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Physiological wound healing is a complex process requiring the temporal and spatial co-
ordination of various signaling networks, biomechanical forces, and biochemical signaling
pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are
required for successful physiological tissue repair, transforming growth factor beta (TGF-
β) expression has been demonstrated throughout wound healing and shown to regulate
many processes involved in tissue repair, including production of ECM, proteases, pro-
tease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the
granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects
by stimulating signaling pathways through a receptor complex which contains Endoglin.
Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated
expression during hypoxia, and regulates important cellular functions such as proliferation
and adhesion via Smad signaling.This review focuses on how theTGF-β family and Endoglin,
regulate stem cell availability, and modulate cellular behavior within the wound microen-
vironment, includes current knowledge of the signaling pathways involved, and explores
how this information may be applicable to inflammatory and/or angiogenic diseases such
as fibrosis, rheumatoid arthritis and metastatic cancer.
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WOUND HEALING
Wound healing is a complex process involving a number of
interdependent stages including hemostasis, inflammation, pro-
liferation, and remodeling (Gurtner et al., 2008). Different cell
types, complex signaling events and numerous growth factors are
involved in each phase of wound healing which are represented in
Figure 1.

HEMOSTASIS
Upon tissue injury, the blood coagulation cascade is initiated,
resulting in fibrin formation which provides a temporary scaf-
fold for the influx of inflammatory cells. Platelets also aggregate
at the site of injury, become activated by binding to the negatively
charged extravascular tissue and degranulate, releasing different
glycoproteins and growth factors such as platelet derived growth
factor (PDGF), epidermal growth factor (EGF), transforming
growth factor beta (TGF-β), vascular endothelial growth factor
(VEGF), and basic fibroblast growth factor (bFGF) (Schultz, 2007;
Kimmel et al., 2010).

The plethora of growth factors released during hemostasis reg-
ulate different events including the stimulation and recruitment
of monocytes, neutrophil, and macrophages to the wound bed,
thereby initiating the inflammatory phase. In addition endothe-
lial vasculogenesis or angiogenesis is initiated, and fibroblasts are
recruited to the site of injury for extracellular matrix production
and remodeling (Quesada et al., 2007; Kimmel et al., 2010). The
majority of cell types required for wound healing are recruited
from a variety of niches including bone marrow, blood vessel,
basal layer of epidermis, hair follicle bulge, and adipose tissue,

which are enriched with stem or progenitor cells that differentiate
into specific cell types in response to selective signaling molecules
or growth factors during healing (Asahara et al., 1999; Hill et al.,
2003; Urbich and Dimmeler, 2004; Clayton et al., 2007; Crisan
et al., 2008; Ambler and Määttä, 2009; Blanpain and Fuchs, 2009).

INFLAMMATORY PHASE
Peripheral blood circulating hematopoietic stem cells (HSC) dif-
ferentiate into white blood cells such as neutrophils and mono-
cytes, which are recruited to the site of wound injury during the
inflammatory phase. Monocytes subsequently differentiate into
macrophages which secrete matrix metalloproteinases (MMPs) to
remove debris at the wound site and promote the healing process
(Dabiri and DiPersio, 2005). Neutrophils and macrophages also
release different cytokines, chemokines, and growth factors includ-
ing PDGF and TGF-β which activate fibroblasts and initiate the
proliferative phase (Gurtner et al., 2008; Kimmel et al., 2010).

PROLIFERATIVE PHASE
During the proliferative phase, fibroblasts infiltrate the wound,
produce MMPs (Dabiri and DiPersio, 2005), new matrix, and
interact with extracellular proteins through cell surface integrins
thereby promoting granulation. Fibroblasts undergo a pheno-
typic change to myofibroblasts, which align along the border of
the wound, generating a contractile force, facilitating wound clo-
sure. One study has demonstrated that neovascularization can
be accomplished by a non-angiogenic process regulated by con-
traction, likely to be induced by proto- and myofibroblasts, with
further angiogenesis optimizing blood vessel formation (Kilarski
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FIGURE 1 | Schematic representation of the cellular mechanisms that

pattern acute wound healing. The four main phases of wound healing are
hemostasis, inflammation, proliferation, and remodeling. Different cell types
are involved in regulating biomechanical and biochemical functions during
these phases of wound healing. The main source for these cell types are
different stem cell niches. Hematopoietic stem cells (HSCs), platelets,
neutrophils, and monocytes regulate hemostasis and inflammation.

Mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs),
pericytes, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and
fibroblasts regulate angiogenesis. Epithelial mesenchymal transitions (EMT),
fibroblasts and fibrocytes regulate collagen, and extracellular matrix (ECM)
production. Epidermal stem cells (ESCs) and keratinocytes regulate
epithelialization. Fibroblasts and proteolytic enzymes regulate remodeling in
the final phase of wound healing.
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et al., 2009). During this phase mesenchymal stem cells (MSCs)
migrate to the site of injury by responding to chemokine signaling
molecules and regulate the healing process (Crisan et al., 2008;
Riekstina et al., 2008; van Poll et al., 2008).

Angiogenesis, the formation of new capillaries from pre-
existing blood vessels, occurs by sprouting, intussusceptions
(non-sprouting), and looping from pre-existing vessels (Bick-
nell and Harris, 2004; Gerritsen, 2008). The angiogenic switch,
which stimulates new vessel formation is induced under condi-
tions of hypoxia, low pO2, and mechanical stress (shear stress).
Hypoxia induces angiogenesis through the hypoxia-inducible fac-
tor 1 (HIF-1) pathway with growth factor expression elevated in
hypoxic conditions in a HIF dependent manner (Semenza, 2007).
Macrophages, neutrophils, and fibroblasts all release growth fac-
tors which induce sprouting angiogenesis. Our laboratory has
previously demonstrated increased angiogenesis between 2 and
24 weeks after surgery in human surgical wounds (Brown et al.,
2002), which gradually reduced until 53 weeks after surgery, but
failed to return to pre-surgery basal levels; microvessel density
(MVD) was used as a surrogate marker of angiogenesis using
both CD31 and CD34 markers (Kumar et al., 2009; Valluru et al.,
2011).

Hematopoietic stem cell and endothelial precursor cells (EPC)
share a common stem cell origin from hemangioblasts and are
present in bone marrow (Gehling, 2006; Xiong, 2008; Lancrin
et al., 2009). During vasculogenesis or angiogenesis, circulating
and pre-existing EPC cells are attracted to the site of injury, and
differentiate into endothelial cells (Asahara et al., 1999; Hill et al.,
2003; Urbich and Dimmeler, 2004; Khakoo and Finkel, 2005), and
research in our laboratory has demonstrated increased numbers

of EPC found within blood vessels as early as 3 days post injury
(Valluru et al., 2011).

Shortly after injury, basal keratinocytes in close proximity to
the dermis migrate, proliferate, and differentiate into an epidermal
layer at the site of repair. Basal keratinocytes act as keratinocyte
stem cells, undergoing asymmetric cell division to form epider-
mal layers (Lechler and Fuchs, 2005; Clayton et al., 2007; Ambler
and Määttä, 2009; Blanpain and Fuchs, 2009). Epidermal stem
cells present in both the hair follicle region and the basal epider-
mal layer regulate epidermis formation by growth factors such as
EGF, keratinocyte growth factor (KGF), TGF-α, and TGF-β from
keratinocytes (Canic et al., 2004; Schultz, 2007).

REMODELING
Remodeling is the final phase of the wound healing process and
involves blood vessel regression and removal of the granulation
tissue by ECM remodeling and reconstruction (Dabiri and DiPer-
sio, 2005). Fibroblasts and fibrocytes play important roles in ECM
reconstruction, replacing old type III collagen with type I colla-
gen, and cross linking the collagen molecules. Elastin fibers are also
generated and the tensile strength of the wounded skin increases
to that approaching normal skin, resulting in the final production
of a scar (Hinz, 2007).

Therefore wound healing is dependent upon,and regulated by,a
complex interaction of different cell types, growth factors (PDGF,
TGF-β, TGF-α, EGF, FGF, IGF-1) and their receptors, integrins,
chemokines, cytokines, MMPs, tissue inhibitors of metallopro-
teinases (TIMP), proprotein convertase, and ECM components
(Table 1). Moreover it is becoming apparent these different stem
cell types may also act to either directly or indirectly regulate the

Table 1 | Regulators of the wound healing process.

Different stages of

wound healing

Different stem

cells

Different cell

types

Growth factors

and cytokines

MMP TIMP Collagen Integrins

Hemostasis Hemangioblasts, hematopoietic

stem cells, endothelial progenitor

cells, mesenchymal stromal

cells/stem cells

Platelets PDGF, TGF-β, TGF-α,

VEGF, IGF-1, and

bFGF

Type I, III, V, VI,

XII, XIV

Inflammatory

phase

Hematopoietic stem cells Monocytes IL-1, IL-6, IL-8, PDGF,

TGF-β, TGF-α, TNF-α,

IFN-γ, IGF-1, and

FGF

MMP-1,

MMP-8,

MMP-9,

MMP-12

α1β1

Neutrophils

Macrophages

Proliferative

phase: fibroblast

migration, matrix

mineralization,

angiogenesis,

granulation,

epithelialization

Mesenchymal stromal cells/stem

cells, endothelial progenitor cells,

epidermal stem cells

Fibroblasts IL-1, PDGF, TGF-β,

TGF-α, IGF-1, CTGF,

and EGF

MMP-1,

MMP-2,

MMP-3,

MMP-7,

MMP-9,

MMP-13,

MMP-14

TIMP-1,

TIMP-2,

TIMP-3,

TIMP-4

Type I, III, IV, V,

VI, VIII, XII, XIV,

XV, XVIII, XIX

α1, α2, α3,

α5

Endothelial

cells

PDGF, TGF-β, TGF-α,

VEGF, IGF-1, bFGF,

IL-8, bFGF, and EGF

α1β1,

α2β1, αVβ3

Keratinocytes EGF, KGF, TGF-β

bFGF, IGF, and TGF-α

MMP-1,

MMP-3,

MMP-9,

MMP-10

α5β1, αVβ5,

α2β1, αVβ6,

α2, α5, α6

Remodeling Mesenchymal stromal cells/stem

cells

Fibroblasts PDGF, TGF-β, EGF,

and bFGF

Type IV, VII,

XVII, XVIII, XIX

α1, α2, α3,

α5
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wound healing process. Although a plethora of factors are required
for successful physiological tissue repair, TGF-β, and its receptors
including Endoglin play an important role in all phases of the
wound healing process.

TRANSFORMING GROWTH FACTOR BETA SUPERFAMILY
The TGF-β Superfamily includes TGF-βs (1, 2, and 3) with a
molecular weight of 25-kDa, Activin (A, B, and AB), bone mor-
phogenetic proteins (BMPs), and growth differentiation factors
that bind to Type I, II, and III receptors with differential speci-
ficities; represented in Figure 2 (Lutz and Knaus, 2002; Groppe
et al., 2008; Lonn et al., 2009; Moustakas and Heldin, 2009).
TGF-β signaling is mediated by canonical (Smad-dependent)
and non-canonical (Smad-independent) mechanisms. The Smad-
independent pathways include components of the Wnt, MAP
kinase, phosphatidylinositol-3-kinase/AKT, and Rho-like GTPase
signaling pathways (Kang et al., 2009; Zhang, 2009). The Smad
family proteins (1–8) are molecules of 42-60 kDa, which are

classified as receptor-regulated Smads (R-Smads: Smad1, 2, 4,
5, and 8), common mediator Smad (Co-Smad: Smad4), and
inhibitory Smads (I-Smads: Smad6 and 7; Tao and Sampath,
2010).

Transforming growth factor betas regulate the phosphoryla-
tion of Smad family proteins (Wrighton et al., 2009; Liu and Feng,
2010). Phosphorylated R-Smads form both homomeric and het-
eromeric complexes with Co-Smad (Smad4) which accumulate in
the nucleus and are involved in transcriptional regulation of tar-
get genes in cooperation with other transcription factors (Ross and
Hill, 2008). Smad7 inhibits TGF-β signaling by preventing activa-
tion of Smad2 or Smad3, whereas Smad6 inhibits TGF-β signaling
by preventing activation of Smad1, Smad5, or Smad8 (Itoh and ten
Dijke, 2007; Figure 2). Through their relevant signaling pathways
TGF-βs play important roles in regulating development, hemosta-
sis, tissue regeneration, cell differentiation, proliferation, cell death
and maintaining the stem cell state (Kitisin et al., 2007; Watabe and
Miyazono, 2009; Pera and Tam, 2010).

FIGURE 2 | Schematic representation of theTGF-β superfamily

signaling pathways and cellular regulation during the wound

healing process. TGF-β Superfamily proteins transforming growth
factor beta (TGF-β), growth differentiation factors (GDFs), activin, and
bone morphogenetic proteins (BMPs) bind to Type I, II, and III
receptor complexes. This leads to activation of intracellular R-Smad,

Co-Smad, and I-Smad signaling cascades. These interactions regulate
hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs),
and endothelial progenitor cells (EPCs) from the stem cell niche. They
also regulate monocytes, fibroblasts, endothelial cells (ECs),
keratinocytes, and epithelial mesenchymal transitions (EMT) during
wound healing.
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THE ROLE OF TGF-β IN WOUND HEALING
TGF-β isoforms
Transforming growth factor beta is an important growth fac-
tor that regulates different cellular functions in all phases of
wound healing (Table 1; Figure 2), including ECM production,
protease expression, migration, chemotaxis, differentiation, and
proliferation of different cell types (Faler et al., 2006; Klass et al.,
2009). TGF-β exists as three isoforms TGF-β1, TGF-β2, and TGF-
β3. TGF-β1 is important in inflammation, angiogenesis, regu-
lates granulation tissue formation, extracellular matrix remod-
eling (Okuda et al., 1998), and is essential for re-epithelialization
(Schmid et al., 1993). Whilst full thickness skin wounds in TGF-
β1 knockout mice initially heal normally, mice die by 3–4 weeks
of age due to an excessive inflammatory response and vascular
defects (Shull et al., 1992; Kulkarni et al., 1993). Therefore TGF-β1
knockouts were developed on an immunodeficient background
which allowed study of wound healing in the absence of both
TGF-β1 and inflammation (Crowe et al., 2000). No appreciable
differences were seen in the rate of healing between wild-type and
heterozygous TGF-β1 mice, but a significant delay in wound heal-
ing was observed in TGF-β1−/− mice. All stages of wound healing
were affected, with delayed infiltration of inflammatory cells and
angiogenesis in the wound bed, deficient granulation tissue for-
mation, and decreased, unorganized apoptosis. It is interesting
that wound healing was not delayed in the absence of TGF-β1 or
lymphocytes alone, but was when both were absent. It was sug-
gested that this may be due to the delayed expression of TGF-β2
and TGF-β3 that occurs in the absence of TGF-β1 (Crowe et al.,
2000). TGF-β2 is known to be involved in all stages of wound heal-
ing including stimulation of angiogenesis and the recruitment of
inflammatory cells and fibroblasts to the wound site, thereby pro-
moting the production of collagen (Wahl et al., 1987). Similarly
TGF-β3 has been shown to promote wound healing by recruiting
inflammatory cells and fibroblasts to the wound site in addition
to stimulating angiogenesis (Barrientos et al., 2008). Therefore a
delayed expression of both may result in the observed phenotypes
in immunodeficient TGF-β1 knockout mice, but further work is
required to confirm this hypothesis.

Wound-puncture fluids contain high levels of TGF-β1, KGF,
VEGF, HGF, and MMP-1 (Aiba-Kojima et al., 2007). There is an
increased frequency of CD41/TGF-β1 producing T cells in the
peripheral blood and hypertrophic scar tissue of burn patients
(Wang et al., 2007a), and TGF-β1 is a chemoattractant of inflam-
matory cells, recruiting monocytes to the wound site (Wahl et al.,
1987). Higher levels of TGF-β1 are produced by burn patient
fibrocytes (Wang et al., 2007b).

Regulation of stem cells and epithelial mesenchymal transitions
by TGF-β
In the initial phase of rat wound healing MMP-9 and TGF-β
expression regulate cell migration to promote the clearance of the
inflammatory necrotic tissue (Zhu et al., 2005). TGF-βs control
hematopoiesis by regulating hemangioblasts and HSC prolifera-
tion (Turner et al., 1995; Ruscetti et al., 2005; Asmis et al., 2006;
He et al., 2006). Indeed TGF-β1 is a major regulator of HSC quies-
cence and TGF-β2 positively regulates early HSCs function (Asmis
et al., 2006). Skin also contains a reserve of skin-derived precursor

cells/MSCs (Riekstina et al., 2008). Cells with MSC markers also
express pericyte markers, which harbor stem cells on blood ves-
sel walls (Crisan et al., 2008). TGF-β1 regulates the proliferation
of MSCs by a non-canonical pathway involving crosstalk with
the Wnt signaling pathway through Smad3 dependent nuclear
translocation of β-catenin (Jian et al., 2006). TGF-β1 induces
increased smooth muscle actin expression and rapid differen-
tiation in hMSCs (Hung et al., 2006). Epithelial mesenchymal
transitions (EMT) occur during tissue repair and are regulated
by TGF-β1 via activation of the Erk signaling pathway (Xie et al.,
2004; Thiery and Sleeman, 2006; Chapkin et al., 2008; Wu et al.,
2008). A recent study demonstrated that EMT generates cells with
stem-like properties (Mani et al., 2008) which may assist dur-
ing tissue repair. TGF-β1 also increases expression of MMP-2 and
MMP-9 in airway epithelial cells (Lechapt-Zalcman et al., 2006)
and our laboratory has previously shown elevated MMP-2 and
MMP-9 levels associated with fibroblasts, during the angiogenic
phase in early human dermal wound healing (Gillard et al., 2004).
TGF-β2 is required for normal collagen homeostasis (Thompson
et al., 2006).

In humans, the expression of TGF-β1 and TGF-β2 is increased
in wounds by day 7, regulating scar contraction (Tian et al., 2000).
TGF-β1 modulates differentiation of fibroblasts into myofibrob-
lasts via Rho GTPase activation (Shephard et al., 2004; Smith
et al., 2006; Harvey et al., 2007; Wang et al., 2007b), regulating
the migratory phenotype of the myofibroblasts, with increased α-
smooth muscle actin expression and contractile force generation
in skin (Vaughan et al., 2000; Garrett et al., 2004; Padgett and
Reiss, 2007). With upregulation of α-smooth muscle actin expres-
sion there is a concomitant down-regulation of TGF-β1 expression
during wound healing (Ghassemifar et al., 1997).

Angiogenesis
The initial stages of angiogenesis during mouse corneal wound
healing is induced by a non-angiogenic process involving myofi-
broblast contraction, followed by sprouting angiogenesis which
is regulated by different growth factors (Kilarski et al., 2009).
During development TGF-β modulates vasculogenesis by regu-
lating hemangioblasts and EPCs, and then plays an important role
in angiogenesis (Bertolino et al., 2005), via activin like kinase 1
(ALK1) and ALK 5 (Type I receptor), TβRII (Type II receptor),
and Endoglin (Type III receptor) receptors leading to phospho-
rylation of cytoplasmic Receptor-Smad 1, 2, 3, and 5 (Bernabeu
et al., 2007; Gomes et al., 2010). Migration and proliferation of
tip and stalk endothelial cells is modulated through cross talk
between TGF-β, VEGF and notch-mediated signaling (Holder-
field and Hughes, 2008). Subsequently monocyte chemoattractant
protein-1 (MCP-1) regulates vascular maturation by stimulating
migration of vascular smooth muscle cells toward ECs via TGF-β
signaling (Ma et al., 2007).

Re-epithelialization
Transforming growth factor beta superfamily proteins are involved
in the control of epidermal homeostasis, hair follicle growth,
and melanogenesis (Botchkarev, 2003; Owens et al., 2008). Ker-
atinocytes strongly express TGF-β1 and TGF-β3, and weakly
express TGF-β2 (Amjad et al., 2007). TGF-β3 is involved in the
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maturation of scar tissue by regulating epidermal cell migration,
collagen deposition, and cellular proliferation in rabbit wound
healing (Nath et al., 1994; Tyrone et al., 2000; Bandyopadhyay
et al., 2006). TGF-β1 also promotes keratinocyte migration and re-
epithelialization in partial-thickness mice wounds (Tredget et al.,
2005), via Smad2 signaling (Hosokawa et al., 2005).

In summary TGF-β regulates many processes involved in
tissue repair including production of ECM, proteases, pro-
tease inhibitors, migration, chemotaxis, and proliferation of
macrophages, fibroblasts of the granulation tissue, epithelial, and
capillary endothelial cells. TGF-β also plays an important role in
regulating differentiation of HSC, MSC, EPC in addition to EMT
(Figure 2).

THE ROLE OF ENDOGLIN (CD105) IN WOUND HEALING
ENDOGLIN STRUCTURE
Endoglin is a type III auxillary coreceptor (TβRIII) for TβRII,
ALK1 and activin like kinase 5 (ALK5), and interacts with other
TGF-β family members (Figure 3). L-Endoglin and S-Endoglin
are two splice variants of Endoglin (ten Dijke et al., 2008; Le
et al., 2009). L-Endoglin is a 68,051 Da homodimeric transmem-
brane glycoprotein with a 561 amino acid extracellular domain,
25 amino acid membrane domain, and a 47 amino acid cyto-
plasmic tail (Gougos and Letarte, 1990). Dimeric S-Endoglin is
a 70 kDa protein with the maximum longitudinal dimension of
170 Å (Le et al., 2009). L-Endoglin C-terminus contains a PDZ-
binding motif (SerSerMetAla) which is an important determinant
of Rho guanine exchange factor function and cell phenotype, and
is absent in S-Endoglin (Liu and Horowitz, 2006; Bernabeu et al.,
2007). S-Endoglin leads to dysregulated TGF-β signaling in the
vasculature by activation of eNOS and vasodilation (Venkatesha
et al., 2006).

Endoglin is expressed on a number of cell types includ-
ing proliferating endothelial cells, activated monocytes, tissue
macrophages, stromal cells, pre-B cells, erythroid precursors, syn-
cytiotrophoblast, cytotrophoblasts, and tumor cells (Gougos and
Letarte, 1990; Dallas et al., 2008). Mutations in the Endoglin gene
can lead to hereditary hemorrhagic telangiectasia (HHT) and
defective angiogenesis (Llorca et al., 2007; ten Dijke et al., 2008).
TGF-β1, TGF-β2, TGF-β3, activin, BMP-2, and BMP-7 bind to
Endoglin by association with the TGF-β type II receptor (Figure 3;
Barbara et al., 1999). In myoblasts L-Endoglin regulates the TGF-
β/ALK1 pathway and S-Endoglin regulates TGF-β/ALK5 pathway
(ten Dijke et al., 2008).

It is well known that hypoxic conditions occur during wound
healing. Hypoxia controls angiogenic growth factor and cytokine
production, in addition to inducing Endoglin expression through
the HIF-1 and p38 pathways (Guo et al., 2004a). The TGF-β1, p38
and JNK pathways also regulate Endoglin mRNA and protein levels
(Zhu et al., 2003). The Endoglin promoter region contains binding
sites for the multiprotein complex Sp1.Smad3.HIF-1 which regu-
lates cross talk between hypoxia and TGF-β pathways, with basal
Endoglin transcription highly dependent on Sp1 interaction with
other factors (Sánchez-Elsner et al., 2002). TGF-β/Endoglin medi-
ated signaling during hypoxia inhibits cell apoptosis by caspase 3
and 8 inhibition (Li et al., 2003). Caspases 3 and 8 contribute to cell
death and promote wound healing, and mice deficient in caspases

3 and 8 demonstrated delayed dermal wound healing (Lee et al.,
2009; Li et al., 2010).

ENDOGLIN REGULATION OF CELL FUNCTION
Endoglin, in combination with TGF-β family members, plays an
important role in regulating different cellular functions. Endoglin
interaction with zyxin, ZRP-1, tctex2b, and arrestin proteins regu-
late endothelial cell adhesion,migration,and proliferation (Conley
et al., 2004; Bernabeu et al., 2007). Interaction of Endoglin with
TGF-β1 mediated by the type I TGF-β receptor ALK5, upregu-
lates cytoplasmic Smad2 levels leading to endothelial nitric oxide
synthase (eNOS) expression, which is involved in regulating vas-
cular function (Santibanez et al., 2007). Endoglin also interacts
with a scaffolding protein, GAIP-interacting protein C (GIPC),
which is mediated by a class I PDZ-binding motif in the cyto-
plasmic domain. Endoglin co-localizes with GIPC and enhances
TGF-β1 induced phosphorylation of Smad1/5/8 (Lee et al., 2008).
Endoglin promotes ACVRL1 (activin A receptor type II-like 1)
induced phosphorylation of Smad1/5/8 (Mahmoud et al., 2009),
enhancing endothelial cell growth and adhesion.

Interaction between Endoglin and the scaffold protein β

arrestin2 enhances internalization of Endoglin by endocytosis.
This process is ALK1 dependent and inhibits TGF-β mediated ERK
signaling (Lee and Blobe, 2007), resulting in decreased endothelial
cell migration, thus is likely to be important during angiogenesis.
These studies show that Endoglin regulates a number of cell func-
tions such as cell adhesion, migration, permeability, apoptosis and
proliferation in a variety of cell types (Figure 3).

ENDOGLIN AND STEM CELLS
Due to the important role Endoglin plays in a number of cellu-
lar processes and the elevated expression during wound healing,
Endoglin appears likely to have a central role in this process
(Torsney et al., 2002; Figure 4). Different cell types such as mono-
cytes, neutrophils, and stem cells regulate the inflammatory phase.
Endoglin is functional marker for long term repopulating HSCs
(EndoglinPositive Sca-1Positive RhodamineLow; Chen et al., 2003).
Some experimental studies have shown that Endoglin is highly
expressed in megakaryocyte–erythroid progenitors, with lower
expression in granulocyte–macrophage progenitors, and com-
mon myeloid progenitors, which gradually reduces in mature cell
types (mature granulocytes and Ter119+ erythroid cells; Pronk
et al., 2007). Endoglin is also expressed in inflammatory cells
including macrophages and T cells (Torsney et al., 2002). Throm-
bin is involved in the coagulation cascade and converts soluble
fibrinogen into insoluble strands of fibrin and is inactivated
by antithrombin and serine protease inhibitors. Thrombin acti-
vated protease-activated receptor 1 (PAR1), induces endocytosis
of Endoglin and TβRII, thereby down regulating TGF-β signal-
ing in endothelial cells, demonstrating the role of thrombin in
regulating angiogenesis (Tang et al., 2005).

Absence of Endoglin (Eng−/−) results in a reduction in heman-
gioblasts and decreases the cell number with hematopoietic poten-
tial, thus demonstrating the requirement and importance of
Endoglin for hemangioblast and early hematopoietic development
(Perlingeiro, 2007). Endoglin is highly expressed in MSCs but this
gradually reduces with increased differentiation potential, with no
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FIGURE 3 | Hypothetical model of Endoglin structure and function.

Endoglin, also called CD105, is a type III auxiliary coreceptor (TβRIII).
L-Endoglin and S-Endoglin are two isoforms of Endoglin. L-Endoglin shown in
this figure is a 68,051 Da homodimeric transmembrane glycoprotein that
binds to TGF-β1, TGF-β2, activin, BMP-2, and BMP-7 by associating with the
TGF-β type II receptors (ActRII, ActRIIB, ALK1, ALK2, ALK3, ALK5, ALK6,
BMPRII, and TβRII). Intranuclear events show that Sp1 regulates Endoglin
transcription by interacting with other factors in the hypoxic environment.

TGF-β1 and β3 regulate intracellular Smads (Smad1/5, Smad 2/3, and Smad4)
via the TGF-β receptor complex, which regulates cell proliferation, adhesion,
and permeability. Intracytoplasmic events show that Smad6 inhibits
phosphorylation of Smad1/5 and Smad7 inhibits phosphorylation of Smad2/3.
TGF-β signaling through Endoglin induces inhibition of caspases 3 and 8 and
therefore inhibition of apoptosis. Endoglin interaction with ZRP-1, Zyxin, and
Tctex2b regulates cell adhesion and migration. Thrombin induces
internalization of Endoglin TGF-βRII complex by endocytosis.
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FIGURE 4 | Schematic representation of Endoglin expression in

different cell types during the wound healing process. Endoglin is
expressed on stem cells and proliferating cells, and is an expression marker
for MSCs, HSCs, and megakaryocyte–erythroid progenitors. Eng+9 and
Eng+7 function as potent hematoendothelial enhancers and Endoglin is
expressed in proliferating endothelial cells, VSMCs, pericytes, and basal
keratinocytes. The functional role of endoglin on all these cell types in
wound healing is not currently well understood.

expression seen on differentiated cells (Jin et al., 2009). Circulating
Endoglin expressing mesenchymal progenitor cells are also present
in normal individuals (Zvaifler et al., 2000), and the percentage of
MSCs (Endoglin positive, CD44+, CD13+, CD29+, and CD90+)
is increased during burn injury (Mansilla et al., 2006), suggesting
a role during healing.

ANGIOGENESIS
Endoglin is highly expressed on proliferating endothelial cells and
pericytes during angiogenesis (Crisan et al., 2008; Dallas et al.,
2008), with increased Endoglin expression observed in blood ves-
sels between days 2 and 28 of wound healing (Torsney et al.,
2002). Studies in our laboratory have also demonstrated elevated
Endoglin expression in blood vessels in surgical wounds from
as early as 3 days post surgery until 24 weeks post surgery (Val-
luru et al., 2011). Genetic disruption of TGFβ1, its TβRII and
Endoglin lead to VSMC/pericyte differentiation defects resulting
in cardiovascular failure and subsequent embryonic lethality (ten
Dijke et al., 2008). Indeed Endoglin knockout mice die in utero
(day 10.5) and fail to form mature blood vessels in the yolk sac
whereas Endoglin+/− mice demonstrate significant defects in vas-
cular repair (van Laake et al., 2006), although wound healing has
yet to be investigated in these animals.

Endoglin may also play an important role in the angiogenic
process by regulating endothelial tip and stalk cells, and appears to
have a pivotal role in blood cell mediated vascular repair (van Laake
et al., 2006). Endoglin regulated through TGF-β/ALK1 signaling

induces phosphorylation of Smad1/5/8 which results in endothe-
lial cell proliferation (Lebrin et al., 2004). In contrast Endoglin
signaling through TGF-β/ALK5, induces Smad2/3 phosphoryla-
tion and regulates cellular permeability (Bernabeu et al., 2007).
Endoglin, TβRII and ALK1/ALK2 receptor complexes regulate the
phosphorylation of Ras and activated ERK1/2. ERK1/2 and JNK1
may inhibit the Smad2/3 signaling activated by the Endoglin,
TβRII and ALK5 receptor complex (Guo et al., 2004b). Down-
stream signaling of Smad2/3 promotes cell growth. ALK1 is the
preferred TGFβ receptor for Endoglin threonine phosphorylation
in HUVECs (Lebrin et al., 2004; Koleva et al., 2006). Expression
of Endoglin is also observed on perivascular cells, and during
long term culture, cells express MSC markers and exhibit differ-
entiation potential (Crisan et al., 2008). In addition an increased
Endoglin expression has been observed in vascular smooth mus-
cle cells in human atherosclerotic plaques (Conley et al., 2000; Bot
et al., 2009). These studies demonstrate that Endoglin may have a
role in maintenance of vascular integrity in response to injury.

FIBROBLASTS AND RE-EPITHELIALIZATION
Fibroblasts play an important role in fibroplasia and granulation
tissue formation during wound healing, with significant elevation
in fibroblast-associated Endoglin levels observed between days 4
and 10 of wound healing (Torsney et al., 2002). Fibroblast cells
expressing Endoglin demonstrate myogenic differentiation poten-
tial in vivo (Conconi et al., 2006). However we have been unable to
demonstrate an elevation in Endoglin expression in human wound
fibroblasts.

During epithelialization, homeostasis is regulated by skin or
epidermal stem cells located at the bulge region of the hair
follicle, keratinocytes of the interfollicular epidermis, and the
sebaceous glands. During both wound healing and skin home-
ostasis, epidermal stem cells from the bulge region migrate to the
hair follicle region, the epidermal basal keratinocyte region and
the sweat glands (Morasso and Tomic-Canic, 2005; Ambler and
Määttä, 2009; Blanpain and Fuchs, 2009). Experimental studies
have shown Endoglin expression in unwounded human epider-
mis (basal keratinocytes) and skin appendages (hair bulb ker-
atinocytes), suggesting Endoglin may attenuate TGF-β1 signaling
in normal epidermis. Keratinocytes interact with fibroblasts in
a TGF-β dependent manner during the wound healing process
(Werner et al., 2007) and some studies have shown that the
mesenchymal and epithelial interaction in skin is crucial for
homeostasis and regeneration (Yuji et al., 2005).

In summary, Endoglin is expressed in a broad spectrum of
proliferating cells and stem cells, regulating important cellu-
lar functions that are involved in the wound healing process
(Figure 4).

FUTURE DIRECTIONS
Transforming growth factor beta plays a critical role in the dif-
ferent phases of wound healing by regulating production of ECM,
proteases, protease inhibitors, migration, chemotaxis, and prolifer-
ation of different cell types including stem cells, which regulate scar
contraction, angiogenesis, granulation tissue formation, extracel-
lular matrix remodeling, and scar maturation. TGF-β binds to
the TGF-β receptor complex and regulates intracellular cascades.
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Endoglin is a member of TGF-β receptor complex which is highly
expressed in a number of proliferating cell types and differentiat-
ing stem cells, during the initial phase of wound healing. Endoglin
is not only a proliferation marker but also regulates cellular func-
tions such as cell adhesion, migration, and permeability. Indeed
Endoglin may play an important role in regulating the mobiliza-
tion of stem cells from a specific niche to the wounded region.
Endoglin and TGF-β are also highly expressed in pathological
conditions that demonstrate an amplified inflammatory environ-
ment and increased angiogenesis, such as fibrosis, atherosclerotic
plaques, and metastatic cancer (Nikiteas et al., 2007; Oxmann et al.,
2008; Meurer et al., 2011). Although the exact mechanisms have
yet to be identified, in these pathological conditions TGF-β and
Endoglin are thought to be involved in similar pathways to those
described in wound healing, resulting in increased ECM produc-
tion, protease expression, migration, chemotaxis, proliferation,
and differentiation of different cell types including endothelial and
tumor cells. An increased understanding of the functional role of
TGFβ and Endoglin in physiological wound healing, may therefore
also provide insight into their importance in pathology. Impor-
tantly, in these disease states, inflammation and angiogenesis are
not controlled, unlike tissue repair, where a physiological balance
occurs and there is regulated control. Improving our knowledge
of the functional role of these proteins may identify therapeutic
targets for the treatment of abnormal wound healing and patho-
logical inflammatory and angiogenesis-dependent conditions.

To allow the potential development of TGF-β and Endoglin
targeted therapy it is necessary to fully evaluate their function
using in vivo wound healing models. The murine incisional wound
model demonstrates complete wound healing, and remodeling is
accomplished within 4 weeks (Sandlund et al., 2006), whereas in
humans the remodeling phase is incomplete even after 12 months
(Brown et al., 2002; Gillard et al., 2004; Kumar et al., 2009).
Although the process is much shorter than in humans, the murine
incisional wound model demonstrates the same phases and pat-
terns of markers identified in normal human wound healing
(Sandlund et al., 2006) and is therefore an extremely useful model.
Indeed, the application of mechanical loading to this model results
in increased fibrosis, similar to human hypertrophic scars (Aarabi

et al., 2007), enabling a comparison between normal and patholog-
ical wound healing. Studying functional angiogenesis in normal
wound healing, can be achieved by adaptation of the dorsal skin-
fold chamber model (Bingle et al., 2006) to include a wound
incision, in combination with intravital microscopy which allows
the assessment of angiogenesis, vessel function, and blood flow,
in response to application of different inhibitors (Machado and
Mitchell, 2011). The roles of TGF-β and Endoglin in wound heal-
ing need to be evaluated in appropriate in vivo models on a
knockout/specific cell type knockdown background (see TGF-β
Isoforms) and/or in combination with targeted inhibitors. In this
manner it will be possible to establish when and how TGF-β and/or
Endoglin may be targeted as a potential therapy.

As TGF-β signaling is involved in a multitude of different path-
ways and expressed on a variety of cell types, despite evidence
that TGF-β1 knockout will result in delayed wound healing and
impaired angiogenesis (Crowe et al., 2000), it is extremely unlikely
that systemic inhibitors directly targeting TGF-β1 will be of ther-
apeutic use due to the large potential for side effects. It is possible
that burns patients developing hypertrophic scars, which demon-
strate increased TGF-β expression and a subsequent excess of
angiogenesis and fibrosis (Wang et al., 2007b), may benefit from
local application of a specific TGF-β inhibitor. However, it is more
likely that targeting a specific downstream signaling pathway may
have therapeutic potential, especially in metastatic cancer where
localized treatment is extremely difficult, and therefore further
work is required to elucidate which of the plethora of downstream
signals will be of key importance. Endoglin has a more restricted
expression pattern, so targeting with specific inhibitors is likely to
cause fewer side effects than TGF-β inhibitors. However, further
work is required to establish the signaling pathways associated
with Endoglin and the effects of specifically inhibiting this recep-
tor molecule, as although understanding of the mechanisms of
actions of Endoglin has significantly increased in recent years, the
exact signaling pathways involved require definition.
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