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INTRODUCTION

Long-term exposure to intermittent hypoxia and sleep fragmentation introduced by recur
ring obstructive sleep apnea (OSA) has been linked to subsequent cardiovascular disease
and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the
normal interactions among the systems that regulate autonomic and metabolic function is
likely involved. We have extended an existing integrative model of respiratory, cardiovascu-
lar, and sleep—wake state control, to incorporate a sub-model of glucose—insulin—fatty acid
regulation. This computational model is capable of simulating the complex dynamics of car
diorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation,
state-related and chemoreflex control of upper airway potency, respiratory and circulatory
mechanics, as well as the metabolic control of glucose—insulin dynamics and its inter
actions with the autonomic control. The interactions between autonomic and metabolic
control include the circadian regulation of epinephrine secretion, epinephrine regulation on
dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among
tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on
peripheral vascular sympathetic activity. These model simulations provide insight into the
relative importance of the various mechanisms that determine the acute and chronic phys-
iological effects of sleep-disordered breathing. The model can also be used to investigate
the effects of a variety of interventions, such as different glucose clamps, the intravenous
glucose tolerance test, and the application of continuous positive airway pressure on OSA
subjects. As such, this model provides the foundation on which future efforts to simu-
late disease progression and the long-term effects of pharmacological intervention can be
based.

Keywords: physiological model simulation, obstructive sleep apnea, sleep regulation, metabolic function,
autonomic-metabolic interactions, computational modeling, integrative modeling, metabolism

blood pressure after several weeks of nocturnal exposure (Brooks

The current obesity epidemic is contributing to the increasing
prevalence of the “metabolic syndrome,” the clustering of symp-
toms that include insulin resistance, hypertension, and dyslipi-
demia (Reilly and Rader, 2003). The components of metabolic
syndrome individually or collectively constitute high-risk factors
for cardiovascular disease and Type 2 diabetes. Since obstructive
sleep apnea (OSA) commonly occurs among obese individuals,
there is a growing recognition of the possibility that OSA may
constitute an independent risk factor for the metabolic syndrome
(Tasali and Ip, 2008). Indeed, OSA has been found to be strongly
associated with insulin resistance (Punjabi et al., 2002), Type
2 diabetes (Chasens, 2007), as well as hypertension and vari-
ous kinds of cardiovascular disease (Reaven, 1980). The causal
pathways that link OSA to hypertension and insulin resistance
remain unclear. However, it has been demonstrated that exposure
to intermittent hypoxia (IH) in humans can lead to prolonged
elevation of muscle sympathetic nerve activity following termi-
nation of the chemical stimulation (Xie et al., 2000). As well,
in an elegant canine model, artificially induced periodic airway
obstruction during sleep led to sustained elevation of daytime

et al., 1997). Thus, a plausible scenario is that the sympathetic
overactivity resulting from OSA leads to increased catecholamine
release, which produces hyperglycemia and, in turn, hyperinsu-
linemia, which promotes insulin resistance. Increased sympathetic
activity is also known to stimulate lipolysis from adipose tissue
and thus contribute to the elevation of circulating free-fatty acids
(FFAs; Bamshad et al., 1998). Increased FFAs impair net glucose
uptake by the tissues, contributing further to the hyperglycemia
and hyperinsulinemia (Roy and Parker, 2006). Since hyperinsu-
linemia stimulates sympathetic activity, a vicious cycle could well
develop that leads to worsening autonomic function and insulin
resistance.

As mentioned in our previous work (Cheng et al., 2010),
many simulation models of cardiovascular and respiratory sys-
tems have been developed since 1950s and some models were
designed for special disorders in cardiorespiratory physiology but
very few were involved in the interactions between these systems
and none of them have studied the interactions of cardiorespi-
ratory response with sleep. Also, over the past several decades,
a large number of mathematical models of glucose and insulin
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dynamics have appeared in the literature. Most of the earlier
models were aimed at gaining a better understanding of glucose—
insulin dynamics during diagnostic tests (Himsworth and Ker,
1939; Steele, 1959; Bolie, 1961; Ackerman et al., 1965; Andres
et al., 1966; DeFronzo et al., 1979). The models employed pri-
marily for purposes of parameter estimation have generally been
simple in terms of the small number of free parameters, such as
Bergman’s minimal model (Bergman et al., 1979) and Turner’s
homeostatic model assessment (HOMA, Turner et al., 1979).
However, there are also many models that have more complex
structures, such as those used for quantifying -cell mass, glucose
disappearance, B-cell glucose sensitivity, and insulin secretion and
resistance (Srinivasan et al., 1970; Sherwin et al., 1974; Insel et al.,
1975; Howard et al., 1984; Berger and Rodbard, 1989; Bergman,
1989; Berman et al., 1993; Genter et al., 1998; Bergman et al.,
2006). Some of these models have been designed to account
for glucose—insulin dynamics observed in subjects with Type 1
diabetes (Skowronski et al., 1991; Parker et al., 1999; Porksen
et al.,, 2002). Other models also incorporate the dynamics of
fatty acids (Skowronski et al., 1991; Nolan et al., 2006; Huck-
ing et al., 2007). Most of these models are useful in providing
better insight into metabolic regulation and for developing ther-
apeutic approaches to Type 1 and Type 2 diabetes, but none have
taken into account the potential mechanisms with which auto-
nomic dysfunction may contribute to metabolic dysfunction and
vice versa. To date, we know of no other modeling study that
has linked cardiovascular autonomic and respiratory control with
metabolic control, especially in the context of sleep-disordered
breathing.

As a first exploration of the hypothesis that the sympathetic
nervous system may be the crucial factor that lies at the center of
the causal pathways that link OSA to hypertension and metabolic
dysfunction, we extended our existing integrative model of respi-
ratory, cardiovascular, and sleep regulation (Cheng et al., 2010) to
incorporate a sub-model of metabolic function, capable of sim-
ulating the dynamics of glucose—insulin, and FFA dynamics in
wakefulness and sleep. The extended model includes features such
as the circadian regulation of sympathetic nervous activity and epi-
nephrine secretion, and the effects of epinephrine on the dynamic
fluctuations of glucose and FFA in plasma. The extended model
also incorporates the effect of hyperinsulinemia on the peripheral
sympathetic nervous system.

MATERIALS AND METHODS

Our existing comprehensive model of sleep-cardiorespiratory con-
trol, heretofore referred to as “PNEUMA,” includes the autonomic
control of the cardiovascular system, chemoreflex and state-related
control of breath-to-breath ventilation, state-related and chemore-
flex control of upper airway potency, as well as respiratory and
circulatory mechanics. It provides realistic predictions of the phys-
iological responses under a wide variety of conditions, includ-
ing the day-to-day sleep—wake cycle, hypoxia-induced periodic
breathing, Cheyne—Stokes respiration in chronic heart failure, and
OSA. It can be used to investigate the effects of virtual experi-
ments and interventions such as isocapnic and hypercapnic and/or
hypoxic gas administration, the Valsalva and Mueller maneuvers,
and the application of continuous positive airway pressure (CPAP)

on OSA patients. A detailed account of “PNEUMA” is given in
Cheng et al. (2010).

To better understand the causal link between OSA and insulin
resistance, it is necessary to extend “PNEUMA” to include a meta-
bolic model of glucose and insulin that involves with energy
metabolism and its interaction with the autonomic function.
One of the most widely used and validated models of glucose
and insulin dynamics is the three compartment minimal model
method by Bergman et al. (1981), which is commonly used to
estimate insulin sensitivity from an intravenous glucose tolerance
test (IVGTT). The model is “minimal” in the sense that it is suf-
ficiently complex enough to characterize the key features of the
dynamic interaction between glucose and insulin, and yet simple
enough to be fully estimated from blood measurements of insulin
and glucose in individual subjects. It provides a sufficient level
of complexity for characterizing glucose and insulin dynamics in
our large-scale model with minimum numbers of model parame-
ters, while the other metabolic models are either too simple or too
complex. FFA provides about 90% of the muscle energy at rest
and FFA has been shown to play an important role in glucose and
insulin dynamics in last three decades (Randle et al., 1988; Rebrin
et al., 1995). However, the metabolic regulation of FFA and its
incorporation with glucose and insulin has been largely ignored
by others. The extended minimal model (Roy and Parker, 2006)
takes into account the contribution of FFA metabolism and its
interaction with glucose and insulin, thereby allowing the synthe-
sis “lipid-based” metabolic models with meals. For this reason,
we have based our metabolic regulation sub-model on the Roy—
Parker extended minimal model. Furthermore, it is known that
sympathetic activation affects glucose and FFA metabolism. In
this model, we postulate that sympathetic activity directly affects
plasma epinephrine levels, and that epinephrine modulates glu-
cose and FFA metabolism via mechanisms modeled by Kim et al.
(2006).

The model of glucose dynamics employed here is a modified
version of the minimal model by Bergman et al. (1981). Plasma
glucose disappearance occurs in the peripheral tissues by oxidation
and in the liver mainly by glycogenesis. The dynamics of glucose
metabolism is given by Eq. 1, where G(¢) is the plasma glucose con-
centration, X (#) is “remote” insulin action that accelerates glucose
utilization in the peripheral tissues and liver and inhibits hepatic
glucose production, Z(t) is the plasma FFA concentration and is
described in the FFA dynamics section, subscript “b” stands for
basal level, uin: () is the internal glucose flux rate, upex(#) is the
glucose external input rate that could be food intake or external
infusion rate of glucose, and Volg is the glucose distribution space.

AG(t)
5 = PG+ nG = pXDGD) + paXeGy
k int () + Ugexi (¢
+ psZ(DG(1) — peZyGy + —o ti/) thea(t) )
OlG

Plasma insulin dynamics is described using a two-compartment
model with three first-order functions given by Eqs 2—4 below,
where I(t) is the plasma insulin concentration, X (#) is time-course
of insulin action which presents a receptor for insulin in periph-
ery, Y(t) is added in the extended minimal model to represent
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the insulin in peripheral tissues that promotes FFA storage and
inhibits FFA release from adipose tissue into the circulations, Gy, is
the threshold glucose concentration, T'p; is the variable time delay,
and u (t) is the external input rate for the insulin model.

dl
% =vy(G(t— Tpi) — Gp) t — n(I(t) — I,) + psus (t)  (2)
dx(t)

S = 2 (X() = Xp) o+ ps (1) — I) )
dy

dit) = —pr2 (Y(t) — Yp) + pr3 (I(1) — Ip) (4)

Although FFA metabolism accounts for most of the energy pro-
duction in the body at rest, the role of FFA has been overlooked
in most models of glucose—insulin regulation. To incorporate the
contribution of FFA in metabolic control, we employed the model
introduced by Roy and Parker (2006). A schematic diagram of the
dynamics of FFA and the interactions among glucose, insulin, and
FFA is displayed in Figure 1; the model is characterized by Eqs
5-7 below, where F(t) is the FFA concentration in plasma, Z(t)
is the additional first-order filter, acting as the remote plasma FFA
concentration that promotes the glucose uptake, subscript b rep-
resents basal level in the plasma, usin¢(t) is the internal FFA flux
rate, and usex(t) is the external FFA uptake rate. Table 1 provides
a detailed listing of all model parameters and their values.

dF(t)
T —p7E() + p7Ep — psY (D) F() + psYp Fyp
k 1 X1
+p96G(t)F(t) _ngGbe + EFU3 int (1) + Uzext (f) (5)
VOlF
dz(t
2D ko (2~ 2k (F O — ) (6)
where
p§ = 0.00021¢~0-0055G 7)
w(ftns,mem)
<

LY

- Epincphrinc Regulation g
uy(t) .-~ S~ o (D)
8 u
Glucose Z(0) F() Free Fatty Aid
Dynamics Dynamics

G(t) G(b)
*0 GO
o= o
Dynamics
o B
Aftas uy(t)

FIGURE 1 | Diagram of metabolic model with epinephrine regulation.
X, remote insulin level; Y, remote insulin promotes FFA production and
utilization; Z, remote FFA level. Af,,, feedback from metabolic system to
autonomic control; w(f.smew), effect of efferent sympathetic activity and
circadian process on metabolic system. u;(t), u,(t), and us(t): inputs for
insulin, glucose, and FFA dynamics, respectively.

The model allows for insulin to be introduced intravenously
into the system (as external input rate u;(¢) in Figure 1) for sim-
ulation of IVGTT and hyperinsulinemic interventions. Glucose
can be introduced intravenously into the system for simulation
of hyperglycemia, euglycemia, and hypoglycemia in the form of
external infusion rate uex(#). Another external source of glucose
is in the form of dietary glucose intake rate [u2ex(¢)]; in this case,
we assume periodic pulses that represent three meals which occur
at regular times each day.

In the extended model, we assume that the peripheral sympa-
thetic activity and state index generated by PNEUMA affects epi-
nephrine dynamics, which in turn influences the neuroendocrine
inputs to the heart, skeletal muscle, and pancreas (Figure 1).
“Feedback” from the metabolic sub-model to the autonomic
part of PNEUMA is represented by the stimulatory effect of
insulin on alpha-sympathetic activity (ANS Control block on
Figure 2). The metabolic fluxes for glucose and FFA in heart,
skeletal muscle, gastrointestinal tract, adipose tissue, and other
tissues (including kidney) are modulated by epinephrine and
given in the form displayed as Eq. 8, which is derived from
the multi-scale model of Kim et al. (2006). The flux i in tis-
sue/organ x is mathematically characterized as the following flux
rates:

_ 2
Vei = VY (1.o+xE (450~ EO) ) (8)

“Taf 4+ (A E(r) — E(0))
where subscript x =“heart,” “muscle,” “gastrointestinal tract,”
“adipose tissue,” or “other tissues”; subscript i="“glucose”
(assuming the metabolic pathway: GLC <— — G6P <— GLY) or
“FFA” (assuming the metabolic pathway: TGL < — FFA —
ACoA).

For the heart, there are both glucose fluxes and FFA fluxes from
epinephrine regulation which provide inputs to glucose dynamics
and FFA dynamics in the whole metabolic control system; for mus-
cle, there are both glucose fluxes and FFA fluxes from epinephrine
regulation; and for the gastrointestinal tract, there is only FFA flux
involved. The internal input rates for glucose and FFA kinetics
are the sum of metabolic flux rates given by epinephrine regu-
lation as Eqs 9A and 9B, respectively. The arterial epinephrine
concentration is a static function of alpha-sympathetic activity
given by Eq. 10.

in () = Y Vii(t) (9a)
Uint (1) = Y Vi) (9b)
E(t) = E(O) + Eh c W ( tas,meta) . [1-0 — exp (_t/TE)] (10)

Figure 3 shows the results of a simulation in which the exten-
sion to PNEUMA is run on a stand-alone basis (prior to being
linked with the rest of PNEUMA). Here, epinephrine regulation is
driven by the function w(asymp) which represents the time-course
of relative sympathetic activity over the circadian period of 24 h.
o(Asymp) is assumed to remain at a constant level of zero over
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Table 1 | Simulation parameters and initial conditions in metabolic model and its link with autonomic control.

Parameter Definition Values Units Source
INTERLINK BETWEEN METABOLIC MODEL AND AUTONOMIC CONTROL
Kce,0 Gain for basal level of epinephrine in plasma 9 Dimension-less Model
bREM Gain for REM sleep effect from autonomic control on epinephrine 0.4 Dimension-less Model
regulations
aw Parameter from autonomic control on epinephrine regulations 0.6 Dimension-less Model
ftas,0 Basal firing rate of sympathetic activity 2.1 1/s Cheng et al. (2010)
Kas Gain of metabolic feedback to change of sympathetic activities 2 Dimension-less Model
ftas, IO Parameter of metabolic feedback to change of sympathetic activities 1 Dimension-less Model
Kisc,1 Parameter of metabolic feedback to change of sympathetic activities 20 Dimension-less Model
T Time constant of metabolic feedback to change of sympathetic 30 Minute Model
activities
PLASMA GLUCOSE DYNAMICS
P Utilization rate for plasma glucose concentration 0.068 1/min Roy and Parker (2006)
Py Utilization rate for plasma glucose concentration under the influence 1.3 mL/min/pnU Roy and Parker (2006)
of remote insulin
Ps Production rate for remote plasma glucose concentration that 0.00006 L/min/wmol Roy and Parker (2006)
promotes FFA
Gp Basal level of plasma glucose concentration 124.8 mg/dL Roy and Parker (2006)
Volg Glucose distribution space 17 dL Roy and Parker (2006)
Keg Gain from epinephrine to glucose uptake 0.04 Dimension-less Model
PLASMA INSULIN DYNAMICS
n Utilization rate for plasma insulin concentration 0.142 1/min Roy and Parker (2006)
Ps Factor for insulin inputs 0.000568 1/mL Roy and Parker (2006)
Ip Basal level of plasma insulin concentration 16.6 nU/mL Model
P3 Production rate for remote insulin concentration 0.000012 1/min Roy and Parker (2006)
y Insulin sensitivity factor 0.038 wU/mL/min?/mg/dL Toffolo et al. (1980)
Toi Variable time delay 5+3 s Model
Gh Threshold of plasma glucose concentration 125 mg/dL Roy and Parker (2006)
Py Utilization rate for remote insulin concentration 0.037 1/min Roy and Parker (2006)
Pro Utilization rate for remote insulin concentration that promotes FFA 0.17 1/min Roy and Parker (2006)
Prs Production rate for remote insulin concentration that promotes FFA 0.00001 1/min Roy and Parker (2006)
Xp Basal level of remote plasma insulin concentration 0.08125 nU/mL Model
Yp Basal level of remote plasma insulin concentration that promotes FFA 0.008125 pU/mL Model
production
PLASMA FREE-FATTY ACID DYNAMICS
P Utilization rate for plasma FFA concentration 0.03 1/min Roy and Parker (2006)
Ps Utilization rate for remote plasma insulin involved FFA concentration 4.5 mL/min/pnU Roy and Parker (2006)
Fp Basal level of plasma FFA concentration 380 pmol/L Roy and Parker (2006)
Zp Basal level of remote plasma FFA concentration 190 mol/L Roy and Parker (2006)
ko Utilization rate for remote FFA concentration 0.03 1/min Roy and Parker (2006)
k1 Production rate for remote FFA concentration 0.02 1/min Roy and Parker (2006)
Volg FFA distribution space 1.7 L Roy and Parker (2006)
Ker Gain from epinephrine to FFA uptake 0.01 Dimension-less Model
EPINEPHRINE REGULATION
Ep Basal level of epinephrine concentration in plasma 198 pM Kim et al. (2006)
e Time constant for epinephrine regulation 30 min Kim et al. (2006)
A Epinephrine regulation factor for metabolic fluxes 1e6 Dimension-less Model
V0_GLC_Heart Maximum rate coefficient in heart 88 pmol/min Kim et al. (2006)
ME_GLC_Heart Epinephrine regulated flux parameter in heart 3 Dimension-less Kim et al. (2006)
OE_GLC_Heart Epinephrine regulated flux parameter in heart 1000 pM Kim et al. (2006)
V0_GLY_Heart Maximum rate coefficient in heart 320 iwmol/min Kim et al. (2006)
ME_GLY_Heart Epinephrine regulated flux parameter in heart 0 Dimension-less Kim et al. (2006)
(Continued)

Frontiers in Physiology | Computational Physiology and Medicine

January 2012 | Volume 2 | Article 111 | 4


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Cheng and Khoo

Autonomic-metabolic effects of sleep apnea

Table 1| Continued

Parameter Definition Values Units Source
OE_GLY_Heart Epinephrine regulated flux parameter in heart 0 pM Kim et al. (2006)
V0_FFA_Heart Maximum rate coefficient in heart 280 wmol/min Kim et al. (2006)
NE_FFA_Heart Epinephrine regulated flux parameter in heart 2 Dimension-less Kim et al. (2006)
OE_FFA_Heart Epinephrine regulated flux parameter in heart 4472 pM Kim et al. (2006)
V0_TGL_Heart Maximum rate coefficient in heart 8 wmol/min Kim et al. (2006)
NE_TGL_Heart Epinephrine regulated flux parameter in heart 0.5 Dimension-less Kim et al. (2006)
OE_TGL_Heart Epinephrine regulated flux parameter in heart 1000 pM Kim et al. (2006)
V0_GLC_Muscle Maximum rate coefficient in muscle 398 wmol/min Kim et al. (2006)
ME_GLC_Muscle Epinephrine regulated flux parameter in muscle 18 Dimension-less Kim et al. (2006)
QE_GLC_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)
V0_GLY_Muscle Maximum rate coefficient in muscle 1000 wmol/min Kim et al. (2006)
ME_GLY_Muscle Epinephrine regulated flux parameter in muscle 0.3 Dimension-less Kim et al. (2006)
OE_GLY_Muscle Epinephrine regulated flux parameter in muscle 10 pM Kim et al. (2006)
V0_FFA_Muscle Maximum rate coefficient in muscle 701 wmol/min Kim et al. (2006)
ME_FFA_Muscle Epinephrine regulated flux parameter in muscle 9 Dimension-less Kim et al. (2006)
OE_FFA_Muscle Epinephrine regulated flux parameter in muscle 4472 pM Kim et al. (2006)
V0_PYR_Muscle Maximum rate coefficient in muscle 80 wmol/min Kim et al. (2006)
ME_PYR_Muscle Epinephrine regulated flux parameter in muscle 2 Dimension-less Kim et al. (2006)
QE_PYR_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)
V0_TGL_Muscle Maximum rate coefficient in muscle 260 wmol/min Kim et al. (2006)
ME_TGL_Muscle Epinephrine regulated flux parameter in muscle 25 Dimension-less Kim et al. (2006)
OE_TGL_Muscle Epinephrine regulated flux parameter in muscle 1000 pM Kim et al. (2006)
Vo T6L Gl Maximum rate coefficient in Gl tract 80 wmol/min Kim et al. (2006)
\E_TGL_ GI Epinephrine regulated flux parameter in Gl tract 2 Dimension-less Kim et al. (2006)
QE TGL Gl Epinephrine regulated flux parameter in Gl tract 1000 pM Kim et al. (2006)
Vo_TGL_adipose Maximum rate coefficient in adipose 190 wmol/min Kim et al. (2006)
NE_TGL_adipose Epinephrine regulated flux parameter in adipose 2 Dimension-less Kim et al. (2006)
Epinephrine regulated flux parameter in adipose 1000 pM Kim et al. (2006)

QE_TGL_adipose
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16h of quiet wakefulness. During sleep, w(dtsymp) assumes the
form of the negative half of a sine wave, representing decreased
sympathetic activity in sleep. This decreased baseline in sympa-
thetic activity is punctuated by relatively short pulses, representing
increases in sympathetic activity during REM sleep over the subse-
quent 8 h of sleep (Figure 3A). The corresponding fluctuations in
epinephrine concentration [E(¢)], glucose concentration [G(t)],
insulin concentration [I(t)], and FFA concentration [F(t)] are
shown in Figure 3B. Gj, represents the time-course of the exter-
nal glucose inputs that arise from meal ingestion three times
a day.

When the model extension is linked with the rest of PNEUMA
(see Figure 2), w(0symp) is replaced by w(ftas,meta) Which contains
the sum of all efferent alpha-sympathetic firing rates and a modu-
latory factor that reflects sleep—wake state changes, as shown in Eq.
11 below. E(0) is now no longer a constant (Ep) as in the stand-
alone version of the model extension, but this variable is assumed
to vary dynamically around its basal level Ej, and is controlled by
the efferent alpha-sympathetic firing rate and sleep state index as
given in Eq. 14.

—SI-G,
(D ( tas,meta) = [ ‘tas,meta — ftas,metao + 1] as_sleep

x (1 4+ brgm - REM) - (1 — SI - ag,) (11)

frasmeta = fras - (1 = SI - Gag_gleep) (12)
fiasmeta0 = fras0 + (1 = SI - Gas_sleep) (13)
E(0) = Ep + Kcep - (frasmeta — frasmeta0) - (1 — SI)  (14)

When the extended version of PNEUMA is said to oper-
ate “with metabolic feedback, we are referring to the configura-
tion in which plasma insulin concentration is allowed to influ-
ence alpha-sympathetic firing rate dynamically through Eq. 15
through Eq. 17.

exp [(I —1Ip) /kisc,I] -1

WI:kas+kus' as, 10 ° 15

o fasdo o T = Iy fhiet] 1 (13
Afas = W(I) - [1 — exp (—t/11)] (16)
ftas,FB = ftas + Aﬁas (17)

where fias = fras, res and fias, vein» respectively.
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The extended version of PNEUMA has been tested for sim-
ulation durations as long as 84 days (12 weeks). Each simulation
generally begins with sleep onset (10 pm) on the first day. Meals
during the day are simulated as step increases in blood glu-
cose, with “breakfast” starting 90 min after the end of sleep cycle.
However, since the model of sleep—wake regulation employed by
PNEUMA can produce variable sleep durations, depending on
whether the factor known as “sleep propensity” is sufficiently
reduced to a threshold value during sleep (Cheng et al., 2010), the
start times for breakfast can vary from 7 am to 9 am. Simulations
with PNEUMA have previously shown that the sleep fragmenta-
tion resulting from repetitive arousals during the night in OSA
delays the rate at which sleep propensity is reduced in the model
during sleep (Cheng et al., 2010). As such, simulated sleep dura-
tion is longer in the subject with OSA compared to the subject with
normal breathing, if sleep is not artificially interrupted. However,
in reality, total sleep duration is constrained due to the occurrence
of time cues, such as a clock alarm that goes off at a set time each
day. If one factors this in, then the “subject” who has OSA will suf-
fer from a small amount of sleep deprivation each day, since the
sleep propensity index is not allowed to decrease to its natural min-
imum before sleep is terminated and wakefulness occurs. In the
results that are presented here, we assume that sleep is terminated
7 h after the start of sleep onset.

The implementation of the model using Simulink® (The Math-
works, Natick, MA, USA) introduces the advantages of modularity,
flexibility, and platform-independence, and provides a convenient
basis for any future model extensions for modeling, simulating,
and analyzing dynamic physiological systems. In its current imple-
mentation, PNEUMA is a large model with 557 parameters and
92 states. It takes approximately 12h of computational time to
run a 10-day simulation with variable time step where maximum
time step is 10 ms on a PC with an Intel Core 2 Duo E8500 central
processing unit. PNEUMA is implemented using a combination
of discrete and continuous states, solving ordinary differential and
algebraic equations that characterize physiological processes that
cover a broad temporal scale, ranging from milliseconds (e.g.,
heartbeat) to hours (e.g., changes in blood glucose) to days (e.g.,
circadian rhythm).

An accompanying graphical user interface (GUI) panel allows
users to conveniently change the values of a large number of
parameters or impose a variety of physiological conditions with-
out having to modify the program directly. Advanced users
can vary parameter values or make changes to the under-
lying models by directly modifying the graphical objects in
the Simulink® code. The details of the software are described
in the PNEUMA manual. The software and manual can
be downloaded free of charge from the following web-link:
http://bmsr.usc.edu/Software/BMSRsoftware. html

RESULTS

STAND-ALONE MODEL EXTENSION RESULTS

In the stand-alone version of the model extension, epinephrine
dynamics are generated through Eq. 10 with its own generated
input source of w(dsymp) plotted in Figure 3A which presents the
effects from autonomic function to the metabolic system. Within
this initial closed-loop model without any external inputs and

external links, the resulting glucose—insulin and FFA dynamics
with epinephrine regulation for a 2-day simulation in the mid-
dle of a 60-day simulation is shown in Figure 3B. During sleep,
sympathetic tone is reduced below the wakefulness baseline, but
in REM sleep, the model assumes that there are transient surges in
sympathetic activity, which lead to small elevations of epinephrine
during the REM episodes. In wakefulness, during each meal, the
blood glucose level increases followed by a corresponding increase
in plasma insulin and subsequent drop in the plasma FFA, illus-
trating the antilipolytic effect of insulin. The model predicts the
occurrence of oscillations (with periodicities of ~120 min) that
arise from the dynamic interactions among glucose, insulin, and
FFA, in particular between the meals. However, these “ultradian”
oscillations, most evident in insulin and FFA, persist during sleep
when there are no meals. In general, higher baseline levels of
plasma epinephrine enhance the frequency and amplitude of these
oscillations. These predictions are consistent with observations
of ultradian oscillations of insulin and glucose reported in the
literature (Polonsky et al., 1988; Sturis et al., 1991; Simon, 1998).

SIMULATION OF NORMAL SUBJECT: EFFECTS OF “METABOLIC
FEEDBACK"

Figure 4 shows the results for a normal subject on day 10 of sim-
ulation time. Breakfast is assumed to start 90 min after the end
of sleep. The predicted time-courses of the cardiovascular, res-
piratory, and metabolic variables following 10 days of simulation
without metabolic feedback (Af,) are displayed in blue, whereas
the corresponding model predictions with metabolic feedback are
shown in red. The mean levels of systolic blood pressure (SBP)
and diastolic blood pressure (DBP) are higher in the case with
metabolic feedback relative to the case without metabolic feed-
back, consistent with the increased epinephrine amount in heart
and skeleton muscle during wakefulness when metabolic feedback
is present (Figure 4A — only a segment of 200 s is displayed for pur-
poses of clarity). On average, SBP/DBP values in wakefulness are
117/82 mmHg with metabolic feedback vs. 105/73 mmHg without
metabolic feedback. During sleep, the corresponding SBP/DBP
values are 108/72 with metabolic feedback vs. 102/67 without
metabolic feedback. There is a certain amount of autonomic com-
pensation for the elevation in blood pressure via the baroreflex
through a decrease in heart rate (HR). In wakefulness, mean
HR is approximately 78 beats/min with metabolic feedback vs.
85 beats/min without metabolic feedback, whereas in sleep, the
corresponding mean HR values are 74 vs. 76 beats/min.

The dynamics of glucose, insulin, FFA, and epinephrine over
the course of 24 h on “Day 10” are shown in Figure 4B. The surges
in glucose concentration represent the impact of meals taken dur-
ing the wakefulness period. As in the stand-alone case presented in
the previous section, the model predicts the occurrence of ultra-
dian oscillations in insulin, FFA, and (to a smaller extent) glucose.
These oscillations are most evident during sleep, consistent with
the ultradian fluctuations observed by others (Sturis et al., 1991;
Simon, 1998; Porksen et al., 2002; Kim et al., 2007). These dis-
play a periodicity of ~54 min, which is within the range consistent
with experimental observations (Polonsky et al., 1988; Simon and
Brandenberger, 2002). During REM sleep, the epinephrine con-
centration in plasma is slightly higher than NREM sleep due to
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increased sympathetic activity — this has also been reported in
the experimental literature (Linares et al., 1987). The plasma epi-
nephrine concentration is slightly higher with metabolic feedback
vs. no feedback during wakefulness. However, the model predicts
that the effect of metabolic feedback on the predicted time-courses
of glucose, insulin, and FFA is minimal. This result is somewhat
surprising and contrary to initial expectations that the plasma
insulin level would be higher in the case with metabolic feed-
back. We believe that this prediction reflects saturation effects that
are derived from the non-linear relationship between epinephrine
level and its effects on plasma glucose and FFA.

NORMAL BREATHING VS. 0SA WITH METABOLIC FEEDBACK

As in our previous work (Cheng et al., 2010), to allow the model to
simulate OSA sleep, the upper airway sensitivity parameter (Sya)
was increased from its control value of 0.01 in normal breathing to
atleast 0.38. Figure 5A (second through eighth panels) displays the
predicted time-courses of the key cardiovascular and respiratory
variables for the OSA “subject” during sleep (displayed as blue
tracings) on the 10th day of simulated time, contrasted against
the corresponding time-courses in a normal control (displayed
as red tracings). In both cases, the model simulations have been
run with metabolic feedback, and sleep duration has been limited
to 7h. The first panel of Figure 5A shows the sleep state index
(“SD”), with SD =1 representing deep sleep and SD =0 repre-
senting wakefulness. The normal subject remains asleep (SD=1)
throughout the duration displayed, whereas in the OSA subject,
arousals are triggered (SD changes from 1 to 0) at the end of
the obstructive episodes. Without or with metabolic feedback,
simulations of OSA during sleep produce the cardiovascular, res-
piratory, and neural responses similar in form to what we had
shown previously, as well as to observations reported in the lit-
erature (Bradley and Floras, 2003). With the metabolic feedback,
the model still predicts periodicities on the order of ~52 s, which
is consistent with our previous work and literature (Leung and
Bradley, 2001; Cheng et al., 2010). The corresponding dynamics
of glucose, insulin, FFA, and epinephrine over the 10th day of
simulation are shown in Figure 5B. During sleep, reduced sym-
pathetic nervous system activity decreases epinephrine amount in
heart and skeleton muscle in both normal breathing and OSA,
but there is higher level of epinephrine in OSA sleep than in
normal sleep due to the elevated level of sympathetic activity
in OSA sleep. Epinephrine levels in OSA are further enhanced
in REM sleep relative to non-REM sleep, reflecting the relatively
higher sympathetic activity in REM. Because of the elevated epi-
nephrine levels during sleep in OSA, the ultradian oscillations
in insulin in the OSA subject are noticeably higher in amplitude
compared to the corresponding insulin oscillations in the normal
subject.

TIME-COURSE OF DEVELOPMENT OF METABOLIC AND AUTONOMIC
EFFECTS IN 0SA

Figure 6 displays the results of a simulation (N — OSA) in which
the model is first run with the upper airway parameter Sy, set at
0.01 for several days until a clear steady state has been achieved,
following which Sy, is increased to 0.38 and the simulation trial
is continued for 10 more days. This simulation is equivalent to

conducting a hypothetical experiment in which a normal subject
“abruptly” develops OSA, allowing us to track, on a day-to-day
basis, the time-course of development of the metabolic and car-
diovascular effects of OSA, as predicted by the extended model.
In Figure 6, “Day 0” marks the point at which the change in Sy,
occurs. The top two panels of Figure 6 show the serial values of
fasting plasma glucose (FPG) level and the fasting plasma insulin
(FPI) level, determined by averaging the predicted plasma glucose
and insulin values that appear during wakefulness in the hour
before “breakfast” occurs. The third panel displays the day-to-
day values of plasma epinephrine obtained by averaging predicted
epinephrine concentration over 1-h duration before and after
breakfast in each day. The remaining panels in Figure 6 show
averages of the key cardiovascular variables calculated over the
corresponding simulation segment between 120 and 60 min before
sleep ends for each day. Mean HR, SBP, and DBP attain their new
steady-state levels within a day following the “switchover” from
normal to OSA status. Also displayed in Figure 6 are the cor-
responding amplitudes of the dominant oscillations in HR, SBP,
and DBP; these oscillations occur at the tidal breathing frequen-
cies (respiratory sinus arrhythmia for HR and pulsus paradoxus
for blood pressure) in normal breathing, but in OSA, they occur
with considerably larger amplitudes and cycle durations consis-
tent with the repetitive episodes of apnea and arousals. FPG, FP],
and epinephrine attain their new steady-state levels after 2 days.
All three variables are higher in the OSA vs. normal states, consis-
tent to what has been reported in clinical studies (McArdle et al.,
2007).

The autonomic and metabolic effects of artificially eliminat-
ing OSA by administering CPAP are presented in the simulation
results displayed in Figure 7. Here, the model is first run with Sy,
set at a value of 0.4 to represent OSA for several days in simulation
time. Subsequently, during the duration of sleep on “Day 1,” CPAP
at a level of 15cmH;0 is applied. This eliminates the obstruc-
tive apnea episodes, thus drastically reducing the large amplitude
cyclic swings in HR, SBP, and DBP. Mean SBP and DBP attain
their new lower steady-state levels within a day of this change.
FPG, FP], and epinephrine are lowered to their new steady-state
levels after 2 days, consistent with observations reported in the
clinical literature (Harsch et al., 2004).

Figure 8 summarizes and compares the magnitudes of the
changes in steady-state autonomic and metabolic responses for the
two cases ((N — OSA and OSA — OSA + CPAP) discussed above.
It is clear that the results produced by OSA — OSA + CPAP are,
in general, opposite in direction to those obtained in N — OSA,
except that mean HR is elevated in both cases. We believe that this
apparent inconsistency can be explained as follows. In N — OSA,
the onset of OSA led to an overall increase in sympathetic tone
(as manifested in the elevation of epinephrine), which increased
both blood pressure and HR. In OSA — OSA + CPAP, CPAP
administration led to a decrease in sympathetic tone and epi-
nephrine level, which decreased blood pressure — however, the
reduction in blood pressure triggered the baroreflexes, and this
increased HR.

Simulations of the OSA case were conducted over a range
of Sua values, representing varying degrees of upper airway
obstruction. Figure 9 summarizes the model predictions: FPI
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the 30 min segment immediately before the start of breakfast. Other
cardiovascular and metabolic values for wakefulness displayed above are the
means derived from the corresponding simulation segment between 60 and
120 min. after sleep ends. All cardiovascular values for sleep displayed above
are the means derived from the corresponding simulation segment between
120 and 60 min before sleep ends.

concentration increases as severity of OSA, as assessed using the
apnea—hypopnea index, increases. We believe that the mecha-
nistic basis for this result, as implemented in the model, is as
follows. Greater severity of OSA leads to increased sympathetic
tone, which increases epinephrine levels. The latter stimulates
glycogenolysis and gluconeogenesis, thus increasing the plasma

glucose level. This, in turn, stimulates the production of insulin,
which is also enhanced by the elevated epinephrine level. The
increased insulin level helps to attenuate the rise in blood glucose.
However, the system is left with a consequent hyperinsulinemia.
Thus, although the parameters that collectively represent insulin
sensitivity remain unchanged in the model, whole-body insulin
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immediately before the start of breakfast. Other cardiovascular and
metabolic values for wakefulness displayed above are the means derived
from the corresponding simulation segment between 60 and 120 min.
after sleep ends. All cardiovascular values for sleep displayed above are
the means derived from the corresponding simulation segment between
120 and 60 min before sleep ends.

resistance is effectively increased. These results are consistent with
several recent studies that point to the independent contribution
of OSA to insulin resistance (Manzella et al., 2002; Punjabi et al,,
2002).

SIMULATION OF EXTERNAL INTERVENTIONS: GLUCOSE CLAMPS

The hyperglycemic glucose clamp technique is used for the quan-
tification of beta-cell sensitivity to glucose and the euglycemic
hyperinsulinemic clamp technique is used for measuring tissue
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sensitivity to insulin. The extended model has been tested using
virtual experiments to simulate these intervention techniques. To
simulate a hyperglycemic 4125 mg glucose clamp, the glucose con-
centration in plasma is first gradually increased to 125 mg/dl above
its basal level (Gp) by a series of stair-like priming blood glu-
cose infusion, and then maintained at the hyperglycemic level by
dynamically and continuously adjusting the rate of glucose infu-
sion. The dynamics of glucose, insulin, and FFA and corresponding
glucose infusion rate during first 2 h of hyperglycemic clamp are
shown in Figure 10, where the basal level of plasma glucose con-
centration (Gyp) is given as 98 mg/dL, the basal levels of plasma
insulin concentration (I;) and plasma FFA concentration (F;) are
assumed to be 6 pU/mL and 380 pwmol/L, respectively. The glucose
and insulin responses predicted by our model are comparable to
the corresponding observations reported in the literature (Figure
1 in DeFronzo et al., 1979).

To determine the response of the extended model to var-
ious euglycemic clamps, assuming G, to be 98 mg/dL and I
to be 6 nU/mL, simulations have been conducted in which
insulin is infused at dynamically changing rates to maintain
plasma insulin concentration at various hyperinsulinemic levels.

Figure 11 displays the results at the three hyperinsulinemic levels
of 20, 30, and 100 wU/ml above its basal level (I},), respectively,
with two stair-like inputs in the priming dose of glucose infusion
for each hyperglycemic level. These results also confirm that the
predicted dynamics of glucose, insulin, and FFA concentrations in
plasma are consistent with the literature (Figure 1 in Howard et al.,
1984; Figure 3 in Roy and Parker, 2006).

SENSITIVITY ANALYSES

The extended model contains 557 parameters, each of which is
assigned a value (if available) that is consistent with the subject
group and condition under study. This represents 85 parameters
more than the 472 parameters employed in PNEUMA prior to
this study. Thus we focused on identifying the key parameters that
mediate the most significant interactions between the autonomic
and metabolic subsystems, in order to minimize the number of free
parameters that have to be specified prior to running a simulation.
Sensitivity analyses were conducted to determine the relative con-
tributions of the key parameters that played the most significant
roles in various conditions. These sensitivity analyses were also
useful as checks of internal consistency and model stability within
the ranges of the parameter values considered physiologically
“realistic.”

Interaction between key parameters contributing to autonomic and
metabolic interactions

Table 2 displays the model predictions obtained from different
values of key parameters (gains K5 and Kjs.r) that influence the
impact of metabolic feedback on autonomic function, as well as the
key parameters (gains K o0 and Gp) that control how sympathetic
activity influences the metabolic subsystem. In the control set of
normal subject and OSA subject, these key parameters are set to
equal to their initial values described in Table 1. For each simula-
tion, there is only one parameter changed by the desired percentage
or amount. We found, as might be expected, that the ability to sim-
ulate the effect of metabolic feedback on a-sympathetic activity
depends most sensitively on its gain K,s. This is shown in the per-
centage change of mean HR, SBP/DBP from their control values in
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both normal and OSA subject and during both wakefulness and
sleep, as well as in the epinephrine level from its control corre-

sponding to the change of a-sympathetic activity. Also
be expected, the analysis shows that the gain (Kce) for

of epinephrine is the most sensitive parameter for epinephrine

regulation in wakefulness.

Interactions between key parameters contributing to epinephrine
regulation on glucose and FFA dynamics

Table 3 displays the model results of different levels of inter-
nal inputs controlled by the gains from epinephrine to glucose
and FFA, Keg and Kef, respectively. To start the simulations,
basal levels of glucose and insulin concentrations in plasma are

, as might
basal level

Frontiers in Physiology | Computational Physiology and Medicine

January 2012 | Volume 2 | Article 111 | 14


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Computational_Physiology_and_Medicine
http://www.frontiersin.org/Computational_Physiology_and_Medicine/archive

Cheng and Khoo

Autonomic-metabolic effects of sleep apnea

Table 2 | Sensitivity analysis of key parameters in metabolic model that contribute to autonomic and metabolic interactions.

Percentage change from control Kas Kisc,1 Kece,0 Gy
50% -50% 50% —-50% 50% -50% 1 -1
NORMAL DAY 10
FPG (%) —0.04 0.07 0.02 0.00 0.05 —0.04 0.75 -0.72
FPI (%) 0.68 —0.61 —-0.23 0.00 —0.59 0.60 0.81 —0.30
Epi (%) 2.69 -2.10 —0.22 0.41 10.98 -10.97 0.00 0.01
Mean HRyy, (%) -4.16 5.22 0.38 —0.61 0.00 —0.02 —0.03 —0.02
Mean HRs (%) —-1.32 3.02 —1.563 —0.35 0.24 —0.01 0.01 —0.03
AHRy (%) -2.33 2.08 0.46 0.27 3.74 1.60 -1.19 —0.80
AHRs (%) —4.47 1.06 2.20 —2.89 0.88 0.55 3.75 —3.89
Mean SBP,, (%) 3.92 —5.22 —0.35 0.57 0.00 0.00 0.01 0.03
Mean SBPs (%) 2.13 —2.80 —0.20 0.35 0.00 —0.01 —0.01 0.02
ASBPw (%) —4.79 3.99 —0.26 —-0.17 —1.58 —0.30 -0.28 0.04
ASBPs (%) —1.95 0.66 -0.18 —0.83 -1.02 —0.61 -0.83 —0.03
Mean DBP,, (%) 4.68 —6.16 —0.39 0.68 0.00 0.01 0.02 0.02
Mean DBPs (%) 2.60 —3.40 —0.23 0.45 0.00 0.00 0.00 0.01
ADBPy, (%) -2.70 3.83 —0.06 -0.23 —0.07 0.03 -0.29 -0.24
ADBPs (%) —0.28 0.01 —0.38 —0.30 0.04 —0.08 -0.13 0.03
OSA DAY 10

FPG (%) 0.00 0.00 —0.01 0.00 —0.04 0.02 0.81 —0.83
FPI (%) 0.07 0.03 0.46 0.1 2.10 —2.563 —1.06 1.69
Epi (%) 2.69 —2.16 —0.23 0.37 11.05 —-1.1 —0.01 —0.02
AHI (%) —0.03 0.00 0.93 —0.98 —0.01 0.93 —0.02 —0.01
Mean HRy, (%) —4.24 5.38 0.43 —0.63 0.00 0.03 0.03 —0.01
Mean HRs (%) —1.64 1.92 0.15 —0.33 —0.01 0.03 -0.02 0.01
AHRy (%) —1.76 —0.62 2.08 1.62 -0.19 -0.23 2.15 2.35
AHRs (%) 2.75 3.45 —1.28 1.68 —3.31 —1.48 0.74 0.17
Mean SBPw (%) 3.87 —5.34 —0.46 0.57 —0.02 —0.03 0.00 —0.02
Mean SBPs (%) 1.71 —-2.31 —0.05 0.35 0.03 0.03 0.15 0.12
ASBPw (%) —3.86 4.69 —0.46 —0.40 —1.15 -1.27 -0.83 0.86
ASBPs (%) —4.52 6.89 —0.76 0.44 0.50 —0.46 —0.26 —0.03
Mean DBPy, (%) 4.70 —6.27 —0.50 0.71 0.03 —0.02 0.00 0.02
Mean DBPs (%) 1.82 —2.61 —0.09 0.38 0.02 —0.01 0.1 0.06
ADBPy, (%) -2.1 3.83 0.15 —-0.41 0.17 0.1 —0.01 0.19
ADBPs (%) -3.97 2.26 —0.10 0.16 1.13 0.16 -0.19 0.57

All results displayed are based on 10th day simulation (steady-state responses). FPG, fasting plasma glucose; FPI, fasting plasma insulin; Epi, arterial epinephrine

concentration in wakefulness; AHI, apnea—hypopnea index (per hour); AHF maximum amplitude of fluctuation in heart period (ms); ASDF maximum amplitude of

fluctuation in systolic blood pressure (mmHg); ADBF, maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” means wakefulness,

subscript “s” means sleep.

set to 98 mg/dL and 6 pU/mL, respectively. As the gains grad-
ually increase, both FPG and FPI levels are elevated as the
epinephrine concentration in plasma increases. This leads to
more oscillations in insulin concentration between meals. Also,
as the gains increase, blood pressure is increased slightly and
this leads to slightly decreased HR in wakefulness and during
sleep.

Interactions between key parameters contributing to the severity of
obstructive sleep apnea effects

Table 4 shows the model predictions obtained from various com-
binations of values for the upper airway sensitivity to collapse,
Sua> and the arousal threshold upper limit. In normal subject,

Sua is set equal to 0.01 and the critical closing pressure, Py, for
upper airway during sleep is —29.6 cmH,O. With stable sleep,
apnea—hypopnea index (AHI) is zero and maximum fluctua-
tions in HR, SBP, and DBP are consistent with normal respi-
ration. When Sy, is increased to 0.38, P is less negative and
obstructive apnea starts to appear and be terminated by non-
frequent arousals (AHI = 9) with large amplitudes of fluctuations
in HR, SBP, and DBP during sleep and a large growth in FPI
and slightly increase in FPG and epinephrine level in plasma
in wakefulness. Raising Sy, a little more to 0.4 leads to greater
periodicity of obstructive apnea and arousals (AHI=18) and
slightly increases in FPI and epinephrine level in plasma, and
increasing Sy, further to 0.5 produces more apnea and arousals
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Table 3 | Sensitivity analysis of gains from epinephrine to glucose and FFA that have effects on autonomic and metabolic interactions.

NORMAL DAY 10

Keg 0.04 0.20
Kef 0.01 0.05
FPG (mg/dL) 101.02 113.11
FPI (wU/mL) 6.60 6.60
Epi (pM) 238.55 238.61
Insulin oscillations between meals? No No
AHI (per hour) 0 0
Mean HR,, (beats/min) 78.44 78.35
Mean HRg (beats/min) 73.93 73.93
AHR,, (beats/min) 3.01 3.14
AHRs (beats/min) 2.73 2.79
Mean SBPw (mmHg) 119.69 119.82
Mean SBPs (mmHg) 111.52 111.562
ASBPw (mmHg) 2.93 2.91
ASBPs (mmHg) 2.35 2.33
Mean DBP,, (mmHg) 79.26 79.36
Mean DBPs (mmHg) 70.46 70.46
ADBP,, (mmHg) 3.20 3.20
ADBPs (mmHg) 2.49 2.49

OSA DAY 10
FPG (mg/dL) 101.03 113.19
FPI (nU/mL) 6.60 6.60
Epi (pM) 240.22 240.18
Insulin oscillations between meals? No No
AHI (per hour) 18 18
Mean HR,, (beats/min) 78.43 78.35
Mean HRg (beats/min) 75.52 75.50
AHR,, (beats/min) 3.03 3.06
AHRs (beats/min) 32.14 31.79
Mean SBPw (mmHg) 119.68 119.81
Mean SBPs (mmHg) 12762 12767
ASBPw (mmHg) 2.92 2.93
ASBPs (mmHg) 48.45 48.78
Mean DBP,, (mmHg) 79.27 79.36
Mean DBPs (mmHg) 82.25 82.26
ADBP,, (mmHg) 3.20 3.20
ADBPs (mmHg) 48.06 4775

0.40 0.60 0.80 1.00
0.10 0.15 0.20 0.25
124.14 123.96 125.62 126.05
21.79 56.98 9717 142.32
240.66 244.45 246.85 24783
Few More Many Many
0 0 0 0
7718 75.44 74.43 74.07
73.93 73.38 72.86 72.61
3.02 3.01 2.96 2.95
2.75 2.55 2.53 2.50
121.57 124.18 125.55 126.06
111.52 112.85 114.19 114.77
2.86 2.78 2.77 2.76
2.35 2.32 2.31 2.33
80.73 82.78 83.90 84.27
70.46 71.49 72.50 72.98
3.19 3.13 3.10 3.10
2.49 2.49 2.49 2.47
124.15 124.32 125.50 126.39
25.81 52.82 94.42 13718
242.48 246.62 249.16 250.01
Few More Many Many
18 18 18 18
77.06 75.25 74.34 74.00
75.50 74.48 74.03 73.72
2.99 3.05 2.96 2.95
32.09 30.50 31.21 30.45
121.78 124.48 125.72 126.15
12763 129.20 130.53 130.44
2.83 2.77 2.80 2.79
48.55 46.22 46.15 45.02
80.90 83.05 83.99 84.35
82.27 83.48 84.49 84.37
3.18 3.12 3.10 3.09
46.80 451 45.17 44.65

All results displayed are based on 10th day simulations (steady-state responses). FPG, fasting plasma glucose, FPI, fasting plasma insulin,; Epi, arterial epinephrine

concentration in wakefulness; AHI, apnea-hypopnea index (per hour); AHF maximum amplitude of fluctuation in heart period (ms); ASDF maximum amplitude of

fluctuation in systolic blood pressure (mmHg); ADBFE, maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” means wakefulness,

subscript “s” means sleep.

(AHI=46) and slightly more increases in FPI and epinephrine
level in plasma. But the maximum amplitudes of the swings in
HR, SBP, and DBP remain relatively constant, and FPG remains
slightly increased from its control level. Increasing arousal thresh-
old delays the appearance of obstructive apnea and arousals as
Sua Is progressively increased. For the same value of Sy,, the
periodicity of AHI is lower for mild and moderate OSA and
approximately the same for severe OSA. However, the amplitudes
of the swings in HR, SBP, and DBP are substantially higher, FPG is
relatively unchanged and FPI and epinephrine amount in plasma
are lower.

DISCUSSION

In this study, we have introduced the first comprehensive, struc-
tured physiological model that incorporates dynamic interac-
tions between the autonomic and metabolic control systems. The
approach we have taken has been to extend an existing integrative
model of cardiorespiratory system with sleep—wake state control
(“PNEUMA”) to include the regulation of epinephrine, glucose,
insulin, and FFAs. Although extended PNEUMA is based largely
on previously published models of the various subsystems in ques-
tion, our contribution has been to adapt the existing sub-models
for integration into the overall model structure. In particular,
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Table 4 | Sensitivity analysis of OSA effects on autonomic and metabolic interactions by changing key parameters in upper airway model.

Sua 0.01(Control) 0.3 0.38 0.4 0.5
Perit during Sleep (cmH20) —29.6 -35 -2.8 -2.7 —-2.2
AROUSAL THRESHOLD UPPER LIMIT =0.75 (CONTROL VALUE)

FPG (mg/dL) 123.62 123.62 124.31 124.28 123.87
FPI (wU/mL) 17.76 1777 30.23 32.72 35.05
Epi (pM) 240.41 240.39 241.37 242.35 244.26
AHI (per hour) 0 0 9 18 46
Mean HR,y (beats/min) 7747 7746 7721 77.16 7712
Mean HRg (beats/min) 74.12 74.59 74.99 75.18 76.02
AHR,y (beats/min) 3.01 3.01 2.99 3.01 3.09
AHRs (beats/min) 2.65 3.04 32.66 3173 32.69
Mean SBPw (mmHg) 121.13 121.11 121.55 121.63 121.65
Mean SBPs (mmHg) 113.04 114.36 129.34 127.96 128.04
ASBP,, (mmHg) 2.91 2.86 2.85 2.89 2.86
ASBPs (mmHg) 2.79 3.58 44.73 4722 44.42
Mean DBP,, (mmHg) 80.38 80.39 80.73 80.75 80.79
Mean DBPs (mmHg) 71.72 72.76 83.22 82.65 83.34
ADBP,, (mmHg) 3.18 3.18 3.19 3.18 3.18
ADBPs (mmHg) 3.00 3.93 44.21 46.27 45.21
AROUSAL THRESHOLD UPPER LIMIT =1.15

FPG (mg/dL) 123.62 123.62 123.82 124.12 124.06
FPI (wU/mL) 1776 17.77 18.38 24.41 34.51
Epi (pM) 240.41 240.39 240.78 241.51 243.69
AHI (per hour) 0 0 5 12 45
Mean HR,, (beats/min) 7747 7747 7743 7731 7714
Mean HRg (beats/min) 73.61 74.12 72.39 72.57 74.57
AHR,y (beats/min) 3.02 3.01 2.99 3.01 3.04
AHR;s (beats/min) 2.62 2.65 30.76 33.52 33.66
Mean SBPw (mmHg) 121.12 121.13 121.22 121.41 121.66
Mean SBPs (mmHg) 112.32 113.04 143.95 144.82 140.81
ASBPw (mmHg) 2.89 2.91 2.86 2.89 2.85
ASBPs (mmHg) 2.35 2.79 51.26 54.86 57.30
Mean DBP,, (mmHg) 80.37 80.38 80.44 80.59 80.79
Mean DBPs (mmHg) 71.08 71.72 91.37 92.24 91.07
ADBP,, (mmHg) 3.19 3.18 3.19 3.19 3.19
ADBPs (mmHg) 2.49 3.00 52.46 55.62 60.55

All results displayed are based on 10th day simulations (steady-state responses). FPG, fasting plasma glucose; FPI, fasting plasma insulin; Epi, arterial epinephrine

concentration in wakefulness,; AHI, apnea-hypopnea index (per hour), AHR maximum amplitude of fluctuation in heart period (ms); ASDF maximum amplitude of
fluctuation in systolic blood pressure (mmHg); ADBR maximum amplitude of fluctuation in diastolic blood pressure (mmHg). Subscript “w” indicates wakefulness,

subscript “s” indicates sleep.

we have incorporated the following new features: a direct link
between sympathetic activity and epinephrine level, the coupling
between the epinephrine sub-model and the metabolic sub-model
that characterizes glucose, insulin, and FFA dynamics, the effect
of insulin on peripheral vascular sympathetic activity, and the
effect of sleep—wake state on epinephrine regulation. The primary
focus of extended PNEUMA is the simulation of a range of sleep-
related breathing disorders and the physiological consequences of
these disorders on cardiorespiratory control, sleep—wake regula-
tion, and metabolic regulation, along with the interactions among
these various subsystems. The comprehensive simulation model
allows the user to conduct virtual experiments such as isocapnic

and hypercapnic and/or hypoxic gas administration, the Valsalva
and Mueller maneuvers, and the application of CPAP on OSA sub-
jects, as well as external metabolic interventions such as different
glucose clamps, IVGTT, and insulin pumps.

Food intake triggers the release of insulin which acts to reg-
ulate glucose metabolism. However, excessive feeding in obese
individuals can lead to chronic hyperinsulinemia, which pre-
disposes to insulin resistance. Since OSA is highly prevalent in
obese individuals, it is likely that chronic exposure to the IH and
sleep fragmentation that accompany upper airway obstruction and
transient arousal from sleep would constitute another factor that
contributes to metabolic dysfunction. Moreover, OSA is associated
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with sympathetic overactivity (Leung and Bradley, 2001) and a
number of prospective studies, such as the canine model of Brooks
et al. (1997), have demonstrated that OSA can lead to systemic
hypertension. Thus, it is reasonable to expect that OSA could
play an important role in the development of hyperinsulinemia.
Recently, a couple of studies have demonstrated significant cor-
relations among OSA, type 2 diabetes, and metabolic syndrome
(Shaw et al., 2008; Tasali and Ip, 2008; Jun and Polotsky, 2009).
A comprehensive simulation model, such as extended PNEUMA,
provides a systematic framework with which we can investigate
in silico potential mechanistic pathways that could lead to the
observed correlations. For instance, with the extended model, the
metabolic feedback can be attenuated or eliminated to simulate
pharmaceutical blockade of autonomic nervous system activities.
Such interventions may be difficult to implement or sometimes
impossible to conduct in real experiments. I silico investigations
would also allow us to determine the relative importance of the
various potential mechanisms, including sympathetic overactivity,
that link OSA to metabolic dysfunction.

As mentioned in previous work, this model is largely an integra-
tion of smaller sub-models that have already been peer-reviewed
and validated; many of the other parameters were assigned val-
ues employed in these previously published sub-models (Cheng
et al., 2010). For the extended model with the new metabolic
system, wherever possible, the parameter values employed in the
model are based on population values published in the literature,
as indicated in Table 1 for the new parameters. In some cases
where the physiological values are unclear, the parameters have
been tuned to ensure that the dynamic behavior of the model
under the various conditions explored remains realistic. Model
verification and validation are performed by comparing the sim-
ulation output under baseline conditions in normal breathing
and sleep-disordered breathing and under different interventions
to the general population-averaged cardiorespiratory data and
glucose—insulin—FFA dynamics reported in the literature. Since the
focus of this study is on the dynamic interactions among the var-
ious mechanisms between autonomic and metabolic interactions,
verification, and validation are guided by employing a qualita-
tive goodness of fit approach. This contrasts with smaller, more
focused models in which the key parameters are estimated based
on quantitative fits to experimental data obtained from individual
subjects. In the present case, there is no single complete exper-
imental dataset that the model can be validated against. Rather,
we focus on comparing the model responses with the empir-
ically derived responses that represent the “average subject” in
each patient/subject population. The utility of this comprehen-
sive, highly parameterized model is “proven” by testing the internal
consistency of the simulated responses of a significant number of
state variables over a range of perturbations and conditions.

LIMITATIONS OF THE MODEL

The model that we have proposed here focuses on the question of
whether the autonomic changes resulting from sleep apnea char-
acterized with IH and repetitive arousal from sleep can lead to
chronic changes of metabolic consequences in glucose, insulin,
and fatty acid levels. This is the first quantitative model that has
ever addressed this question — and as such, it should be seen as

a first step in many further explorations in this area of work.
Animal models of IH have shown that chronic IH induces aug-
mented sympathetic activities, insulin resistance, systemic inflam-
mation, oxidative stress, hyperlipidemia, hepatic inflammation,
and increase in cholesterol content and glycogen content in the
liver. Nevertheless, very little is known about the ways in which IH
and OSA can lead directly to changes in the glucose—insulin—fatty
acid metabolic system —even in the experimental literature. Our
approach is to attack this problem one layer at a time — first start
with how the autonomic changes affect the metabolic control sys-
tem — and then move on to other mechanistic pathways that may
link IH and metabolic dysfunction more directly. A key premise
in the present model is that OSA leads to sympathetic overactivity
(partly due to chronic IH) which increases plasma epinephrine
levels which, in turn, alters the regulation of glucose, insulin, and
FFA, leading eventually to hyperinsulinemia.

The mechanisms for the long-term effects of IH on autonomic
and metabolic control are not well understood, but current stud-
ies have shown that the systemic and cellular responses for a given
level and duration of hypoxia exposure are more potent with IH
than with the sustained hypoxia (Prabhakar and Kumar, 2004).
There are several potential alternative pathways by which IH can
lead to insulin resistance and impaired insulin secretion. Results
from IH animal models show that IH can lead directly to hyperlipi-
demia. The mechanism of dyslipidemia induced by IH is unclear,
but it is believed to be stimulated through (1) up-regulation of key
hepatic transcription factors of lipid biosynthesis, (2) increased
lipolysis which might induce increased FFA delivery and impaired
beta oxidation which in turn can associate with OSA and fat liver,
liver injury, oxidative stress, and non-alcoholic steatohepatitis, and
(3) inhibited very-low density lipoprotein clearance (Drager et al.,
2010). Hepatic dyslipidemia can cause hepatic insulin resistance.
In addition, IH involves hypoxia-reoxygenation cycles that could
increase oxidative stress by hypoxia-inducible factor 1 (HIF-1;
Semenza, 1998) and thus may influence glucose metabolism by
modulating glucose transport and utilization through HIF-1. The
effect of IH in oxidative stress is similar to the effect of ischemia—
reperfusion injury. However, oxidative stress in OSA and IH has
not been clearly described (Svatikova et al., 2005) and the mech-
anism by which it can produce metabolic dysfunction is under
investigation. It is likely that the IH associated with OSA could
also lead directly to insulin resistance by reducing the rate of
oxidative metabolism and decreasing the rate of glycolysis in some
tissues, and thus making insulin less effective in disposing glucose
(Iiyori et al., 2008). IH can alter both acute and chronic glucose
homeostasis through decreased oxidative phosphorylation, leptin
signaling, and growth hormone axis suppression (Jun and Polot-
sky, 2009). IH could also affect many other processes, such as
circadian glucose homeostasis, lipid metabolism, and cholesterol
synthesis. However, much remains unknown and further stud-
ies are needed to answer these questions. As such, these alternative
pathways have not been included in the model. Moreover, our goal
in this paper is to first introduce a basic model structure that allows
interactions between the autonomic and metabolic aspects of the
model. Subsequently, we will add other relevant pathways that can
more accurately characterize the effect of IH on autonomic and
metabolic consequences of OSA.
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The current model postulates that a-sympathetic activity influ-
ences insulin production indirectly through the effect of epineph-
rine on plasma glucose and FFA concentrations, and that insulin
affects a-sympathetic activity only. Some studies have shown that
insulin also has a direct vasodilatory effect (Anderson and Mark,
1993), and this may offset the vasoconstrictive effect of insulin
through its action on sympathetic activity. Thus, the “feedback
effect” of insulin on sympathetic drive may not be as important as
one might generally surmise. Another major factor not included
in the present model is the effect of sympathetic drive, and thus
epinephrine, on insulin production in the pancreas (Kim et al.,
2006).

While recent clinical research shows that high-fat diets con-
tribute to progressive insulin resistance, in the present model,
meals are represented simply as step boluses of blood glucose with-
out consideration of the digestion process and the inevitable lags
between oral ingestion and appearance of glucose and FFA in the
bloodstream.

The time-course of “disease progression,” as currently pre-
dicted by the model in terms of the development of elevated
epinephrine, insulin, and FFA levels, is substantially more rapid
than one might expect based on clinical observation. This is
likely related to the fact that the model parameters in both the
autonomic and metabolic subsystems remain unchanged, even
though the model variables (e.g., mean blood pressures, insulin
levels, and FFA levels) are altered by the presence or absence
of OSA. This limitation stems from the lack of information
about how the disease process leads to time-varying changes
in the model parameters. Clearly, future efforts to improve the
model will require the incorporation of this knowledge from
either empirical observations or an advanced understanding

of the underlying mechanistic processes that give rise to such
time-varying alterations.

CONCLUSION

We have extended an existing integrative model of respiratory,
cardiovascular, and sleep—wake state control, to incorporate a
sub-model of glucose—insulin—fatty acid regulation. This compu-
tational model is capable of simulating the complex dynamics
of cardiorespiratory control, chemoreflex and state-related con-
trol of breath-to-breath ventilation, state-related and chemore-
flex control of upper airway potency, respiratory and circulatory
mechanics, as well as the metabolic control of glucose—insulin
dynamics and its interactions with the autonomic control. The
interactions between autonomic and metabolic control include the
circadian regulation of epinephrine secretion, epinephrine regu-
lation on dynamic fluctuations in glucose and FFA in plasma,
metabolic coupling among tissues and organs provided by insulin
and epinephrine, as well as the effect of insulin on peripheral
vascular sympathetic activity. This extended model represents a
starting point from which further in silico investigations into the
interaction between the autonomic nervous system and the meta-
bolic control system can proceed. The predictions generated from
this model may provide insight into the relative importance of
the various mechanisms that determine the acute and chronic
physiological effects of sleep-disordered breathing.
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