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The swamp eel, Monopterus albus, is an obligatory air-breathing teleost which can undergo
long period of emersion, has high environmental and tissue ammonia tolerance, and can
survive in brackish water. We obtained a cDNA sequence of glutamate dehydrogenase
(gdh), which consisted of a 133-bp 5′ UTR, a complete coding sequence region spanning
1629 bp and a 3′ UTR of approximately 717 bp, from the liver, intestine, and brain of M. albus.
The translated Gdh amino acid sequence had 542 residues, and it formed a monophyletic
clade with Bostrychus sinensis Gdh1a,Tetraodon nigroviridis Gdh1a, Chaenocephalus acer-
atus Gdh1a, Salmo salar Gdh1a1 and Gdh1a2, and O. mykiss Gdh1a. One day of exposure
to terrestrial conditions or 75 mmol l−1 NH4Cl, but not to water at salinity 20, resulted
in a significant increase in mRNA expression of gdh1a and Gdh amination activity in the
liver of M. albus. However, exposure to brackish water, but not to terrestrial conditions or
75 mmol l−1 NH4Cl, led to a significant increase in the mRNA expression of gdh1a and Gdh
amination activity in the intestine. By contrast, all the three experimental conditions had no
significant effects on the mRNA expression of gdh1a in the brain of M. albus, despite a sig-
nificant decrease in the Gdh amination activity in the brain of fish exposed to 75 mmol l−1

NH4Cl for 6 days. Our results indicate for the first time that the mRNA expression of gdh1a
was differentially up-regulated in the liver and intestine of M. albus in response to ammo-
nia toxicity and salinity stress, respectively. The increases in mRNA expression of gdh1a
and Gdh amination activity would probably lead to an increase in glutamate production in
support of increased glutamine synthesis for the purpose of ammonia detoxification or cell
volume regulation under these two different environmental conditions.
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INTRODUCTION
The swamp eel, Monopterus albus (Zuiew) belongs to Order Syn-
branchiformes, Family Synbranchidae, and is commonly found in
muddy ponds, swamps, canals, and rice fields in India, Malaysia,
Indonesia, and Southern China (Rainboth, 1996). It is an oblig-
ate air breather and its gills are vastly atrophied to become a fold
of skin within the opercular chamber (Graham, 1997). As an air
breather, M. albus can survive on land for an extended period.
Since no water is available to flush branchial or cutaneous surfaces
during emersion, ammonia excretion becomes inefficient leading
to the accumulation of ammonia within the body (Ip et al., 2004b).
During drought, ammonia excreted into a small volume of exter-
nal medium would increase in concentration which may reach
to levels that would impede endogenous ammonia excretion. For
fish living in the rice field, it may encounter high levels of envi-
ronmental ammonia (Ip et al., 2004a) during the application of

ammonium sulfate fertilizers (Freney et al., 1981). Since the envi-
ronmental salinity may increase when the habitat dries up during
drought or during high tide in swamps located at the river mouth,
M. albus may also encounter hyperosmotic stress.

Ammonia is toxic to fishes as it affects many cellular processes
(Ip et al., 2001, 2004a,b; Chew et al., 2006; Ip and Chew, 2010),
but some tropical air-breathing teleosts can ameliorate ammo-
nia toxicity through a variety of adaptations (see Ip et al., 2001,
2004a,b; Chew et al., 2006 for reviews). During 6 days of emer-
sion (Tay et al., 2003) or 40 days of aestivation in mud (Chew
et al., 2005), M. albus demonstrates high tissue ammonia toler-
ance, suppresses endogenous ammonia production, and detoxifies
endogenous ammonia to glutamine in extra-cranial tissues. Fur-
thermore, M. albus has high tolerance of acute ammonia toxic-
ity and detoxifies exogenous ammonia to glutamine (Tng et al.,
2009). After 6 days of exposure to 75 mmol l−1 NH4Cl, ammonia
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(6.5–15.2 μmol g−1), and glutamine (9.4–17.1 μmol g−1) accu-
mulate to very high levels in the brain, muscle, liver, and intestine
(Ip et al., 2004c). Hence, glutamine can be regarded as a tem-
porary product of ammonia detoxification in M. albus during
emersion or ammonia exposure. The fate of glutamine during
prolonged exposure to or recovery from emersion or environ-
mental ammonia is unclear at present, but one of the advantages
of producing glutamine is that it can be stored momentarily in
the body and used for the synthesis of other molecules, e.g.,
purines and pyrimidines, when the adverse environmental con-
ditions subside. Besides, glutamine can also act as an intracellular
osmolyte for the purpose of cell volume regulation. Recently, Tok
et al. (2009) reported that M. albus switched from hyperosmotic
hyperionic regulation in freshwater to a combination of osmo-
conforming and hypoosmotic hypoionic regulation to survive
in brackish water (salinity 25). Salinity stress resulted in rela-
tively large increases in the plasma osmolality, [Na+] and [Cl−]
in M. albus. This in turn led to the accumulation of organic
osmolytes and inorganic ions for cell volume regulation, with
the hepatic glutamine content increased to a phenomenal level
of >30 μmol g−1.

Glutamine synthesis is catalyzed by glutamine synthetase (GS)
and requires glutamate as a substrate. Although transamina-
tion reactions can generate glutamate, the key enzyme regulating
ammonia and glutamate levels in vertebrates is glutamate dehydro-
genase (GDH; Shoemaker and Haley, 1993), which is involved in
several metabolic pathways (Hudson and Daniel, 1993; Thatcher
and Storey, 2001). GDH catalyzes both glutamate formation in
the amination direction using ammonia and α-ketoglutarate as
substrates and glutamate degradation in the deamination direc-
tion (Smith et al., 1975; Hudson and Daniel, 1993). To date, there
is a dearth of information on how adverse conditions would
affect the mRNA expression of gdh in various tissues of M.
albus and in fish in general. Therefore, this study was undertaken
to clone and sequence the cDNA of gdh from the liver, brain,
and intestine of M. albus. Efforts were then made to determine
whether exposure to terrestrial conditions, environmental ammo-
nia (75 mmol l−1 NH4Cl), or brackish water (salinity 20) would
induce changes in the mRNA expression of gdh in these three
organs.

MATERIALS AND METHODS
FISH
Specimens of M. albus (150–400 g body mass) were purchased
locally from a fish farm in Singapore. They were maintained in
plastic aquaria in freshwater (salinity 1) at 25˚C under a 12 h:12 h
dark:light regime in the laboratory and water was changed daily.
No attempt was made to separate the sexes. Fish were acclimated
to laboratory conditions for at least 1 week before experimenta-
tion, during which they were fed live guppy. Food was withdrawn
48 h prior to experiments, which gave sufficient time for the gut
to be emptied of all food and waste products. Fish were not
fed throughout the experimental period. Procedures adopted in
this study were approved by the Institutional Animal Care and
Use Committee of the National University of Singapore (IACUC
021/10).

EXPOSURE OF FISH TO EXPERIMENTAL CONDITIONS AND COLLECTION
OF SAMPLES
Fish were exposed to control or experimental conditions individu-
ally in plastic tanks (50 cm length × 30 cm width × 10 cm height)
with free access to air. A total of 12 fish were immersed in 10 vol-
umes (w/v) of freshwater and they served as controls. Water was
changed daily. For terrestrial conditions, fish were kept in plastic
aquaria tanks containing a thin film (100 ml) of freshwater. These
tanks were rinsed and the freshwater was replenished daily. For
ammonia exposure, a total of 8 fish were immersed in 10 volumes
of freshwater containing 75 mmol l−1 NH4Cl (pH 7), which was
also changed daily. For salinity stress, 4 fish were immersed in
10 volumes (w/v) of water of various salinities prepared by mix-
ing freshwater with an appropriate quantity of seawater, and the
pH was adjusted to 7. The ambient salinity was raised progres-
sively through a 4-day period from freshwater (day 0) to salinity
5 (day 1), salinity 10 (day 2), salinity 15 (day 3), and salinity
20 (day 4). At the end of the exposure periods (day 1, 4, and
6 for control fish, N = 4 each; day 1 and 6 for fish exposed to
terrestrial or ammonia conditions, N = 4 each; day 4 for fish
exposed to salinity stress, N = 4), fish were killed with a strong
blow to the head, and samples of the liver, intestine, and brain
were excised, frozen in liquid nitrogen, and stored at −80˚C until
analysis.

TOTAL RNA EXTRACTION, cDNA SYNTHESIS, PCR, AND GENE
SEQUENCING
The total RNA was extracted from the liver, intestine, and brain,
using the chaotropic extraction protocol described by White-
head and Crawford (2005), and purified using RNeasy Mini Kit
(QIAGEN Inc., Hilden, Germany). RNA quality was checked
electrophoretically and quantified at 260 nm using a 105.810-
UVS Hellma traycell (Hellma GmbH & Co., KG, Müllheim,
Baden-Württemberg, Germany) adapted to a Shimadzu UV-1601
UV–VIS recording spectrophotometer (Shimadzu Corporation,
Nakagyo-ku, Kyoto, Japan). The total RNA (1 μg) from each
sample was then reverse transcribed using RevertAid™M-MuLV
Reverse Transcriptase and oligo(dT)18 primer from the Rever-
tAid™First Strand cDNA Synthesis Kit (Fermentas Inc., Hanover,
MD, USA). PCR was performed on the cDNA obtained using
the forward primers 1, 2, and 3 and the reverse primers 4, 5,
6, and 7 (Table 1). The primer sequences for 1 and 4 were
obtained from Hirata et al. (2003) while the primer sequences
for 2, 3, 5, 6, and 7 were obtained from Peh (2008). Each PCR was
carried out in 25 μl reaction volumes, containing 10× Dream-
taq Buffer (2.5 μl; Fermentas Inc.), dNTPs (10 μmol l−1, 0.5 μl),
MgCl2 (25 mmol l−1, 0.5 μl), Dreamtaq polymerase (5 IU μl−1,
0.125 μl; Fermentas Inc.), forward primer and reverse primers
(10 μmol l−1, 1.25 μl each), and cDNA template (0.5 μl), using
a Veriti® Fast 96-well Thermal Cycler (Applied Biosystems Inc.,
Foster City, CA, USA). The following thermocycling program was
used: 95˚C for 3 min, followed by 40 cycles of 30 s at 94˚C, 30 s at
55˚C, and 90 s at 72˚C and 1 cycle of final extension at 72˚C for
10 min. The PCR products obtained were separated by 1% agarose
gel electrophoresis and the band of expected size was excised from
the gel. The PCR product was purified from the gel slice by the cen-
trifugation method of Wizard SV gel and PCR clean-up system kit
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Table 1 | Primers for PCR or RACE PCR to amplify glutamate

dehydrogenase (gdh), or for quantitative real-time PCR on actin

(reference gene) and gdh1a from the liver, intestine, and brain of

Monopterus albus.

Primer Primer sequence Amplicon

size (bp)

DEGENERATE PRIMERS FOR PCR

Pair 1 1 5′-ATGACNTAYAARTGYGCNGT-3′ 1182

5 5′-TYATGTGAMGGTRAKVCCVGCCTC-3′

Pair 2 2 5′-ATGTAYMGRTAYTTCGGRGAR-3′ 679

4 5′-GCRTANGTRTCNGCDATCCA-3′

Pair 3 3 5′-GACCCMAACTTCTTYMRVATGG-3′ 1030

6 5′-CCYTCWGCRATRATCTTRGC-3′

Pair 4 3 5′-GACCCMAACTTCTTYMRVATGG-3′ 1165

7 5′-CRTGRTTHAGRTTCTTBAGC-3′

PRIMERS FOR RACE PCR

5 RACE 5′-ATCTTGTCAGCATCTGGGGTGGTG-3′

3 RACE 5′-CCACCCCAGATGCTGACAAGAT-3′

PRIMERS FOR SEQUENCING PRODUCTS FROM RACE PCR

S1 5′-TGGCTGATGGGTTTTCCTGTCACAC-3

S2 5′-TTGGACTCTACCCTGTGA-3′

PRIMERS FOR QUANTITATIVE REAL-TIME PCR

actin

F1

5′-CCGTGACCTCACAGACTACCTC-3′ 136

actin

R1

5′-CCATCTCCTGCTCGAAGTCCA-3′

gdh F1 5′-GCACAGCCAACACAGGACAC-3′ 119

gdh R1 5′-GGCACATCCACAACAGCACAC-3′

(Promega Corporation, Madison, WI, USA). Purified PCR prod-
ucts were subjected to cycle sequencing using BigDye® Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems Inc.) and puri-
fied by the ethanol/sodium acetate precipitation. Purified products
were automatically sequenced using the Prism™3130XL Genetic
Analyzer (Applied Biosystems Inc.).

RACE PCR AND CLONING
Total RNA (1 μg) was reverse transcribed into cDNA for RACE
PCR using SMARTer™RACE cDNA Amplification kit (Clontech
Laboratories, Mountain View, CA, USA). RACE PCR was per-
formed using the Advantage® 2 PCR kit (Clontech Laboratories)
with gene-specific gdh RACE primers (Table 1). Thermocycling
conditions were: 5 cycles at 94˚C for 30 s, 72˚C for 4 min, contin-
ued with 5 cycles at 94˚C for 30 s, 70˚C for 30 s, 72˚C for 4 min,
and then followed by 30 cycles at 94˚C for 30 s, 68˚C for 30 s, 72˚C
for 4 min. RACE PCR products were separated by 1% agarose gel
electrophoresis and the distinct bands observed were excised from
the gel. The RACE PCR products were purified from the gel slices
and quantified as stated above.

RACE PCR products were cloned using pGEM Easy
T/A cloning kit (Promega Corporation), transformed into
Escherichia coli JM109 strain, and plated onto Luria–
Bertani agar with ampicillin, 5-bromo-4-chloro-3-indolyl-beta-
d-galactopyranoside and isopropyl-beta-thio galactopyranoside.
Subsequently, white colonies were selected and grown overnight

in LB broth with ampicillin. The plasmids were extracted using
the resin-based plasmid miniprep kit (Axygen Biosciences, Union
City, CA, USA) and quantified by spectrophotometry. Cloned gdh
RACE PCR products were then sequenced.

PHYLOGENETIC ANALYSIS
The translated Gdh sequence from M. albus was aligned with
25 other Gdh protein sequences using ClustalX version 2.0.12
(Larkin et al., 2007). The sequences used for comparison and their
respective accession number in either GenBank or Ensembl data-
bases were as follows: Oncorhynchus mykiss Gdh1a (AAM73777.1)
and Gdh1b (AAM73775.1), Danio rerio Gdh1a (NP_955839.2)
and Gdh1b (NP_997741.1), Salmo salar Gdh1a1 (CAD58714.1),
Gdh1a2 (CAD89353.1), and Gdh1b (CAD58715.1), Tribolodon
hakonensis Gdh1a (BAD83654.1), Chaenocephalus aceratus Gdh1a
(P82264.1), Litopenaeus vannamei Gdh (ACC95446.1), Xeno-
pus laevis GDH1 (NP_001087023.1), X. (Silurana) tropicalis
GDH1 (NP_001011138.1), Gallus gallus GDH1 (P00368.1), Rat-
tus norvegicus GDH1 (NP_036702.1), Mus musculus GDH1
(NP_032159.1), Bos taurus GDH1 (AAI03337.1), Homo sapi-
ens GLUD1 (NP_005262.1) and GLUD2 (NP_036216.2), Tak-
ifugu rubripes Gdh1a (ENSTRUP00000000720) and Gdh1b
(ENSTRUP00000009100), Tetraodon nigroviridis Gdh1a (ENST-
NIP00000008014) and Gdh1b (ENSTNIP00000016349), and
Taeniopygia guttata GDH1 (ENSTGUP00000005951). Protein
sequences for B. sinensis Gdh1a and Gdh1b were obtained from
Peh (2008). A number of the current gene and protein names
in the databases do not reflect co-orthologous relationships to the
human gene or paralogous relationships. Therefore, the author has
attempted to reflect these relationships by renaming (where applic-
able) the protein names presented in the phylogenetic tree follow-
ing the method suggested by Taylor et al. (2001). The PHYLIP
package (version 3.5) was then used to carry out neighbor-joining
phylogenetic analysis (Saitou and Nei, 1987), with a bootstrap-
ping resampling option to assess the support for nodes (100
pseudoreplicates). The Pacific white shrimp L. vannamei was
specified as the outgroup and the input order of species was
randomized where possible.

QUANTITATIVE REAL-TIME PCR (qPCR)
The primers used for qPCR (Table 1) were designed using Perl-
Primer version 1.1.18 (Marshall, 2004). Primers for the housekeep-
ing gene actin (Table 1) were designed based on the M. albus actin
sequence (AY647143.1) deposited in GenBank. All primer pairs
produced amplicons of the predicted size. The PCR products from
each primer pair were subjected to 2% agarose gel electrophoresis
to confirm amplification specificity. The bands were excised from
the gel and PCR products purified, quantified, and then sequenced
as described above.

Total RNA samples (N = 4 for each organ and each condi-
tion) were subjected to DNase treatment using deoxyribonuclease
I (Sigma-Aldrich Co. St, Louis, MO, USA). Total RNA (1 μg)
from each treated sample was then reverse transcribed using ran-
dom hexamer primers and the RevertAid™First Strand cDNA
Synthesis Kit (Fermentas Inc.). The qPCR reactions were per-
formed in triplicates using 1 ng of cDNA template, 0.4 μmol l−1 of
each primer, and 5 μl of Fast SYBR® Green Master Mix (Applied
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Biosystems Inc.) in a volume of 10 μl. Reactions were analyzed
on a StepOnePlus™Real-Time PCR System (Applied Biosystems
Inc.) and cycling conditions were: 95˚C for 20 s, 50 cycles at 95˚C
for 3 s followed by 60˚C for 30 s. A melt curve analysis was car-
ried out after each run with the following conditions: 95˚C for
15 s, increasing temperature from 60 to 95˚C in 1 h, ending with
95˚C for 15 s. No primer dimers were detected. Relative standard
curves were generated by 10-fold serial dilutions of cDNA from

the liver, intestine, and brain of M. albus exposed to freshwater
conditions. Amplification efficiencies of gdh1a and actin ranged
between 85 and 90%. The amplification efficiencies of the tar-
get (gdh1a) and reference gene (actin) must be approximately
equal for the ΔΔCt calculation to be valid (Livak and Schmittgen,
2001). Thus, plots of the log cDNA dilution versus ΔCt were
made and the absolute values of the slopes (−0.05 for liver; 0.03
for intestine; 0.06 for brain) were verified to be close to zero.

FIGURE 1 |The complete nucleotide sequence and the corresponding

translated amino acid sequence of the complete coding sequence

(CDS)of glutamate dehydrogenase 1a (gdh1a; GenBank accession no.

JF694445) from the liver of Monopterus albus. “∗” Indicates the stop

codon. The start and the end of the CDS are indicated in boldface type, and
the priming positions of the RACE primers used are underlined and indicated
in boldface type. Pentameric motifs corresponding to AU-rich elements
(AREs) are highlighted in gray.

Frontiers in Physiology | Aquatic Physiology December 2011 | Volume 2 | Article 100 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Aquatic_Physiology
http://www.frontiersin.org/Aquatic_Physiology/archive


Tok et al. gdh in swamp eel

ΔΔCt calculation for relative quantification of target gene with
reference to actin was applied to obtain the fold change in gene
expression. All data were normalized to the abundance of actin
mRNA. Results were expressed in fold change but statistical analy-
ses were performed after log2 transformation of the fold change
values.

DETERMINATION OF Gdh ACTIVITY
Tissue samples (N = 4 for each organ and each condition) were
homogenized three times in 5 volumes (w/v) of ice-cold extrac-
tion buffer containing 50 mmol l−1 imidazole-HCl (pH 7.0),
50 mmol l−1 sodium fluoride, 3 mmol l−1 EGTA, and 3 mmol l−1

EDTA at 24,000 r.p.m. for 20 s each with a 10-s off interval using
an Ultra-Turrax homogenizer. The homogenates were centrifuged
at 10,000 × g and 4˚C for 20 min. The supernatant obtained
were passed through a 5-ml Econo-Pac 10DG desalting column
(Bio-Rad Laboratories, Hercules, CA, USA) equilibrated with
50 mmol l−1 imidazole-HCl (pH 7.0) and eluted with the same
buffer. The resulting eluents were used for the determination of
Gdh activities. The dilution involved was corrected by monitor-
ing the change in protein concentrations of the sample before and
after passing through the column. Protein was determined accord-
ing to the method of Bradford (1976). Bovine gamma globulin
was used as a standard for comparison. The amination activity
of GDH was determined according to Peng et al. (1994), and was
expressed as micromole NADH oxidized per minute per gram
tissue.

STATISTICAL ANALYSES
Results were presented as mean ± SD. Student’s t -test and one-way
analysis of variance (ANOVA) followed by multiple comparison of
means by the Tukey test were used to evaluate differences between
means where applicable. Differences were regarded as statistically
significant at p < 0.05.

RESULTS
gdh NUCLEOTIDE AND THE TRANSLATED Gdh SEQUENCES
At the beginning, partial fragments of gdh were obtained from the
liver, intestine, and brain of control M. albus kept in freshwater
or fish exposed to terrestrial conditions, environmental ammonia,
or salinity stress through PCR using four pairs of gdh primers.
There was no variation in the partial gdh sequences between tis-
sues or between conditions. Furthermore, there was no sequence
variation among the 5′ RACE products or the 3′ RACE prod-
ucts generated from the cDNA of the three organs. The complete
gdh gene sequence (GenBank accession no.: JF694445) obtained
from the liver of M. albus consisted of a 133-bp 5′ UTR, a com-
plete coding sequence (CDS) region spanning 1629 bp and a 3′
UTR of approximately 717 bp (Figure 1). The same complete
sequence was obtained for gdh from the intestine and brain of
M. albus. In addition, there was no variation in the complete
gdh sequences from all three tissues of fish exposed to terres-
trial conditions, environmental ammonia, or salinity stress. The
translated Gdh amino acid sequence obtained from the liver of
M. albus had 542 residues (Figure 1), and a comparison with
those of other animals revealed that it is closely related to Gdh1a
(Table 2). From the alignment of the deduced M. albus Gdh1a

with Gdh from C. aceratus, O. mykiss, T. hakonensis, X. laevis, and
H. sapiens, it is evident that Gdh is highly conserved across species
(Figure 2).

PHYLOGENETIC ANALYSIS
Monopterus albus Gdh1a formed a monophyletic clade with B.
sinensis Gdh1a, T. nigroviridis Gdh1a, T. rubripes Gdh1a, C. acer-
atus Gdh1a, S. salar Gdh1a1 and Gdh1a2, and O. mykiss Gdh1a
(Figure 3). Danio rerio Gdh1a and Gdh1b, T. hakonensis Gdh1a,
B. sinensis Gdh1b, T. nigroviridis Gdh1b, S. salar Gdh1b, and O.
mykiss Gdh1b diverged from M. albus Gdh1a (Figure 3) and gen-
erally exhibited lower sequence identity scores (<90%) with M.
albus Gdh1a.

EFFECTS OF VARIOUS ENVIRONMENTAL CONDITIONS ON THE mRNA
EXPRESSION OF gdh1a IN THE LIVER, INTESTINE, AND BRAIN
The mRNA expression of gdh1a increased significantly by 2.6 and
3.2-fold in the liver of M. albus exposed to terrestrial conditions
or 75 mmol l−1 NH4Cl, respectively, for 1 day (Figure 4A), but it
returned to the control level after 6 days of exposure to both con-
ditions (Figure 4B). There was no significant change in the mRNA
expression of gdh1a in the liver of fish exposed to brackish water
for 1 day (Figure 4C). Exposure of fish to terrestrial conditions or
75 mmol l−1 NH4Cl did not result in any significant changes in
the mRNA expression of gdh1a in the intestine (Figures 5A,B). In
contrast, there was a significant increase (2.5-fold) in the mRNA
expression of gdh1a in the intestine of fish exposed to brack-
ish water for 1 day (Figure 5C). On the other hand, the mRNA
expression of gdh1a remained unchanged in the brain of M. albus
exposed to all three experimental conditions (Figure 6).

Table 2 | Percentage similarity of GDH/Gdh from various organisms

with Monopterus albus Gdh1a (GenBank accession no. JF694445)

obtained using Cluster W multiple alignment.

Similarity (%) with M. albus Gdh1a

M. anguillicaudatus Gdh1a 92

O. mykiss Gdh1a 93

O. mykiss Gdh1b 88

T. nigroviridis Gdh1a 94

T. nigroviridis Gdh1b 85

D. rerio Gdh1a 92

D. rerio Gdh1b 87

S. salar Gdh1a1 92

S. salar Gdh1a2 89

S. salar Gdh1b 88

T. hakonensis Gdh1a 92

C. aceratus Gdh1a 86

B. sinensis Gdh1a 96

B. sinensis Gdh1b 85

L. vannamei Gdh 68

X. laevis GDH1 88

X. tropicalis GDH1 87

M. musculus GDH1 84

H. sapiens GLUD1 84

R. norvegicus GDH1 84
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FIGURE 2 |The alignment of the translated amino acid sequence of

glutamate dehydrogenase 1a (Gdh1a) from the liver of Monopterus

albus and the amino acid sequences of Gdh in Chaenocephalus aceratus

(P82264.1), Oncorhynchus mykiss (NP_001166000.1),Tribolodon

hakonensis (BAD83654.1), Xenopus laevis (NP_001087023.1), and Homo

sapiens (NP_005262.1). Identical residues in the alignment are indicated by
“∗”; similar amino acids in the alignment are indicated by “:”; dissimilar
amino acids in the alignment are indicated by “.”. Residues involved in adenine
binding domain are boxed; residues contributing to the antenna domain are
shaded gray.

EFFECTS OF VARIOUS ENVIRONMENTAL CONDITIONS ON THE
AMINATION ACTIVITY OF Gdh FROM THE LIVER, INTESTINE, AND
BRAIN
There was a significant increase in the amination activity of Gdh
from the liver of M. albus after 1 day of exposure to terrestrial
conditions or 75 mmol l−1 NH4Cl, but the activity returned to the
control level on day 6 (Table 3). One day or 6 days of exposure
to terrestrial conditions or 75 mmol l−1 NH4Cl had no significant
effect on the intestinal Gdh amination activity. As for the brain,
there were no changes in the amination activity of Gdh except for
fish exposed to 75 mmol l−1 NH4Cl for 6 days whereby the activity
decreased significantly (Table 3). Exposure to brackish water had
no significant effects on the amination activity of Gdh from the
liver and brain of M. albus, but resulted in a significant increase
(threefold) in the intestinal Gdh amination activity (Table 4).

DISCUSSION
EXPRESSION OF Gdh1a IN THE LIVER, INTESTINE, AND BRAIN OF
M. ALBUS
Two forms of GDH, GLUD1 (ubiquitous), and GLUD2 (nerve tis-
sue specific) are expressed in human (Mavrothalassitis et al., 1988;
Shashidharan et al., 1994, 1997). The hibernating Richardson’s

ground squirrel also expresses two distinct forms of GDH
(Thatcher and Storey, 2001). Similarly, two forms of gdh
have been identified in D. rerio (Woods et al., 2005) and
B. sinensis (Peh, 2008), and multiple isoforms of gdh in O.
mykiss (AAM73775.1, AAM73776.1, AAM73777.1) and S. salar
(CAD89353.1, CAD58714.1, CAD58715.1, CAD58716.1) can be
found in GenBank. In contrast, only one form of gdh is expressed
in the gills of T. hakonensis. In addition, the presence of only one
form of Gdh in the liver of C. aceratus (Ciardiello et al., 2000)
implies the expression of a single gdh. In this study, we identified
only gdh1a from the liver, intestine, and brain of M. albus, but
the possibility of the presence of other gdh isoforms, especially in
other organs, cannot be ignored. The translated Gdh1a of M. albus
had high sequence identity, and was grouped together, with those
of T. nigroviridis, T. Rubripes, B. sinensis, C. aceratus, S. salar, and O.
mykiss, and by coincidence, these fishes are capable of inhabiting
waters of high salinities.

In general, the Gdh amino acid sequences of M. albus and
other fishes, and those of amphibians and mammals are highly
conserved. The activator of GDH, ADP, is noted to have varying
stimulatory effects for different GDH proteins or isoforms (Cho
et al., 1995; Ciardiello et al., 2000; Plaitakis and Zaganas, 2001;
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FIGURE 3 |The phylogenetic tree of several vertebrate glutamate

dehydrogenase (Gdh) protein sequences and Monopterus albus Gdh1a

sequence. Litopenaeus vannamei Gdh sequence was used as the

outgroup. Bootstrap values are indicated at the nodes of tree branches.
The sequences used in the tree and their respective accession number in
either GenBank or Ensembl databases were presented in the Section
“Materials and Methods.”

Plaitakis et al., 2003). An adenine binding domain consisting of 14
consecutive amino acid residues exists within the ADP binding site
in GDH, in which the Tyr187 residue is shown to be essential for
GDH activation by ADP (Yoon et al., 2002). In M. albus, the amino
acids contributing to the adenine binding domain and the antenna
domain were identical to those in T. hakonensis and C. aceratus, but
differed from that of O. mykiss Gdh1b and X. laevis GDH1. The
GDH antenna domain, present only in GDH from multicellular
animals, is apparently involved in allosteric regulation (Banerjee
et al., 2003). Variations in the amino acid sequences in this region
may confer selective advantages, allowing the GDH isoform to
cater to the metabolic needs of an organism (Banerjee et al., 2003;
Choi et al., 2007). Hence, it is probable that the allosteric regula-
tion of Gdh1a in M. albus would bear some similarity with those
in T. hakonensis and C. aceratus.

DIFFERENTIAL REGULATION OF gdh1a mRNA EXPRESSION IN THE
LIVER, INTESTINE, AND BRAIN OF M. ALBUS EXPOSED TO
TERRESTRIAL CONDITIONS OR ENVIRONMENTAL AMMONIA
The mRNA expression of gdh1a in the liver of M. albus exposed to
terrestrial conditions or 75 mmol l−1 NH4Cl for 1 day increased

FIGURE 4 | Effects of (A) 1 day of exposure to freshwater (control),

terrestrial conditions, or 75 mmol l−1 NH4Cl, (B) 6 days of exposure to

freshwater (control), terrestrial conditions (land), or 75 mmol l−1 NH4Cl,

and (C) 4 days of exposure to freshwater (control) or 1 day of exposure

to salinity 20 after a 3-day progressive increase in salinity from

freshwater on the mRNA expression (fold change) of glutamate

dehydrogenase 1a (gdh1a) in the liver of Monopterus albus. Results
represent mean + SD (N = 4). Statistical analysis was applied after log2

transformation of the individual fold change values. Means not sharing the
same letter are significantly different, p < 0.05.

significantly, but returned to control levels on day 6. GDH is
generally crucial to the regulation of amino acid catabolism and
ammonia production. Excess amino acids from diet proteins are
preferentially degraded, and their carbon skeletons can be chan-
neled directly into the tricarboxylic acid cycle or converted to
glucose through gluconeogenesis in the liver. The first step in
amino acid catabolism in the liver involves the removal of the
α-amino nitrogen as ammonia, and many amino acids are oxida-
tively deaminated by GDH after transamination (Campbell, 1991).
Since M. albus were unfed during the experimental period, it is
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FIGURE 5 | Effects of (A) 1 day of exposure to freshwater (control),

terrestrial conditions, or 75 mmol l−1 NH4Cl, (B) 6 days of exposure to

freshwater (control), terrestrial conditions (land), or 75 mmol l−1 NH4Cl,

and (C) 4 days of exposure to freshwater (control) or 1 day of exposure

to salinity 20 after a 3-day progressive increase in salinity from

freshwater on the mRNA expression (fold change) of glutamate

dehydrogenase 1a (gdh1a) in the intestine of Monopterus albus.

Results represent mean + SD (N = 4). Statistical analysis was applied after
log2 transformation of the individual fold change values. ∗Significantly
different from corresponding control, p < 0.05.

unlikely that the initial increase in gdh1a mRNA expression was
to facilitate glutamate catabolism. In fact, it has been established
that M. albus suppresses amino acid catabolism and detoxifies
ammonia to glutamine during terrestrial and ammonia exposure
(Tay et al., 2003; Ip et al., 2004c). Hence, the initial increase in
gdh1a mRNA expression could be a response to increase glutamate
production to support the increased synthesis of glutamine cat-
alyzed by GS. It has been demonstrated in mammals that hepatic
GDH mRNA expression is up-regulated in the pericentral zones,

FIGURE 6 | Effects of (A) 1 day of exposure to freshwater (control),

terrestrial conditions, or 75 mmol l−1 NH4Cl, (B) 6 days of exposure to

freshwater (control), terrestrial conditions (land), or 75 mmol l−1 NH4Cl,

and (C) 4 days of exposure to freshwater (control) or 1 day of exposure

to salinity 20 after a 3-day progressive increase in salinity from

freshwater on the mRNA expression (fold change) of glutamate

dehydrogenase 1a (gdh1a) in the brain of Monopterus albus. Results
represent mean + SD (N = 4). Statistical analysis was applied after log2

transformation of the individual fold change values.

resulting in increases in GDH activity and consequently glutamate
production in support of the increased detoxification of ammonia
to glutamine after feeding (Boon et al., 1999). In fish, such as the
scale-less carp Gymnocypris przewalskii (Wang et al., 2003) and the
air-breathing catfish Clarias batrachus (Saha et al., 2000), hepatic
Gdh activities are up-regulated following exposure to ammonia.
Thus, the initial up-regulation of hepatic gdh1a mRNA expres-
sion in the liver of M. albus exposed to terrestrial conditions or
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Table 3 |The amination activity (μmol NADH oxidized min−1 g−1 tissue) of glutamate dehydrogenase from the liver, intestine, and brain of

Monopterus albus kept in freshwater (control) or after 1 day or 6 days of exposure to terrestrial conditions or 75 mmol l−1 NH4Cl.

Freshwater (control) Terrestrial conditions 75 mmol l−1 NH4Cl

1 day 6 days 1 day 6 days

Liver 35.4 ± 4.6a 45.8 ± 3.3b 33.7 ± 5.9a 49.1 ± 4.4b 29.7 ± 3.6a

Intestine 2.33 ± 0.43 2.14 ± 0.41 2.27 ± 0.34 1.96 ± 0.56 2.38 ± 0.31

Brain 25.7 ± 2.3b 22.1 ± 3.4b 24.8 ± 2.7b 21.4 ± 2.1b 16.2 ± 1.8a

Results represent mean ± SD (N = 4).

Means not sharing the same letter are significantly different, p < 0.05.

ammonia could be an adaptation to increase glutamate synthesis
in preparation of the detoxification of ammonia to glutamine.

Tay et al. (2003) and Ip et al. (2004c) reported that there were
significant changes in the Gdh activity in the liver of M. albus
after 6 days of exposure to terrestrial conditions and environmen-
tal ammonia, respectively, but they did not examine effects of a
shorter period of exposure to these conditions. Results obtained
from this study confirmed that an increase in Gdh amination activ-
ity occurred in the liver of M. albus after 1 day of exposure to
terrestrial conditions or environmental ammonia. However, both
hepatic gdh1a mRNA expression and hepatic Gdh amination activ-
ity returned to control level on day 6. Post-transcriptional control
through the regulation of mRNA stability and translation are
important in mediating gene expressions (Ross, 1995; Mitchell and
Tollervey, 2000, 2001; Guhaniyogi and Brewer, 2001). An AU-rich
element (ARE) is defined as a region with frequent adenine and
uridine bases in the 3′ UTR of mRNA. It usually targets the mRNA
for degradation (Chen and Shyu, 1995; Wilson and Brewer, 1999;
Barreau et al., 2005), although there are a few instances where ARE-
binding proteins may stabilize the mRNA transcript (Schroeder
et al., 2003; Barreau et al., 2005). Present in the 3′ UTR of gdh1a
from M. albus are random ATTTA pentamers (Figure 1) that cor-
responds to AUUUA pentamers, a type of Class I AREs (Chen and
Shyu, 1995). The existence of these AREs in M. albus suggested
that increases in gdh1a mRNA transcripts in response to 1 day
of exposure to terrestrial conditions or 75 mmol l−1 NH4Cl were
probably transient, corroborating the observation that the mRNA
expression of gdh1a mRNA returned to control level on day 6.

As for the intestine of M. albus, the mRNA expression of gdh1a
and Gdh amination activity remained unchanged after 1 day
or 6 days of exposure to terrestrial conditions or 75 mmol l−1

NH4Cl, which is in agreement with previous reports that 6 days
of emersion or ammonia exposure have no significant effect on
the intestinal Gdh activity in M. albus (Tay et al., 2003; Ip et al.,
2004c). By contrast, Peh et al. (2010) reported that there were
significant increases in the ammonia content, and amination and
deamination activities and protein abundance of Gdh, in the intes-
tine of B. sinensis exposed to 15 mmol l−1 NH4Cl in seawater (pH
7.0). The excess glutamate formed in the intestine was appar-
ently channeled into other amino acids and/or transported to
other organs. However, when B. sinensis was exposed to a much
higher concentration (30 mmol l−1) of NH4Cl in water at salinity
50 (pH. 7.0), the magnitude of increase in ammonia content in
the intestine was less prominent, and there were no changes in

Table 4 |The amination activity (μmol NADH oxidized min−1 g−1

tissue) of glutamate dehydrogenase from the liver, intestine, and

brain of Monopterus albus kept in freshwater (control) or in water at

salinity 20 for 1 day after a 3-day progressive increase in salinity from

freshwater.

Freshwater Salinity 20

Liver 37.5 ± 5.9 29.9 ± 7.5

Intestine 2.15 ± 0.89 6.30 ± 1.53*

Brain 23.3 ± 3.6 26.2 ± 4.7

Results represent mean ± SD (N = 4).
∗Significantly different from the freshwater control, p < 0.05.

activities and kinetic properties of intestinal Gdh. Therefore, Peh
et al. (2010) proposed that intestinal Gdh could be involved in
the defense against ammonia toxicity during exposure to ammo-
nia in a hyperosmotic medium, whereby drinking was essential
for osmoregulation. Since M. albus would refrain from imbibing
water in a freshwater environment, the lack of effects of ammonia
exposure on the mRNA expression of gdh1a and on the Gdh ami-
nation activity in its intestine is in support of the proposition of
Peh et al. (2010).

One day or 6 days of terrestrial or ammonia exposure had no
significant effects on the mRNA expression of gdh1a in the brain
of M. albus. Indeed, there was no change in the Gdh amination
activity from the brain of M. albus exposed to terrestrial condi-
tions. However, in agreement with the report of Ip et al. (2004c),
our results indicated that 6 days of exposure to ammonia led to a
significant decrease in brain Gdh activity in M. albus. Hence, it is
logical to deduce that a change in the protein expression of Gdh at
the translation level could have occurred in the brain of fish after
6 days of exposure to 75 mmol l−1 NH4Cl.

UP-REGULATION OF gdh1a mRNA EXPRESSION IN THE INTESTINE OF
M. ALBUS EXPOSED TO BRACKISH WATER
It has been reported recently that M. albus exposed to brackish
water accumulates glutamine as a major organic osmolyte for
cell volume regulation (Tok et al., 2009). The activity and pro-
tein abundance of GS increase significantly in the liver and muscle
of fish exposed to brackish water. Increased production of glu-
tamine requires an increased supply of glutamate, and indeed
our results indicated that a significant increase in gdh1a mRNA
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expression occurred in the intestine of M. albus exposed to brack-
ish water, which corroborates the findings of increased intestinal
Gdh amination activity in this and previous (Tok et al., 2009) stud-
ies. Since the juvenile marble goby, Oxyeleotris marmorata, also
up-regulates intestinal Gdh activity and protein abundance dur-
ing seawater acclimation (Chew et al., 2010), it can be concluded
that the intestines of some euryhaline fishes have an important
osmoregulatory function of upregulating glutamate synthesis in
response to salinity stress. The excess glutamate could be trans-
ported to other organs in support of increased glutamine synthesis
for cell volume regulation.

CONCLUSION
The liver, intestine, and brain of M. albus expressed gdh1a,
the translated amino acid of which had the greatest sequence

identity with O. mykiss Gdh1a, S. salar Gdh1a1, B. sinensis
Gdh1a, and T. hakonensis Gdh1a. The mRNA expression of gdh1a
was differentially up-regulated in the liver and intestine of M.
albus in response to ammonia toxicity (terrestrial conditions or
environmental ammonia) and salinity stress (brackish water),
respectively. It is probable that the corresponding increases in
Gdh amination activities in these two organs would lead to
increases in the production of glutamate to support increased
glutamine synthesis for ammonia detoxification or cell volume
regulation.
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