systolic dysfunction
of post-MI remodeled hearts, while the increase in myofilament
Ca2+-sensitivity observed in both layers may impair relaxation
during the early phase of diastole. Moreover, increased passive stiff-
ness of EPI cells may hinder LV filling in late diastole and in part
underlie high LVEDP in post-MI hearts. Together these transmu-
rally heterogenous alterations in sarcomeric properties in post-MI
remodeled myocardium may disrupt coordinated contraction and
relaxation patterns across the LV wall.
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