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After the genomic era, proteomic corresponds to a wide variety of techniques that study
the protein content of cells, tissue, or organism and that allow the isolation of protein
of interest. It offers the choice between gel-based and gel-free methods or shotgun pro-
teomics. Applications of proteomic technology may concern three principal objectives in
several biomedical or clinical domains of research as in osteoarthritis: (i) to understand
the physiopathology or underlying mechanisms leading to a disease or associated with a
particular model, (ii), to find disease-specific biomarker, and (iii) to identify new therapeutic
targets.This review aimed at gathering most of the data regarding the proteomic techniques
and their applications to osteoarthritis research. It also reported technical limitations and
solutions, as for example for sample preparation. Proteomics open wide perspectives in
biochemical research but many technical matters still remain to be solved.
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INTRODUCTION
OSTEOARTHRITIS
Osteoarthritis (OA) is a progressive disorder characterized by the
destruction of articular cartilage accompanied by subchondral
bone sclerosis and synovial inflammation. Pain is the main symp-
tom of OA. In the early stages of disease, pain occurs only when
the joint is required. In the later stages of disease, pain is felt not
only at every movement and but also at rest. The movements of the
involved joints are limited. It installs a very debilitating functional
impairment for the patient. Physical inactivity is settled down with
its own set of physiological and psychological impacts. OA is the
major cause of physical disability in people over 50 years of age,
excluding traumatic causes. After 65 years, 70–80% of individuals
show radiological signs of OA in at least one joint.

Multiple causes lead to OA development. Genetic predisposi-
tions were identified in specific hand or hip localization of OA

Abbreviations: 1DE, one-dimensional electrophoresis; 2DE, two-dimensional
electrophoresis; 2D-DIGE, two-dimensional difference gel electrophoresis; CIA,
collagen-induced arthritis; COMP, cartilage oligomeric matrix protein; CRP, C-
reactive protein; DMOAD, Disease-modifying OA drug; HPLC, high performance
liquid chromatography; ICAT, isotope-coded affinity tag; IL, interleukin; iTRAQ,
isobaric tag for relative and absolute quantitation; LC, liquid chromatography;
LRG, leucine-rich alpha 2 glycoprotein; MALDI, matrix-assisted laser desorp-
tion/ionization; MIAs, miscellaneous inflammatory arthritides; MMP, matrix met-
alloproteinase; MS, mass spectrometry; MRM, multiple-reaction monitoring; OA,
osteoarthritis; RA, rheumatoid arthritis; ReaA, reactive arthritis; ROS, reactive oxy-
gen species; RT–PCR, reverse transcriptase and polymerase chain reaction; SELDI,
surface-enhancer laser desorption/ionization; SOD, superoxide dismutase; TIINE,
new epitope of type II collagen; TLR, toll-like receptor; TNF, tumor necrosis factor;
WB, western blot.

(Hunter et al., 2004; MacGregor et al., 2009) or in generalized
OA (Miyamoto et al., 2007; Evangelou et al., 2009) and could
be implicated in 15% of OA (Felson, 2010). Aging, obesity, and
being a female are well-known risk factors of OA but others para-
meters implicated in the physiopathology of the disease remain
to be detailed. In recent years, an association between diabetes
mellitus, metabolic syndrome, and other conditions characterized
by impaired glucose metabolism have also been postulated to be
associated with OA (Burner and Rosenthal, 2009; Rosa et al., 2009,
2011; Berenbaum, 2011).

Currently, the diagnosis of OA is based on symptoms and
radiological signs which occur late during disease progression.
More specifically, diagnosis is based on cartilage integrity. How-
ever, articular cartilage is invisible on radiographs and must be
assessed indirectly by the joint space width corresponding to the
spacing between subchondral bone ends in a joint. This method
does not allow detection of early structural damage, and its use
in follow-up of the disease is not recommended. Moreover, the
diagnosis of OA occurs with the appearance of pain, when car-
tilage degradation is often already advanced. Patients are there-
fore treated for symptoms with anti-inflammatory drugs and
analgesics because no disease-modifying drugs (DMOAD) are
currently available.

PROTEOMICS
Proteome was originally defined as the complete protein content
of a cell, a tissue or an organism. The term was proposed by Wilkins
in 1994 (Wilkins et al., 1996). Because protein expression is depen-
dent on environmental conditions, thus making the proteome a
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very dynamic structure, the original definition was specified: the
proteome is the complete protein set of a cell, tissue, or organ-
ism considered at a particular moment, in a specific environment.
Succeeding to the genomic era, this direct evaluation of protein
expression is essential for the analysis of biological system. Indeed,
there is no correlation between protein abundance and mRNA
levels (Gygi et al., 1999a). This was illustrated by Lorenz et al.
(2003a) who have shown a poor correlation between the tran-
scriptome and the proteome modifications in synovial tissue from
OA and rheumatoid arthritis (RA) patients. Furthermore, post-
translational modifications bring supplementary variations in the
proteome that cannot be analyzed at the gene level.

The principle of the method relies on the separation of proteins
and their further analysis using either gel-based or gel-free meth-
ods. Protein separation methods are coupled to spectrometer for
identification by mass spectrometry (MS; Figure 1). Several modes
of analysis are available in MS. They differ markedly by the ion-
ization source of the sample. The main sources used in proteomic
analysis are matrix-assisted laser desorption/ionization (MALDI)
and surface-enhancer laser desorption/ionization (SELDI). These
techniques allow a soft ionization of molecules without excessive
fragmentation, making the analysis of proteins possible. In the
MALDI, the sample is co-crystallized with the matrix and then
deposited on a metal support. The source of ionization is a nitro-
gen laser that bombards the sample. The energy transmitted by
the laser is absorbed by the matrix and the input of energy causing
it expands in the gas phase with the molecules contained in the
sample. MALDI ion source is mainly coupled to an analyzer or
time-of-flight (TOF). Its speed, sensitivity, simplicity, and repro-
ducibility make it a very powerful technique for the detection and
identification of proteins. However, in many diseases, molecules
of interest are often present in very small quantities making them

difficult to detect. The SELDI-TOF technology is based on the
retention of proteins to small chromatographic surfaces treated to
selectively adsorb proteins based on their physicochemical proper-
ties. This technique simplifies the protein mixture to be analyzed.
Many types of samples such as biological fluids and cell extracts, or
cell lysates and histological sections can be analyzed. The proteins
of interest are coated to allow their crystallization and facilitate the
desorption and ionization generated by the laser in the drive. In
single MS mode, the spectrometer quantifies a protein/peptide and
determines its structure and its molecular mass. In tandem mode
(MS/MS), ions from the first fragmentation are selected and frag-
mented, allowing identification of the protein/peptide present in
the sample.

Applications of proteomic technology may concern three prin-
cipal objectives in several biomedical or clinical domains of
research as in OA: (i) to understand the physiopathology and
underlying mechanisms leading to a disease or associated to a
particular model, (ii), to find disease-specific biomarker, and (iii)
to identify the targets of new therapeutic and their mechanisms of
action. Different technologies are available and appropriate to be
used in these aspects of investigation. Here, we present different
technologies used in proteomic analysis and their main applica-
tions and scientific contributions in the field of arthritis research
(Table 1).

GEL-BASED METHODS
TWO-DIMENSIONAL ELECTROPHORESIS-BASED METHODS
Two-dimensional electrophoresis (2DE) is the standard proteomic
method. It is widely used to compare the proteome of two sam-
ples or more. In this technique, proteins extracted from various
samples are separated according to their isoelectric point in first
dimension and depending on their molecular mass in the second

FIGURE 1 | Proteomic strategies to quantify and identify biomarkers of

osteoarthritis from different kind of samples. Proteins extracted from
samples could be separated by electrophoresis in one (1DE) or two (2DE)
dimensions. Proteins are labeled before or after gel migration to perform
quantification. After in-gel digestion proteins are identified by mass
spectrometry. Gel-free methods involve the separation of digested peptides

which could be quantified directly by mass spectrometry analysis. 1DE,
one-dimensional electrophoresis; 2DE, two-dimensional electrophoresis;
2D-DIGE, two-dimensional-differential in-gel electrophoresis; LC, liquid
chromatography; MS, mass spectrometry; MRM, multiple-reaction
monitoring; SILAC, stable isotope labeling by amino acid; ICAT, Isotope-coded
affinity tag; iTRAQ, isobaric tag for relative and absolute quantitation.
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Table 1 | Identification of protein in OA samples with proteomic techniques.

Reference Sample Technique Results

Sinz et al. (2002) Plasma and synovial fluid 2DE Identification of fibrinogen beta chain degradation products in synovial fluid

of RA, OA, and ReaA patients; identification of calgranulin B and C as bio-

marker of RA in synovial fluid; identification of serum amyloid A as biomarker

of RA in both plasma and synovial fluids

Hermansson et al. (2004) Cartilage explant 2DE Increase in type II collagen synthesis, presence of regulatory proteins as

activin A, connective tissue growth factor and cytokine-like protein C17

Catterall et al. (2006) Chondrocytes in

monolayer

2DE Beta-2-microglobulin, S100A11, matrix MMP-1 and -3, peroxidin 1, YKL40,

cyclophilin A, transthyretin, and cofilin

Ruiz-Romero et al. (2008) Human OA chondrocytes

in monolayer

2DE Twenty-eight proteins altered by OA, 19 of them increased and 9 of them

decreased Increase of four proteins (GRP78, HSP90β, GSTO1, and ANXA1)

confirmed by immunoblotting and immunohistochemistry

Ruiz-Romero et al. (2009) Human OA chondrocytes

in monolayer

2DE–DIGE Specific pattern of expression of mitochondria

Lambrecht et al. (2008) OA chondrocytes in

alginate beads

2DE, Sypro ruby

staining

Differential expression of proteins in the intact and damaged zones of

cartilage. Identification of vimentin and cofilin

Wilson et al. (2008) Mouse cartilage explants 1DE + 2DE–DIGE Identification of differentially abundant proteins in media of explants control

or treated with interleukin-1 alpha or all-trans-retinoic acid

Xiang et al. (2004) Chondrocyte lysate 2DE Triosephosphate isomerase in 25% of OA samples

Stevens et al. (2008) Cartilage explants 1DE Identification of new cartilage proteins: CD109, platelet-derived growth fac-

tor receptor-like, angiopoietin-like 7, and adipocyte enhancer binding protein

1. Release of type VI collagen, COMP, and fibronectin after compression

Haglund et al. (2008) Rat chondrocytes 1D-LC–MS/MS TLR activation after LPS stimulation

de Seny et al. (2011) OA serum SELDI Identification of 4 potential biomarkers: V65 vitronectin fragment, C3f

peptide, CTAP-III, and m/z 3762 protein

Kamphorst et al. (2007) OA synovial fluid NanoLC–MS Peptide profiling

Nemirovskiy et al. (2007) Cartilage explant LC–MS/MS TIINE identification

Nemirovskiy et al. (2010) Synovial fluid and serum LC–MS/MS TIINE measurement

Ji et al. (2010) Model of mesenchymal

stem cell differentiation

iTRAQ Identification of 1756 proteins 100 of them were modified in abundance

between chondrogenic differentiated and undifferentiated stem cells. Valida-

tion of six modifications by western-blotting

Dean and Overall (2007) Fibroblasts iTRAQ + ICAT MMP-2 degradome

Polacek et al. (2010a) Cartilage explants and

chondrocytes

SILAC Identification of the secretome

Henrotin et al. (submitted) Urine 2D-DIGE Thirteen proteins identified. Focus on fibulin-3 specific sequences

dimension on a polyacrylamide gel. Traditionally, proteins were
stained by silver nitrate, Coomassie blue, or fluorescent dye. After
an in-gel trypsin digestion, the identity of proteins is determined
by MS/MS.

Several studies described below used 2DE in the context of
OA research. However, this traditional method showed some
limitations in term of reproducibility. Indeed, gel to gel varia-
tion leading to significant variability is classically observed. This
issue makes difficult to distinguish between the system variations
and the induced biological changes. Moreover, available staining
methods such as silver nitrate or Coomassie blue, lack of sensitiv-
ity and have a poor dynamic range, then limiting the quantitative
performance of the technique.

To overcome these technical limitations, 2DE has recently
been improved by the introduction of labeling before the migra-
tion of proteins, allowing a simultaneous migration of differ-
ent samples on a single polyacrylamide gel. Two-dimensional

difference gel electrophoresis (2D-DIGE) methodology is a pow-
erful tool for the investigation of protein expression profiles
in multiple sets of samples (Unlu et al., 1997; Marouga et al.,
2005). Samples can be individually labeled with Cy3 or Cy5
CyDye DIGE Fluors, whereas Cy2 CyDye DIGE Fluor is used to
label a pooled sample comprising equal amounts of each sam-
ple, then acting as an internal standard (Figure 2). Interesting
spots with differential fluorescent intensity between Cy3 and Cy5
are removed from the preparative gel after post-staining with
Coomassie Blue in order to allow proteins identification by MS
analysis.

In the context of OA research, 2DE was used to find disease-
specific proteins by comparing the protein content of biological
fluids, cells (chondrocytes), or other biological material such as
tissues (cartilage, synovial membrane) collected from patients and
healthy controls. Descriptive applications were also performed to
gain insights into arthritic diseases.
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FIGURE 2 | Overview of the proteomic workflow using 2D-DIGE (A) or

gel-free (B) approaches for differential analysis. (A) 2D-DIGE approach (1)
Proteins are extracted from sample which could be optimized for complexity
reduction or particular protein identification; (2) Three fluorescent dyes were
used. Samples A and B were fluorescently labeled with either Cy3 or Cy5, and
a pooled internal standard is labeled with Cy2; (3) Samples are mixed and
resolved in the same 2DE gel. Protein spot pattern could be visualized for each
dye by selection of specific wavelength. 2D images are analyzed by specific

software and internal standard is used for normalization; (4) Differentially
expressed protein spots are excised from a preparative gel and identified by
mass spectrometry. (B) Gel-free approach. Proteins or peptides could be
labeled at different stages of sample preparation depending on SILAC, ICAT,
or iTRAQ technology. Light and heavy forms of isotopic analogs are resolved
by 2D-LC and then quantified and identified by mass spectrometry. SILAC:
stable isotope labeling by amino acid in cell culture; ICAT: isotope-coded
affinity tag; iTRAQ: Isobaric tag for relative and absolute quantitation.

2DE applied to biological fluids
By their easy access and their abundant availability, serum and
plasma are samples of choice for the identification of new bio-
markers. Synovial fluid is in direct contact with the cartilage and
may reflect the metabolism of chondrocytes but synovial fluid
sampling is difficult. Exchanges between the serum and synovial
fluid allow the nutrition of cells but also the release of substances
from the joint into the peripheral blood. So, synovial fluid and
plasma are often investigated to discover new biomarkers.

Plasma and synovial fluid from patients with OA, RA, or reac-
tive RA (ReA) were studied (Sinz et al., 2002). The authors com-
pared the composition of plasma and synovial fluid from each
patient. They showed that the products of degradation of fibrino-
gen were abundant in synovial fluid with a variable ratio depending
on the disease. This study revealed the presence of specific spots
containing calgranulin B (S100A9) in the synovial fluid of RA
patients. They found the presence of serum amyloid A in syn-
ovial fluid and plasma of RA patients, but not in samples from
OA patients (Sinz et al., 2002). The modification of the protein

S100A9 was also observed in synovial fluid by other team show-
ing a correlation between the level of S100A8/S100A9 complex in
plasma and synovial fluid and its capability to discriminate RA
from other inflammatory diseases (Drynda et al., 2004).

In urine, we used 2D-DIGE technology to compare the pro-
teome of young healthy volunteers and late-stage OA patients
(Henrotin et al., submitted). We identified 13 proteins from spots
that exhibited an abundance ratio greater than 1.5 between groups.
We also focused on specific sequences of fibulin-3, the only extra-
cellular matrix protein found to be significantly modified in the
proteome of urine of OA patients.

The sample preparation represents an important issue for 2DE.
High-abundant proteins are present in milligram (mg/ml) quan-
tities particularly in biological fluids and represent more than
95% of the total proteins in plasma. Proteins of interest as poten-
tial biomarkers are usually present in samples at levels as low as
nanogram (ng/ml) to picogram (pg/ml), making them difficult
to detect among abundant proteins. Strategies to remove them
consist in the use of immunoaffinity columns retaining the two
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more abundant proteins, i.e., albumin and immunoglobulins or
up to 20 of the most abundant proteins. Some problems linked to
these commercial disposable columns reside in their high cost or
in their employment. A new method was recently proposed for the
depletion of immunoglobulins in serum by thiophilic chromatog-
raphy (Salgado et al., 2010). The authors applied this technique to
compare RA with healthy control sera.

2DE applied to cells and tissues
Articular cartilage is a poorly cellular structure with chondrocyte
as the only one cell type. The poor cellularity of human cartilage
requires an expansion of cells in culture to obtain enough material
to proceed to the proteomic analysis. Another technical challenge
is that over 90% of articular volume is majorly composed of large
proteins such as collagens or proteoglycans. These proteins have
to be removed from sample before 2DE because, as in biological
fluids, they hide minor proteins and interfere with the migration
of proteins during isoelectric focusing.

A method to analyze the protein secreted by cartilage explants
has been developed (Hermansson et al., 2004). They are easily
resolved on gels after aggrecan depletion by precipitation with
cetylpyridinium chloride. By incorporation of 35Sulfur in culture,
the authors identified newly synthesized proteins. They compared
the protein pattern of OA and healthy adult cartilage. The results
of this study concerned an increase in type II collagen synthesis in
OA and the presence of regulatory proteins as activin A, connective
tissue growth factor, and cytokine-like protein C17.

In the same way, the proteins secreted by chondrocytes in
monolayer culture stimulated by cytokines as interleukin (IL)-1
and oncostatin were analyzed (Catterall et al., 2006). 2DE allowed
the identification of low molecular proteins or fragments: beta-2-
microglobulin, S100A11, matrix metalloproteinases (MMP)-1 and
-3, peroxidin 1, a member of the “mammalian chitinase-like pro-
teins” (YKL40), cyclophilin A, transthyretin, and cofilin. As with
the previous investigation, the depletion of abundant proteins was
required to improve the resolution in the upper part of the gels.
This was achieved using cetylpyridinium chloride precipitation
and anion exchange.

The 2DE technique was used to compare the chondrocytic pro-
teome from control and OA patients (Ruiz-Romero et al., 2008).
Twenty-eight proteins were showed to be altered by OA, 19 of
them were increased and 9 of them were decreased. The increase
of four proteins (GRP78, HSP90β, GSTO1, and ANXA1) was con-
firmed by immunoblotting and immunochemistry. In addition,
the authors showed that IL-1 increased not only the gene expres-
sion but also the content of the cited proteins by chondrocytes.
The same authors further showed by 2D-DIGE technology that a
larger number of proteins were concerned by a statistically signif-
icant modification in quantity in the analyzed samples. Moreover,
the authors improved their investigations by focusing on a partic-
ular organite of the cell, i.e., the mitochondria (Ruiz-Romero et al.,
2009). The expression of numerous proteins was found to vary in
mitochondria of OA cells. Among them, three forms of superoxide
dismutase (SOD)-2 were decreased. SOD is an important actor of
the oxidative protection pathway. This decrease means that dur-
ing OA, the cell defense against oxidative stress is impaired. The
authors confirmed the observed modifications by western blot

(WB), reverse transcription and polymerase chain reaction (RT–
PCR), and immunohistochemistry on cartilage tissues. On the
contrary, TRAP1 was found to be increased by 2D-DIGE analysis
of proteome modification in OA. This protein is related to the pro-
tective mechanism against reactive oxygen species (ROS) injury by
protecting the cell against oxidative stress-induced apoptosis. The
different expression patterns between OA and control and between
the different damaged zones of cartilage were further studied.
Lambrecht et al. (2008) compared the intracellular content in pro-
teins extracted from healthy and OA chondrocytes cultured in algi-
nate beads. Moreover, they compared intact and damaged zones of
cartilage from OA patients. Proteins were extracted from cultured
chondrocytes in two different fractions: membrane (hydrophobic)
or cytosol. They performed 2DE and stained proteins with Sypro
ruby. They identified 16 proteins differentially expressed between
control and intact zone of OA patients and 28 proteins between
control and damaged zones of OA patients. Finally, 17 proteins
were differentially expressed between intact and damaged zones of
OA. Among the identified proteins, authors focused on vimentine
and confirmed the observed modification by WB. In addition, the
authors analyzed the phosphorylation of differentially expressed
proteins and focused on cofilin which is involved in severing and
depolymerization of actin filaments (DesMarais et al., 2005).

Some investigations were also made in a mouse model of
cartilage explants to respond to the increase use of genetically
modified mouse model in arthritis research (Wilson et al., 2008).
The authors compared effect of retinoic acid (retA) and IL-1 on
femoral head cartilage extracts or conditioned media from explant
culture. Using one-dimensional electrophoresis (1DE) and 2DE,
they showed no modification of protein pattern in cartilage extract
while the effect of tested substances was marked on proteins from
conditioned media. To confirm and quantify the observed modi-
fications, they used 2D-DIGE technology. The results of this study
reported an increase in MMP3, CH3L1, neutrophil gelatinase-
associated lipocalin, and haptoglobin content induced by the
addition of IL-1; an increase in aggrecan G1 domain, serotransfer-
rin, cartilage oligomeric matrix protein (COMP), matrilin 3, and
link protein induced by the addition of retA and a decrease in gel-
solin content in both IL-1 and retA conditioned media compared
to control. Gelsolin is an actin-capping protein with important
roles in extracellular actin scavenging (Vasilopoulos et al., 2007).
It is also involved in the regulation of cytoskeletal architecture and
cell–matrix interactions in many cell types, including osteoblasts,
fibroblasts, and developing chondrocytes (Chellaiah et al., 2000;
Djouad et al., 2007; El Sayegh et al., 2007).

Another group has identified 76 proteins in cartilage from
collagen-induced arthritis (CIA) mice using 2DE (Lorenz et al.,
2003b). In this study, mice were immunized with bovine collagen II
which corresponded to a RA model. Five proteins were found sig-
nificantly changed in expression and three of them have been iden-
tified: lymphoid enhancer binding factor 1 was decreased while the
ferritin light chain and antioxidant protein 2 were increased.

A novel approach was applied to chondrocytes proteins for
the identification of OA-specific antibodies (Xiang et al., 2004).
Proteins from chondrocyte lysates were transferred onto a nitro-
cellulose membrane after 2DE separation and blotted with serum
from OA or RA patients in order to investigate autoimmunity
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profiles. Auto-antigens were found in both OA and RA sera. Several
proteins were found to be recognized only by OA serum. Among
them, triosephosphate isomerase appeared in almost 25% of the
tested samples but only in few controls and in about 6% of RA
samples.

The use of chondrocytes as source of proteins for cartilage
proteomic analysis requires a cellular expansion in vitro. It is
noteworthy to keep in mind that the chondrocyte culture leads
to a gradual shift of the cells from chondrocytes to fibroblas-
tic phenotype known as the dedifferentiation process, and to the
modification of matrix component synthesis. In fact, chondrocyte
dedifferentiation occurs upon the proliferation which can be cir-
cumvented by setting up high density non-proliferating cultures.
Some authors have compared the protein content in cartilage from
healthy and OA knee joint cartilage directly – after removal of
collagens and proteoglycans – without the intermediate step of
culture (Guo et al., 2008). They used traditional 2DE technol-
ogy with silver nitrate staining and found 16 proteins of interest.
Eight of them were increased while eight others were decreased as
annexin A1 whose modification was confirmed by WB analysis on
cartilage samples.

Apart from chondrocytes and synovial cells, other teams were
interested in other cell types that could probably be involved in the
disease pathophysiology. Others cells of interest were bone marrow
mesenchymal stem cells. Using 2D-DIGE technology, Rollin et al.
(2008) found 38 differentially expressed spots of proteins between
OA and control isolated mesenchymal cells. Again, DIGE technol-
ogy revealed a large number of modifications. This observation
was probably due to its sensitivity.

Another approach using 2DE consists in the complete descrip-
tion of most of the proteins found in cells, tissues, or biological
fluids in order to obtain a proteomic profile of reference to com-
pare with unknown samples. 2DE of total proteins provides a
visual representation of proteome and allows the detection of
post-translational modifications of proteins. The proteome of
human OA cartilage have been revealed (Vincourt et al., 2006).
The authors resolved more than 500 spots on 2D-gel and identi-
fied 191 proteins. The proteome of normal chondrocytes isolated
from healthy cartilage was also investigated (Ruiz-Romero et al.,
2005). The reference map obtained by 2DE was compared with
the one obtained of Jurkat cells. They identified some specific pro-
teins more abundant in chondrocytes like cathepsin D, heat shock
protein (HSP) 47, mitochondrial superoxide dismutase (SOD),
cytoskeleton-related proteins, or members of annexin family.

ONE-DIMENSIONAL ELECTROPHORESIS
When proteins are too hard to resolve by isoelectrofocusing, as
insoluble proteins, some authors explored protein content using
1DE. Proteins are only resolved on polyacrylamide gel according to
their molecular weight. This technique could also be useful to pre-
fractionate the sample before liquid chromatography (LC) and MS
analysis. Thereby, Gobezie et al. (2007) determined 342 gel slices
from 1D-gels to identify proteins modified in OA synovial fluid in
comparison to control. They found 18 distinct proteins between
control and OA and interestingly two specific subsets of proteins
profile in OA group not linked to age, sex, ethnicity, medication,
or stage of the disease.

The 1DE investigation was further pursued with cartilage from
OA patients or control (Wu et al., 2007). Proteins were directly
extracted from cartilage without any culture step. After deple-
tion of abundant matrix proteins like collagens and aggrecans, the
authors identified 59 proteins differently expressed between the
normal and OA tissues then providing important information on
protein expression.

Two approaches of proteomic analysis using MS were com-
pared (Garcia et al., 2006). One the one hand, the proteins from
cartilage were digested by trypsin in solution and directly analyzed
by MS. On the other hand, proteins were fractionated on 1D-gel
and further in-gel-digested by trypsin. Interestingly, the authors
showed the significant amelioration of analysis by the introduc-
tion of gel fractionation. This technique allowed the detection
of more proteins by the simplification of protein mixture. This
method was further used on bovine cartilage in order to compare
the response of chondrocytes and cartilage matrix to injurious
mechanical compression and treatment with IL-1beta and tumor
necrosis factor (TNF)-alpha (Stevens et al., 2008). Analyses were
made on secreted proteins in culture media of cartilage explants.
This analysis retrieved 250 proteins. Among them, new cartilage
proteins were identified, i.e.,CD109,platelet-derived growth factor
receptor–like, angiopoietin-like 7, and adipocyte enhancer bind-
ing protein 1. The authors also identified the protein expression
induced by the stimulation with IL-1beta and TNF-alpha. They
demonstrated that the compression was responsible for the release
and proteolysis of type VI collagen, COMP, and fibronectin.

Finally, the analysis of the proteins secreted by chondrocytes
after stimulation with lipopolysaccharide soluble (LPS) and the
comparison of the obtained pattern with that one of unstimulated
cells were performed in rat cells by 1D-LC–MS/MS (Haglund et al.,
2008). This study showed the capability of articular chondrocytes
to respond to the activation of the toll-like receptor (TLR).

TECHNICAL IMPROVEMENTS
As seen with these different studies, the sensitivity of the techniques
was often limited by the composition of sample itself. Indeed, very
few proteins were found on gels from thousands of different pro-
teins contained in a cell or in biological fluid. In order to improve
the sensitivity of proteomic analyses, modifications in the method-
ology were applied to reduce sample complexity. For example, one
approach when working on cells was to focus on one particular
organite. Purification of this organite prior to protein extraction
strongly improved gel resolution and enhanced proteomic analysis
by targeting specific proteins of interest. Ruiz-Romero et al. (2006)
established with this technique the mitochondrial proteome of
chondrocytes.

Other technical modifications as passive rehydration loading
without voltage application have been developed before the first
dimension of electrophoresis. It reduces the entry of large pro-
teins in-gel strips and was tested to improve the direct separation
of protein from cartilage extract without sample pretreatment
(Sanchez et al., 1997; Pecora et al., 2007). Molecular weight cut-off
was also evaluated to improve protein load, optimize resolu-
tion, and enhance detection of low-abundance proteins (Wilson
et al., 2005). In addition, the authors described a method of joint
micro-dissection.
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CONCLUSION
Although 2DE-based methods are still widely used in proteomic
analysis, this technology has drawbacks that are difficult to cir-
cumvent. Limitations concern problems in the detection of low-
abundant proteins and in the dynamic range of the protein
detection dependent on gel staining. Proteins with extreme char-
acteristics such as very low or high-molecular weight or very acidic
or basic isoelectric point like membrane proteins are difficult to
resolve on polyacrylamide gel. Moreover, 2DE requires extensive
sample handling without easy automation, increasing the risk of
bias induced by the manipulation.

GEL-FREE METHODS OR SHOTGUN PROTEOMICS
To overcome problems inherent to electrophoresis-based meth-
ods, others separation methods associated to MS were developed.
These techniques were grouped under the general term of shotgun
proteomics.

In shotgun proteomics, the proteins are separated by high per-
formance LC (HPLC) before being analyzed by MS. To reduce sam-
ple complexity, after digestion of proteins in solution, usually with
trypsin, multi-dimensional chromatography is often performed
coupling cation exchange with reversed-phase chromatography.
Unlike 2DE, this technology is fully automated – separation inter-
faced directly with the mass spectrometer – and covers a large
scale of proteins. An overview of the gel-free methods is presented
Figure 2 and the main advantages and disadvantages of gel-free
methods in comparison to 2D-DIGE are described in Table 2.

LABEL-FREE METHODS
In differential analysis, the peptides may be marked with stable
isotope at various stages of the analysis process, depending on the
used technique (Figure 2). This methodology is applied to identify
new potential biomarkers in samples. Label-free methods could be
performed to qualify, verify, and quantify a previously discovered
biomarker by isotopic-label method with known fragmentation
properties in a complex sample. In MS/MS mode, one pair of
precursor characteristic of a single peptide is monitored using

multiple-reaction monitoring (MRM). This technique provides
highly selective, sensitive, and reproductive detection of peptides.
MRM was used to quantify level of C-reactive protein (CRP) in
serum of RA patients (Kuhn et al., 2004). They used labeled tryptic
peptide of CRP as internal standard. They showed that MRM was
a useful tool to directly qualify and quantify potential biomarker
in clinical samples without a step of antiserum production.

Label-free methods in MS or MS/MS mode were used in OA
samples to compare proteomic profile of different populations.
The protein profiles of synovial fluid from OA and RA patients
were compared using SELDI-MS technique (Uchida et al., 2002).
This work reported the presence of specific proteins as myeloid
related protein 8 in synovial fluid from RA patient. The concen-
tration of proteins was estimated from the area under the peak of
the chromatogram corresponding to the precursor peptide (Bon-
darenko et al., 2002; Chelius and Bondarenko, 2002). Proteins of
interest were identified and their potential as marker was evaluated
using MRM technology which allows a quantification using 13C
labeled peptide as internal standard (Liao et al., 2004). A method-
ology has been validated for peptide profiling in synovial fluid
(Kamphorst et al., 2007). About 500 peptides from 40 distinct
proteins were identified. Hyaluronic acid was removed by ultra-
centrifugation and solid-phase extraction in order to enrich the
sample in low molecular weight peptides. Proteins and peptides
were analyzed by shotgun proteomics without trypsin digestion.
This approach allowed the evaluation of proteolytic activity by the
analysis of cleavage sites. Several chip arrays in SELDI-MS tech-
nology were used in order to identify biomarkers of RA (de Seny
et al., 2005). They compared the protein content of serum from RA
patients with other inflammatory disease such as Crohn’s disease,
asthma, psoriatic arthritis, or non-inflammatory control group as
OA patients or healthy subjects. Peak corresponding to myeloid
related protein 8 appeared discriminant in RA group compared to
controls (OA and healthy patients). This technique was recently
applied to the serum of OA patients (de Seny et al., 2011). It
provided interesting results. It allowed the identification of four
potential biomarkers, i.e., V65 vitronectin fragment, C3f peptide,

Table 2 | Advantages and disadvantages of in-gel and gel-free methods.

Technology Advantages Disadvantages Example of use in OA field (reference)

1DE, 2DE,

2D-DIGE

High resolution Low throughput Sinz et al. (2002), Drynda et al. (2004), Henrotin et al. (submitted),

Hermansson et al. (2004), Catterall et al. (2006), Ruiz-Romero

et al. (2008), Ruiz-Romero et al. (2009), Lambrecht et al. (2008),

Wilson et al. (2008), Xiang et al. (2004), Guo et al. (2008), Rollin

et al. (2008),Vincourt et al. (2006), Ruiz-Romero et al. (2005), Gob-

ezie et al. (2007), Wu et al. (2007), Garcia et al. (2006), Stevens

et al. (2008), Haglund et al. (2008), Ruiz-Romero et al. (2006)

Direct detection of

post-translational modifications

Low dynamic range

Information about MW and pI of

proteins

Limited number of experiments

that can be compared

Gel-free

LC–MS/MS

High resolution
Easy to perform due to automation

Label-free Unlimited number that can be

compared

Lower accuracy of

quantifications than

labeling-based methods

Uchida et al. (2002), Kamphorst et al. (2007), de Seny et al. (2005),

de Seny et al. (2011), Li et al. (2007), Baillet et al. (2010), Lambrecht

et al. (2010)

Differential

labeling

Higher accuracy of quantification

than label-free based methods

Limited number of experiments

that can be compared

Ji et al. (2010), Dean and Overall (2007), Polacek et al. (2010a),

Calamia et al. (2011)

High costs
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CTAP-III, and m/z 3762 protein. All of them could be involved
in OA pathophysiology and could be relevant to reflect inflamma-
tion and cartilage and bone turn-over. MS-based technology is also
used in targeted approaches. Indeed, shotgun methodology could
be applied to the characterization of peptides. More specifically,
LC–MS/MS is used to profile directly a peptide or protein sus-
pected to be a useful biomarker. Thus, new epitope of type II col-
lagen (TIINE) degradation by MMP was identified by working on
explants and collagen (Nemirovskiy et al., 2007). The authors iden-
tified by immunoaffinity a peptide released by MMP13 in human
urine and synovial fluid (Nemirovskiy et al., 2010) and devel-
oped a method of quantification by immunoaffinity-LC–MS/MS
using a deuterated internal standard. The method was clinically
validated by the quantification by MRM of TIINE in urine of
patients with RA, OA, or polychondritis (Li et al., 2007). TIINE
measure in urine was then shown as a potential biomarker of OA.
The comparison of synovial fluid and serum content from OA
and RA patients and from miscellaneous inflammatory arthritides
(MIAs) and RA patients was performed in order to identify new
biomarkers of RA. The authors found an overexpression of pro-
teins S100A8, S100A9, and S100A12 in RA synovial fluid compared
to OA samples. Versus MIAs, S100A8, S100A9, and alpha defensins
-1, -2, -3 discriminates RA populations but with a weakly altered
sensitivity and specificity. In serum, none of these markers were
found to be modified with disease (Baillet et al., 2010). To improve
the discovery of biomarkers in serum, researchers have developed
methods for sample preparation before their analysis by shotgun
proteomics. As in 2DE, strategies consist in removing abundant
proteins to enrich the sample in less abundant proteins and pep-
tides. To this aim, different methods such as membrane filtration
cut-off and immunoaffinity are available. A third method using
hollow-fiber membrane to remove high-molecular weight pro-
teins and affinity columns to deplete high-abundant proteins has
been developed (Tanaka et al., 2006). Moreover, the authors used
3D-LC with the introduction of reverse-phase-chromatographic
preparation of sample before trypsin digestion circumventing the
overload of MS profiles.

Another application for MS-based technology is the structural
analyses of proteins and the study of the post-translational modi-
fications. Zaia et al. (2000) defined the structure of proteins from
extracellular matrix and analyzed fragments from matrix turn-
over by MALDI. Proteins as COMP, aggrecan, decorin, and bigly-
can were studied with specific experimental approaches. More
recently, 2D-LC–MS/MS was applied to the characterization of the
proteome of chondrocyte cultured in alginate beads. They identi-
fied 779 unique proteins (Lambrecht et al., 2010). Finally, the cul-
ture medium of equine cartilage was studied using 1D-LC–MS/MS
after digestion with trypsin (Clutterbuck et al., 2011). Tryptic pep-
tides were analyzed with the aim of identifying biomarker of the
early cartilage disease.

ISOTOPIC LABELING-BASED METHODS
The main developed strategies consist in using isotopic tag for
sample labeling. All these methods use the difference of mass
as the basis of the quantitation with the measurement of rela-
tive peak areas of mass spectra. Quantitative analyses of proteins
and peptides are achieved by comparing isotopic light and heavy

forms contained in two samples. Peak ratios for isotopic analogs
are highly accurate in a same experiment. Methods using sta-
ble isotope circumvent the problem of the variation in sample
recovery. Different methods were described depending on sam-
ples and incorporation method. Stable isotope labeling by amino
acid (SILAC) in cell culture was developed by Ong et al. (2002).
It consists in the biological incorporation of labeled essential
amino acids (e.g., l-leucine or deuterated l-leucine) in amino
acid deficient cell culture medium resulting in labeling of all newly
synthesized proteins and virtually all proteins after cell doubling
population. Precocity of labeling provides a definite advantage
to this method. Moreover, there is no requirement of additional
purification and it is applicable to living samples on the con-
trary to Isotope-coded affinity tag (ICAT) method that will be
further describe. Labeled isotopic tag can be added to cell cul-
ture or directly coupled to protein or peptide according to the
moment of enzymatic digestion. ICAT technology was developed
in that sense (Gygi et al., 1999b). ICAT reagent is composed of
three functional elements: a reactive group, an isotopic coded light
or heavy linker group and a biotin affinity tag. In addition to
the quantitation of proteins, this method reduces the complexity
of samples by selecting labeled proteins using affinity purifica-
tion. The main limitation of this technique is that ICAT only
labels cysteine-containing peptides. Hence, the proteome cover-
age and the number of peptides labeled per protein are reduced.
To circumvent this drawback, isobaric tag for relative and absolute
quantitation (iTRAQ) methodology was developed. This method
is using multiplexed set of reagents that integrate isobaric mass
labels at the N-terminus and lysine side chain of peptides in a
digest mixture (Ross et al., 2004). This amine-specific reagent can
label all peptides in up to four samples simultaneously.

The different methods using isotopic labeling were applied to
OA and RA research. iTRAQ methodology was used in order
to find proteins specific of chondrogenesis in a model of mes-
enchymal stem cell differentiation (Ji et al., 2010). Among the
1756 identified proteins, 17 appeared to be increased and 83 to
be decreased. The 17 proteins and enzymes that were increased
were involved in the synthesis of cartilage matrix in mature chon-
drocytes. The ones that were decreased were involved in energy
metabolism, chromatin organization, transcription, mRNA pro-
cessing, signaling transduction, and cytoskeleton. Most of them
were newly found to be involved in the chondrogenic process and
BTF3l4 and fibulin-5, two novel chondrogenesis-related proteins
were also identified in the present study. iTRAQ and ICAT tech-
nologies were used in an original work to analyze the degradome
of MMP-2 substrates (Dean and Overall, 2007). MMP-2 is known
to be involved in OA as its expression is increased in cartilage
during the disease process (Kevorkian et al., 2004). The peptides
released in culture medium were labeled and identified by shot-
gun proteomics. New substrates for MMP-2, such as CX(3)CL1
chemokine fractalkine, osteopontin, galectin-1, and HSP90 alpha
were identified. In addition, the authors showed a clear differ-
ence between iTRAQ and ICAT-labeling and quantitation systems.
iTRAQ allowed the identification of eightfold to ninefold more
proteins and the precise localization of the cleavage site.

Stable isotope technique also provided information on OA.
This technique was recently applied to investigate the secretome of
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chondrocytes cultured on monolayer or in explants (Polacek et al.,
2010a). The authors showed differences between newly synthe-
sized or cell-released proteins depending on the culture conditions.
The same group further compared the secretome of articular
chondrocytes with the one of mesenchymal stem cells (Polacek
et al., 2010b) in order to consider the potential of autologous cell
transplant. The same technique was also recently applied to chon-
drocytes in order to confirm the key role of mitochondria in OA
(Calamia et al., 2011). Finally, stable isotope standards and capture
by anti-peptide antibodies (SISCAPA) represents another recently
developed method for quantitation of peptides in complex mix-
tures (Anderson et al., 2004). This combines an enrichment of
sample in specific peptide by immunoaffinity with the use of inter-
nal labeled standard. To date, no application was published in the
field of OA research.

CONCLUSION
Shotgun proteomics offer a set of technologies available for
detailed analysis of various samples. They have significant appli-
cation prospects. They permit the finding of new molecules of
interest, the characterization of peptides that can be used in clin-
ical practice or the deepening into the fundamental knowledge.
Either one can prefer one technique to another to a specific pur-
pose or one can use the complementary information from several
techniques. Isotope labeling methods were used in global profiling
strategies to identify biomarker. However, the need of simplifica-
tion and enrichment of samples in low-abundant proteins and/or
peptides have guided new experimental targeted strategies.

GENERAL CONCLUSION
In the recent years, proteomics have faced many challenges
that have allowed its technical development and improvement.
The identified problems often concerned the reproducibility and

repeatability of experiments, particularly with gel electrophore-
sis. New technologies using more precise standards have then
emerged. Another recurrent difficulty encountered in proteomic
analysis of complex samples is the step of sample preparation. This
is a fortiori the case in the field of osteoarthritis research which
involves the study of samples such as cartilage and synovial fluid
loaded with bulk proteins. Proteins of interest could be difficult to
extract directly in that case. Several methods to overcome this issue
or, at least, to reduce this concern have been proposed in the recent
years and many proteins of interest have thus been highlighted by
different research teams in the field of osteoarthritis.

Recent technological advances allow the exploration in depth
of the proteome but also bring a wealth of information. MS-
based technologies are able to identify and quantify thousands
of proteins and/or peptides and its variants comprising post-
translational modifications. In these conditions, the strategies for
referencing a complete proteome may appear unrealistic. The
examples cited above show that only one proteomic analysis can
highlight a multitude of proteins and/or peptides of interest, then
opening many possibilities for further investigation. Furthermore,
proteomics and advanced technologies are valuable techniques
that can be crucial tools to be included in a broader technological
scheme in the context of targeted analysis to respond to a research
hypothesis. Otherwise, recent technological advances propose new
experimental strategies for proteome investigation. They are just
beginning to be applied in the study of OA and still offer many
opportunities for research application in this area. One still has to
learn a lot from these techniques.
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