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Human social networks evolve on the fast timescale of face-to-face interactions and of
interactions mediated by technology such as a telephone calls or video conferences. The
resulting networks have a strong dynamical component that changes significantly the prop-
erties of dynamical processes. In this paper we study a general model of pairwise human
social interaction intended to model both face-to-face interactions and mobile-phone com-
munication.We study the distribution of durations of social interactions in within the model.
This distribution in one limit is a power-law, for other values of the parameters of the model
this distribution is given by a Weibull function. Therefore the model can be used to model
both face-to-face interactions data, where the distribution of duration has been shown to
be fat-tailed, and mobile-phone communication data where the distribution of duration is
given by aWeibull distribution.The highly adaptable social interaction model propose in this
paper has a very simple algorithmic implementation and can be used to simulate dynamical
processes occurring in dynamical social interaction networks.
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INTRODUCTION
In the last 10 years the network theory (Dorogovtsev and Mendes,
2003; Newman, 2003; Boccaletti et al., 2006; Caldarelli, 2007; Bar-
rat et al., 2008) has become the fundamental theory for studying
complex systems. Indeed complex networks describe a large vari-
ety of technological, biological, and social complex systems. While
great attention has been addressed to static networks and the
dynamical processes occurring on them, less attention has been
paid to dynamical networks and in particular to dynamical social
networks.

Social networks (Granovetter, 1973; Wasserman and Faust,
1994) have a very relevant community structure (Palla et al.,
2007; Bianconi et al., 2009; Ahn et al., 2010) and are adaptive and
extremely dynamical. In the last years several papers have proposed
adaptive models of social behavior showing phase transitions in
different universality classes (Davidsen et al., 2002; Marsili et al.,
2004; Holme and Newman, 2006; Vazquez et al., 2008). In these
models social ties are dynamically rewired in a framework of sto-
chastic models. Social ties have in addition to that, a microscopic
structure constituted by fast social interactions of the duration
of a phone call or of a face-to-face interaction. Dynamical social
networks characterize the social interaction at this fast timescale.
Recently new network measures are started to be defined for these
dynamical networks (Tang et al., 2010) and recent works focus on
the implication that the network dynamics has on percolation, epi-
demic spreading, and opinion dynamics (Holme, 2005; Vázquez
et al., 2007; Parshani et al., 2010; Isella et al., 2011; Karsai et al.,
2011).

Recently, thanks to the availability of new extensive data on a
wide variety of human dynamics (Barabási, 2005; Eagle and Pent-
land, 2006; Malmgren et al., 2008, 2009; Rybski et al., 2009), human

mobility (Brockmann et al., 2006; González et al., 2008; Song et al.,
2010), and dynamical social networks (Onnela et al., 2007), it has
been recognized that many human activities (Vázquez et al., 2007)
are not Poissonian (West et al., 2008). New data on social dynami-
cal networks start to be collected with new technologies such as of
Radio Frequency Identification Devices (Cattuto et al., 2010; Isella
et al., 2011) and Bluetooth (Eagle and Pentland, 2006). These tech-
nologies are able to record the duration of social interactions and
report evidence for a bursty nature of social interaction charac-
terized by a fat tail distribution of the duration of face-to-face
interactions. This bursty behavior of social networks (Hui et al.,
2005; Scherrer et al., 2008; Cattuto et al., 2010; Stehlé et al., 2010;
Isella et al., 2011; Zhao et al., 2011) is coexisting with modula-
tions coming from periodic daily (circadian rhythms) or weakly
patterns (Jo et al., 2011). Recently new evidence coming from the
analysis of mobile-phone communication (K. Zhao, M. Karsai,
and Bianconi, in preparation) shows that the duration of mobile-
phone interactions is also not Poissonian but has a finite second
moment and is described by a Weibull distribution.

Therefore there is a necessity to generate an efficient dynamical
model that has the flexibility to account both for scale-free distrib-
ution of duration of interactions, as found in face-to-face interac-
tions, and stretched exponential (Weibull distributed) duration of
interaction as found in the data of mobile-phone communication.

The fact that the bursty behavior is observed also in social inter-
action of simple animals (leeches; G. Bisson, G., Bianconi, and V.
Torre, in preparation), in the motion of rodents (Anteneodo and
Chialvo, 2009), or in the use of words (Altmann et al., 2009), sug-
gests that the underlying origin of this behavior is dictated by the
biological and neurological processes underlying the dynamics of
the social interaction.
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In this paper we use a model with dynamical reinforcement
to model the nature of social interaction. Disregarding for the
moment the effects of circadian rhythms and weakly patterns, we
assume that the decision of the agents to form or leave a group
are driven by memory effects dictated by reinforcement dynamics,
that can be summarized in the following statements: (i) the longer
an agent is interacting in a group the smaller is the probability
that he/she will leave the group; (ii) the longer an agent is isolated
the smaller is the probability that he/she will form a new group.
The biological origin of this principle (which has clear similarity
with the Hebbian reinforcement mechanism) will be investigated
in future works where it will be studied in the framework of the
neuroscience of social interactions in simple animals.

In this paper we show that depending on the nature of the
memory kernel used to implement this dynamics the distribution
of duration of interaction changes from Weibull distributions to
scale-free distributions. This indicates that human social interac-
tions might be determined by an effective use of different memory
kernel depending on the different nature of social interactions
(e.g., Face-to-face interactions or mobile-phone communication).

THE PROPOSED MODEL OF HUMAN SOCIAL INTERACTIONS
We consider a system consisting of N agents representing inter-
acting agents. The agents are interacting in a social network G
representing social ties such as friendships, collaborations, or
acquaintances. The network G is weighted with the weights indi-
cating the strength of the social ties between agents. To model the
mechanism of human social interaction the agents can call their
neighbors in the social network G forming groups of interacting
agents. Since at any given time an interaction can be initiated or
terminated the network is highly dynamical. For the general model
defined above, we use ni(t ) ∈ N to denote the number of agents
in the group of agent i at time t. In this paper, we focus on a
simple case with ni ≤ 2, such that only pairwise interactions are
allowed in the system, or in other words, the agents can only inter-
act with one partner at a time. Indeed, pairwise interaction is the
most typical social interaction existing in reality, e.g., phone-call
communication or point-to-point on-line connection. Specifically
ni = 1 refers to the status of a non-interacting agent i while ni = 2
refers to the status of an interacting agent. Here we give an explicit
algorithm for the model of pairwise interaction:

(1) An agent i is selected randomly at time t (initially t = 0).
(2) Agent i has two possible subsequent actions:

• If ni(t ) = 1, he/she will start an interaction with probabil-
ity f1(ti, t ) where ti refers to the last time at which agent i
has changed his/her state. Once the interaction is initiated, a
partner j will be chosen from one of his/her non-interacting
neighbors of G with probability proportional to �(tj, t ),
and consequently ni → 2 and nj → 2.

• If ni(t ) = 2, he/she will terminate his/her current interac-
tion with probability f2(ti, t | wij) where wij is the weight
of the link between i and the neighbor j that is interacting
with i, and consequently ni → 1 and nj → 1.

(3) Time t is updated as t → t + 1/N and the process is iterated
until t = Tmax.

One should note that, the corporation of ti in the probability func-
tions f1, � and f2, indeed, reflects the memory effect of agents that
their current behavior is depending on the history of their previ-
ous behavior. For simplicity, we also assume f1 = � in this paper,
which means the probability of starting an interaction is identical
to the probability of replying to an interaction.

MEAN-FIELD SOLUTION TO THE MODEL
The model of pairwise interaction can be solved analytically if we
assume G is an uncorrelated and annealed network. The assump-
tion means, at each time step, the links of G are rewired randomly
while the degree distribution p(k) and the weight distribution
p(w) are remained constant. We denote by N k

1 (t0, t )dt0 the num-
ber of non-interacting agents with degree k at time t that have
not interacted with another agent since time t ′ ∈ (t 0, t 0 + 1/N ).

Similarly we denote by N k,k ′,w
2 (t0, t )dt0 the number of interacting

agent pairs (with degree respectively k and k ′ and weight of the
link w) at time t being in the interaction since t ′ ∈ (t 0, t 0 + 1/N ).
In the continuous time limit N → ∞, the rate equation can be
written as a differential form

∂N k
1 (t0, t )

∂t
= −N k

1 (t0, t ) f1 (t0, t ) − ckN k
1 (t0, t ) f1 (t0, t )

+ Nπk
21(t )δtt0

∂N k,k ′,w
2 (t0, t )

∂t
= −2N k,k ′,w

2 (t0, t )f2(t0, t |w) + Nπ
k,k ′,w
12 (t )δtt0 .

(1)

The term with normalization constant c in Eq. (1) indicates the
rate of non-interacting agents with degree k being contacted by
others (If G is uncorrelated, this term should be proportional to
k), and c is given by

c =
∑

k ′
∫ t

0 dt0N k ′
1 (t0, t ) f1 (t0, t )∑

k ′ k ′ ∫ t
0 dt0N k ′

1 (t0, t ) f1 (t0, t )
. (2)

The rates πpq(t ) in Eq. (1) indicate the average number of
agents changing from state p = 1, 2 to state q = 1, 2 at time t.
These rates can be also expressed in a self-consistent way as

πk
21(t ) = 2

N

∑
k ′,w

t∫
0

dt0f2 (t0, t |w) N k,k ′,w
2 (t0, t )

π
k,k ′,w
12 (t ) = P(w)

CN

t∫
0

dt0

t∫
0

dt ′
0N k

1 (t0, t ) N k ′
1

(
t ′
0, t

)
f1 (t0, t )

× f1
(
t ′
0, t

) (
k + k ′) . (3)

where the constant C is given by

C =
∑

k ′

t∫
0

dt0k ′N k ′
1 (t0, t ) f1 (t0, t ) . (4)
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The solution to Eq. (1) is given by

N k
1 (t0, t ) = Nπk

21 (t0) e
−(1+ck)

∫ t
t0

f1(t0,t )dt

N k,k ′,w
2 (t0, t ) = Nπ

k,k ′,w
12 (t0) e

−2
∫ t

t0
f2(t0,t |w)dt

. (5)

To get a complete solution to the model, we still need to utilize
the conservation of the number of agents with degree k, that is

∫
dt0

⎡
⎣N k

1 (t0, t ) +
∑
k ′,w

N k,k ′,w
2 (t0, t )

⎤
⎦ = Np(k). (6)

Therefore, combining Eqs (5–7), the solution to the model is
completely determined.

Especially we are interested in the stationary solutions, which
are expected to satisfy

N k
1 (t0, t ) = N k

1 (τ )

N k,k ′,w
2 (t0, t ) = N k,k ′,w

2 (τ )

πpq(t ) = πpq , (7)

where τ = t − t 0 is the duration time elapsed since the last time the
agent has changed his/her state. A stationary solution means that,
the system reaches a dynamical equilibrium, such that the macro
distribution of agents with different states are time-dependent and
the transition rate is constant. In the next section, we will see a sta-
tionary solution can be achieved by specifically choice of f1 and f2

in an asymptotic time limit t → ∞.
Finally, by convenience, we denote by Pk

1 (t0, t ) the probability
distribution that an agent with degree k is non-interacting for a
period from t 0 to t and by Pw

2 (t0, t ) the probability that a connec-
tion of weight w at time t is active since time t 0. These distributions
are obviously proportional to the number of individual in a state
n = 1, 2 multiplied by the probability of having a change of state,
i.e.,

Pk
1 (t0, t ) ∝ (1 + ck)f1 (t0, t ) N k

1 (t0, t )

Pw
2 (t0, t ) ∝ 2f2 (t0, t |w)

∑
k,k ′

N k,k ′,w
2 (t0, t ) . (8)

STATIONARY SOLUTION OF THE MODEL
In the previous section, one should notice that the form of Eq. (5),
the solution to the model of pairwise interaction, is subject to the
choice of probability functions f1 and f2. A lot of evidence from
recent measurements reveals that social interaction and human
activities are not merely Poisson process but with bursty effect.
The distribution of duration time and inter-event time from the
empirical data, turn out to be non-trivial and shows scaling prop-
erty. To capture these phenomena observed in reality, we define f1

and f2 as

f1 (t0, t ) = f1(τ ) = b1

(1 + τ)β

f2 (t0, t |w) = f2(τ |w) = b2g (w)

(1 + τ)β
. (9)

b1 > 0, b2 > 0, 0 ≤ β ≤ 1 are some characteristic parameters and
g (w) is an arbitrary positive function. The definition by Eq. (9),
indeed reflects a reinforcement dynamics we apply to the model,
which could be summarized as“the longer an agent stays in its cur-
rent state, the more possible it tends to maintain it.” The function
g (w) is generally chosen as a decreasing function of w, indicating
that interacting agent pairs with a stronger weight of tie inter-
act typically for a longer time. In the asymptotic time limit, the
necessary condition for the stationary solution to exist is that the
summation of self-consistent constraints given by Eqs (2) and
(4) together with the conservation law Eq. (6) converge under
the stationary assumptions Eq. (7). The convergence depends on
the value of the parameters b0, b1, β and the choice of function
g (w). In particular, when 0 ≤ β < 1, the convergence is always sat-
isfied. In the following subsections, we will characterize further the
stationary state solution of this model in different limiting cases.

CASE 0 < β < 1
The expression for the number of agent in a given state N k

1 (τ ) and

N k,k ′,w
2 (τ ) can be obtained by substituting Eq. (9) into the general

solution Eq. (5), using the stationary conditions Eq. (7). In this
way we get the stationary solution given by

N k
1 (τ ) = Nπk

21e
b1(1+ck)

1−β
[1−(1+τ)1−β ]

= Nπk
21mk

1 (τ )

N k,k ′,w
2 (τ ) = Nπ

k,k ′,w
12 e

2b2g (w)

1−β
[1−(1+τ)1−β ]

= Nπ
k,k ′,w
12 mw

2 (τ ). (10)

To complete the solution is necessary to determine the con-

stants πk
21 and π

k,k ′w
12 in a self-consistent type of solution. To find

the expression of π
k,k ′,w
12 as a function of πk

21 we substitute Eq. (10)
in Eq. (3) and we get

π
k,k ′,w
12 (t ) = 1

C
πk

21P(w)

×
⎡
⎣k

t∫
0

dt0mk
1 (t0, t ) f1 (t0, t )

t∫
0

dt ′
0N k ′

1

(
t ′
0, t

)
f1

(
t ′
0, t

)

+k ′
t∫

0

dt0mk
1 (t0, t ) f1 (t0, t )

t∫
0

dt ′
0N k ′

1

(
t ′
0, t

)
f1

(
t ′
0, t

)⎤⎦ . (11)

Finally we get a closed equation for πk
21 by substituting Eq. (11)

in Eq. (6) and using the definition of c and C, given respectively
by Eq. (2) and Eq. (4). Therefore we get

πk
21

⎡
⎣

∞∫
0

mk
1 (τ )dτ +

wmax∫
wmin

P(w)

∫ ∞

0
mw

2 (τ )dτdw

×
⎛
⎝ck

∞∫
0

mk
1 (τ )f1(τ )dτ +

∞∫
0

mk
1 (τ )f1(τ )dτ

⎞
⎠
⎤
⎦ = p(k). (12)
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Performing explicitly the last two integrals using the dynamical
solution given by Eq. (10), this equation can be simplified as

πk
21 =

⎡
⎣

∞∫
0

mk
1 (τ )dτ +

wmax∫
wmin

P(w)

∞∫
0

mw
2 (τ )dτdw

⎤
⎦

−1

p(k). (13)

Finally the self-consistent solution of the dynamics is solved by
expressing Eq. (2) by

c =
∑
k

πk
21(1 + ck)−1

∑
k

πk
21k(1 + ck)−1

. (14)

Therefore we can use Eqs (13) and (14) to compute the
numerical value of πk

21 and c. Inserting in these equations the
expressions for f1(τ ), f2(τ | w) given by Eq. (9) and the solutions

N k
1 (τ ), N k,k ′,w

2 (τ ) given by Eq. (10) we get

Pk
1 (τ ) ∝ b1(1 + ck)

(1 + τ)β
e
− b1(1+ck)

1−β
(1+τ)1−β

Pw
2 (τ ) ∝ 2b2g (w)

(1 + τ)β
e
− 2b2g (w)

1−β
(1+τ)1−β

. (15)

The probability distributions Pk
1 (τ ) and Pw

2 (τ ), can be manip-
ulating performing a data collapse of the distributions, i.e.,

τ �
1 (k)Pk

1

(
x1 = τ

τ �
1 (k)

)
= A1 x−β

1 e
− x1−β

1
1−β

τ �
2 (w)Pw

2

(
x2 = τ

τ �
2 (w)

)
= A2 x−β

2 e
− x1−β

2
1−β (16)

with τ �
1 (k) and τ �

2 (w) defined as

τ �
1 (k) = [b1(1 + ck)]

− 1
1−β

τ �
2 (w) = [

2b2g (w)
]− 1

1−β
(17)

where A1 and A2 are the normalization factors. The data col-
lapse defined by Eq. (16) of the curves Pk

1 (τ ), Pw
2 (τ ) and are both

described by Weibull distributions.

CASE β = 0
For β = 0 the functions f1(τ ) and f2(τ | w) given by Eq. (9) reduce
to constants, therefore the process of creation of an interaction is
a Poisson process and no reinforcement dynamics is taking place
in the network. Assigning β = 0 to Eq. (5), we get the solution

N k
1 (τ ) = Nπk

21e−b1(1+ck)τ

N k,k ′,w
2 (τ ) = Nπ

k,k ′,w
12 e−2b2g (w)τ . (18)

and consequently the distributions of duration of given states Eq.
(8) are given by

Pk
1 (τ ) ∝ e−b1(1+ck)τ

Pw
2 (τ ) ∝ e−2b2g (w)τ . (19)

Therefore the probability distributions Pk
1 (τ ) and Pw

2 (τ ) are
exponentials as expected in a Poisson process.

CASE β = 1
In this section, we discuss the case for β = 1 such that f k

1 (τ ) ∝
(1 + τ)−1 and f w

2 (τ |w) ∝ (1 + τ)−1. Using Eq. (1) we get the
solution

N k
1 (τ ) = Nπk

21(1 + τ)−b1(1+ck)

N k,k ′,w
2 (τ ) = Nπ

k,k ′,w
12 (1 + τ)−2b2g (w). (20)

and consequently the distributions of duration of given states Eq.
(8) are given by

Pk
1 (τ ) ∝ πk

21(1 + τ)−b1(1+ck)−1

Pw
2 (τ ) ∝ π

k,k ′,w
12 (1 + τ)−2b2g (w)−1. (21)

The probability distributions are power-laws. This result
remains valid for every value of the parameters b1, b2, g (w) (See
Zhao et al., 2011 for a full account of the detailed solution of this
model) nevertheless the stationary condition is only valid for

b1(1 + ck) > 1

2b2g (w) > 1. (22)

Indeed this condition ensures that the self-consistent con-
straints Eqs (2) and (4) and the conservation law Eq. (6) have
a stationary solution.

COMPARISON WITH NUMERICAL SIMULATIONS
To check the validity of our annealed approximation versus
quenched simulations, we performed a computer simulation
according to the dynamical process on a quenched network for
the cases β ∈ (0, 1), β = 0 and β = 1. In Figure 1 we compare the
results of the simulation for β ∈ (0, 1) with the predictions of the
analytical solution. In particular in the reported simulation we
have chosen β = 0.5, b1 = 0.02, b2 = 0.05, and g (w) = w−1, the
simulation is based on a number of agent N = 2000 and for a
period of Tmax = 105, finally the data are averaged over 10 realiza-
tions and the network is Poisson with average 〈k〉 = 6 and weight
distribution p(w) ∝ w−2. In Figure 1, we show evidence that the
Weibull distribution and the data collapse of Pw

2 (τ ) well capture
the empirical Weibull behavior observed in the mobile-phone data.
The simulated data are also in good agreement with the analytical
predictions derived in the annealed approximation for the para-
meter chosen in the figure. As the network becomes more busy
and many agents are in a telephone call, the quenched simulation
and the annealed prediction of Pk

1 (τ ) differs more significantly. In
Figure 2 we plot the distribution Pw

2 (τ ) in the Poisson case β = 0
and we compare the simulation with the theoretical prediction.
In particular in the reported simulation we have chosen β = 0.5,
b1 = 0.02, b2 = 0.05 and g (w) = w−1, the simulation is based on a
number of agent N = 2000 and for a period of Tmax = 105, finally
the data are averaged over 10 realizations and the network is Pois-
son with average 〈k〉 = 6 and weight distribution p(w) ∝ w−2.
Finally in Figure 3 we plot the distribution Pw

2 (τ ) in the power-law
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FIGURE 1 | Data collapse of the simulation of the proposed model for

cell phone communication with β = 0.5. In the figure we plot the
probability P w

2 (τ ) that in the model a pair of agents with strength w are
interacting for a period τ . The collapses data of P w

2 (τ ) is described by
Weibull distribution as expected by the theoretical prediction indicated with
a solid line.

FIGURE 2 | Data collapse of the simulation of the proposed model for

cell phone communication with β = 0. In the figure we plot the
probability P w

2 (τ ) that in the model a pair of agents with strength w are
interacting for a period τ . The collapses data of P w

2 (τ ) is described by the
exponential distribution predicted theoretically and indicated by a solid line.

case β = 1. In this case we have consider model in the station-
ary phase and therefore we have taken b1 = b2 = 0.8. All others
parameter of the model are the same as in the precedent simula-
tions. In Figure 3 we show that in this case the distribution P2

2 (τ )

is a power-law with exponents depending on the weight of the
link. The fitted exponents are in very good agreement with the
exponents predicted by the mean-field solution of the model.

FIGURE 3 | Data of the simulation of the proposed model for cell

phone communication for β = 1. In the figure we plot the probability
P w

2 (τ ) that in the model a pair of agents with strength w are interacting for
a period τ . The collapses data of P w

2 (τ ) is described by power-law
distribution in agreement with the theoretical predictions. In the inset we
report the power-law exponent versus the theoretically predicted power-law
exponent showing good agreement.

CONCLUSION
In the last 10 years there has been an increasing interest in
the structure of complex networks. New universality class has
been found characterizing small-word and scale-free networks.
Recently new data on social interaction networks are chang-
ing the way we look at social networks. In fact the new data
is able to record social interactions on the fast timescale of a
face-to-face interaction or on the duration of a mobile-phone
communication. These new data constitute evidence for the
“microscopic structure” or any social tie in a social network.
Moreover this data show evidence that human social interac-
tions are dictated by a non-Poissonian dynamics. Here in this
paper we discuss a model of social interactions on the fast
timescale. This model is able to reproduce both scale-free dis-
tribution of duration of interactions and Weibull distribution
of duration of interaction as observed respectively in the data
of face-to-face and mobile-phone communication. The hypoth-
esis of the paper is that the dynamics of social interaction
is mediated by a Hebbian like type of dynamics with mem-
ory effects that is able to reproduce the data. In future works
we plan to biologically validate this hypothesis in the study of
social interactions in simple animals. The model well repro-
duce the experimental data and is very easy to implement
to include the effect of circadian rhythms or the role of an
information spreading on the network. This flexibility of the
model makes it a perfect platform to use this model in future
works for simulating dynamical processes on dynamical social
networks.
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