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In recent years, time-varying inhomogeneous point process models have been introduced
for assessment of instantaneous heartbeat dynamics as well as specific cardiovascular con-
trol mechanisms and hemodynamics. Assessment of the model’s statistics is established
through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A vari-
ety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability
(HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (baroreflex) sen-
sitivity (BRS), are derived within a parametric framework and instantaneously updated with
adaptive and local maximum likelihood estimation algorithms. Inclusion of second-order
non-linearities, with subsequent bispectral quantification in the frequency domain, further
allows for definition of instantaneous metrics of non-linearity. We here present a compre-
hensive review of the devised methods as applied to experimental recordings from healthy
subjects during propofol anesthesia. Collective results reveal interesting dynamic trends
across the different pharmacological interventions operated within each anesthesia ses-
sion, confirming the ability of the algorithm to track important changes in cardiorespiratory
elicited interactions, and pointing at our mathematical approach as a promising monitor-
ing tool for an accurate, non-invasive assessment in clinical practice. We also discuss the
limitations and other alternative modeling strategies of our point process approach.

Keywords: autonomic cardiovascular control, heart rate variability, baroreflex sensitivity, respiratory sinus arrhyth-

mia, point process,Wiener-Volterra expansion, general anesthesia

1. INTRODUCTION
Modeling physiological systems by control systems theory,
advanced signal processing, and parametric modeling and esti-
mation approaches has been of focal importance in biomedical
engineering (Khoo, 1999; Marmarelis, 2004; Xiao et al., 2005;
Porta et al., 2009). Modeling autonomic cardiovascular control
using mathematical approaches helps in the understanding and
assessment of autonomic cardiovascular functions in healthy or
pathological subjects (Task Force, 1996; Berntson et al., 1997;
Parati et al., 2001; Stauss, 2003; Eckberg, 2008). Continuous quan-
tification of heartbeat dynamics, as well as their interactions with
other cardiovascular measures, have also been subject of impor-
tant studies in the past decades (Baselli et al., 1988; Saul and
Cohen, 1994; Chon et al., 1996; Barbieri et al., 2001; Porta et al.,
2002). Non-linear system identification methods have also been
applied to heartbeat interval analysis (Christini et al., 1995; Chon
et al., 1996; Zou et al., 2003; Zhang et al., 2004; Xiao et al., 2005;
Wang et al., 2007). Examples of higher order characterization
for cardiovascular signals include non-linear autoregressive (AR)
models, Volterra-Wiener series expansion, and Volterra-Laguerre
models (Korenberg, 1991; Marmarelis, 1993; Akay, 2000). Several
authors have demonstrated the feasibility and validity of non-
linear autoregressive models, suggesting that heart rate dynamics
studies should put greater emphasis on non-linear analysis (Chris-
tini et al., 1995; Chon et al., 1996; Zhang et al., 2004; Jo et al., 2007).

However, the wide majority of these studies use either beat series
(tachograms) unevenly distributed in time, or they interpolate
these series with filters not supported by an underlying model of
heartbeat generation.

More recently, advanced statistical methods have been devel-
oped for modeling the heartbeat dynamics, treating the heartbeats,
detected from continuous electrocardiogram (ECG) recordings,
as discrete events that can be described as a stochastic point
process (Barbieri et al., 2005; Barbieri and Brown, 2006; Chen
et al., 2009a, 2010a). Several probability density functions (e.g., the
inverse Gaussian, Gaussian, lognormal, or gamma distribution)
have been considered to model the probability of having a beat
at each moment in time given the previous observations (Chen
et al., 2008). An important result of our recent studies pointed
at the inverse Gaussian model (here considered in the methods)
as the best probability structure to explain heartbeat generation
(Ross, 1997; Barbieri et al., 2005; Chen et al., 2009a), where the
expected heartbeat interval (the distributions mean) is modulated
by previous inter-beat intervals and other physiological covariates
of interest, such as respiration and arterial blood pressure (ABP).

In this tutorial paper, in light of the Wiener-Volterra theory, we
present a comprehensive point process framework to model linear
and non-linear interactions between the heartbeat intervals, respi-
ration, and arterial blood pressure. The point process framework
provides a coherent way to assess the important cardiovascular
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functions by instantaneous quantitative indices, such as heart
rate variability (HRV), respiratory sinus arrhythmia (RSA), and
baroreflex sensitivity (BRS). These indices of interest can be esti-
mated recursively based on online estimation approaches, such as
adaptive filtering and local maximum likelihood estimation (Bar-
bieri et al., 2005; Barbieri and Brown, 2006). The adaptive estima-
tion, combined with the point process framework, provides a more
accurate estimate in a finer timescale than conventional window-
based adaptive filtering methods, such as the recursive least squares
(RLS) filter (Haykin, 2001). Of note, we have also further extended
the point process approach to consider the non-linear nature of
heartbeat dynamics (Chen et al., 2010a).

Assessing and monitoring informative physiological indices is
an important goal in both clinical practice and laboratory research.
To provide an exemplary application, we employ the proposed
point process methods to analyze experimental recordings from
healthy subjects during administration of propofol to induce con-
trolled states of general anesthesia (Purdon et al., 2009). To this
extent, as reviewed in this article, our recent investigations have
reported promising results in monitoring cardiovascular regula-
tion under induction of anesthesia (Chen et al., 2009b, 2010b,
2011a).

2. OVERVIEW OF THE POINT PROCESS FRAMEWORK
In computerized cardiology, various types of data such as the ECG,
ABP (e.g., measured by invasive arterial line catheters or non-
invasive finger cuffs), and respiratory effort (RP, e.g., measured by
plethysmography or by piezoelectric respiratory belt transducers)
are recorded, digitized, and saved to a computer to be available
for off-line analysis. A specific goal in analyzing these data is to
discover and quantify the statistical dependence between the phys-
iological measurements, and consequently extract informative
physiological indices from the data. A direct approach computes
empirical statistics (e.g., mean and variance, spectral content, or
degree of non-linearity) without making any assumption on how
the observed quantities are motivated by the physiology. Con-
versely, a model-based approach relies on mathematical formula-
tions to define either a mechanistic or a statistical model to explain
the observed data. Despite the simplification, the model attempts
to describe the generative mechanism of the physiological mea-
surements, and therefore it is critical for further data simulation
and interpretation. Being defined by unknown parameters, identi-
fication of the model also requires a statistical approach to estimate
optimal sets of parameters that best fit the observed physiologi-
cal dynamics (Xiao et al., 2005). Typically, modeling the complex
nature of the data (e.g., non-linearity) would further call for more
complex model structures. Model selection or model assessment
can be evaluated by some established goodness-of-fit statistics.

Here we propose a unified point process statistical framework
to model the physiological measurements commonly acquired in
computerized cardiology. In statistics, a point process is a type
of random process for which any one realization consists of a set
of isolated points either in time or space (Daley and Vere-Jones,
2007). Point processes are frequently used to model random events
in time or space (from simple scenarios like the arrival of a cus-
tomer to a counter, to very complex phenomena such as neuronal
spiking activity). In our specific case, heartbeat events detected

from the ECG waveforms can be also viewed as a point process,
and the generative mechanism of the beat-to-beat intervals can be
described by a parametric probability distribution. To model the
heartbeat dynamics and cardiovascular/cardio respiratory interac-
tions, we will make some assumptions and simplifications about
the data generative mechanisms, while facilitating the ease for data
interpretation.

Our paradigm can be outlined in three separate phases (see the
flowchart in Figure 1): acquisition and preprocessing (Phase I)
where the raw physiological measurements are processed to obtain
proper input variables to the models, modeling and goodness-of-
fit assessment (Phase II) where a chosen number of models are
tested and optimal parameters are estimated to best fit the observed
input dynamics, and monitoring (Phase III) where a proper com-
bination of the estimated parameters can be manipulated to define
instantaneous indices directly related to specific cardiovascular
control mechanisms. Mathematical and technical details of Phase
II and Phase III will be described in the next section.

3. METHODS AND DATA
3.1. PROBABILITY MODELS FOR THE HEARTBEAT INTERVAL
Given a set of R-wave events {uj}J

j=1 detected from the recorded

ECG waveform, let RRj = uj − uj−1 > 0 denote the jth R-R inter-
val. By treating the R-waves as discrete events, we may develop a
probabilistic point process model in the continuous-time domain.
Assuming history dependence, the waiting time t − uj (as a contin-
uous random variable, where t > uj) until the next R-wave event
can be modeled by an inverse Gaussian model (Barbieri et al., 2005;
Barbieri and Brown, 2006; Chen et al., 2009a)

p (t ) =
(

θ

2π t 3

) 1
2

exp

(
−θ

(
t − uj − μRR (t )

)2

2
(
t − uj

)
μ2

RR (t )

)
, (1)

where uj denotes the previous R-wave event occurred before time
t, θ > 0 denotes the shape parameter (which might also be time-
varying), and μRR(t ) denotes the instantaneous R-R mean para-
meter. The use of an inverse Gaussian distribution to characterize
the R-R intervals’ occurrences is further motivated by a physio-
logical integrate-and-fire model of heartbeat generation: in fact,
if the rise of the membrane potential to a threshold initiating the
cardiac contraction is modeled as a Gaussian random-walk with
drift, then the probability density of the times between thresh-
old crossings (the R-R intervals) is indeed the inverse Gaussian
distribution (Barbieri et al., 2005).

Note that when the mean μRR(t ) is much greater than the vari-
ance, the inverse Gaussian distribution can be well approximated
by a Gaussian distribution with an identical mean and a variance
equal to μ3

RR(t )/θ . However, the inverse Gaussian distribution is
more robust since it can better model the outliers due to its long
tail behavior. In our earlier investigation (Chen et al., 2008, 2009a),
we have compared heartbeat interval fitting point process mod-
els using different probability distributions, and found that the
inverse Gaussian model achieved the overall best fitting results. In
practice, we can always conduct an empirical model fit analysis
(e.g., data histogram, the Q-Q plot, and the Kolmogorov-Smirnov
plot) for the raw R-R intervals, testing the appropriateness of the
inverse Gaussian model (Chen et al., 2011a).
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In point process theory, the inter-event probability p(t ) is
related to the conditional intensity function (CIF) λ(t ) by a
one-to-one transformation (Brown et al., 2003)

λ (t ) = p (t )

1 − ∫ t
uj

p(τ )dτ
. (2)

The estimated CIF can be used to evaluate the goodness-of-fit
of the probabilistic heartbeat interval model.

3.2. INSTANTANEOUS INDICES OF HR AND HRV
Heart rate (HR) is defined as the reciprocal of the R-R intervals.
For time t measured in seconds, the new variable r = c(t − uj)−1

(where c = 60 s/min is a constant) can be defined in beats per
minute (bpm). By virtue of the change-of-variables formula, from
equation (1) the HR probability p(r) = p(c(t − uj)−1) is given
by p(r) = |dt /dr |p(t ), and the mean and the SD of HR r can be
derived (Barbieri et al., 2005)

μHR = μ̃−1 + θ̃
−1

, (3)

σHR =
√(

2μ̃ + θ̃
)

/μ̃ θ̃
2
, (4)

where μ̃ = c−1μRR and θ̃ = c−1θ . Essentially, the instantaneous
indices of HR and HRV are characterized by the mean μHR and
SD σ HR, respectively. In a non-stationary environment, where the
probability distribution of HR is possibly slowly changing over

time, we aim to dynamically estimate the instantaneous mean
μRR(t ) and instantaneous shape parameter θ t in equation (1) so
that the evolution of the probability density p(r) can be tracked in
an online fashion.

In Table 1, several potential probabilistic heartbeat interval
models are listed, along with the derived probabilistic HR mod-
els (Chen et al., 2008, 2009a). For all probabilistic HR models,
μHR and σ HR can be either analytically derived or numerically
evaluated. This provides a mathematically rigorous definition of
instantaneous indices of HR and HRV, which sidesteps some of
the difficulties in defining HR and HRV based on the series of
heartbeat intervals unevenly distributed in time.

3.3. AUTONOMIC CARDIOVASCULAR CONTROL AND MODELING
HEARTBEAT DYNAMICS

In line with a control systems engineering approach, short term
autonomic cardiovascular control can be modeled as a closed-
loop system that involves blood pressure (BP) and respiratory
(RP) measures as the two major variables that influence heart-
beat dynamics (Baselli et al., 1988; De Boer et al., 1995; Barbieri
et al., 2001). The closed-loop system can be illustrated by the sim-
plified diagram shown in Figure 2. In the feedforward pathway
(RR → BP), the R-R intervals influence the forthcoming BP mea-
sure as defined by the H 12 transfer function (either in the time
or frequency domains), including the effects of heart contractility
and vasculature tone on arterial pressure. In the feedback pathway
(BP → RR), the autonomic nervous system modulates the beat-to-
beat interval through a feedback control mechanism mediated by

FIGURE 1 |The flowchart of data acquisition and preprocessing (Phase I), modeling and goodness-of-fit assessment (Phase II), and monitoring (Phase

III).

Table 1 | List of four two-parameter parametric probabilistic models for the heartbeat R-R interval and heart rate (HR).

R-R interval model p(t |θ1, θ2) E(t ) Var(t ) HR model p(r |θ1, θ2) Note: c = 60 s/min

Gaussian 1√
2πθ2

exp(− (t−θ1)2

2θ2
) θ1 θ2

c√
2πθ2r2

exp(− (cr−1−θ1)
2

2θ2
)

invGaussian (
θ2

2π t3 )
1
2 exp(− θ2(t−θ1)2

2θ2
1 t

) θ1 θ3
1 /θ2 (

θ∗
2

2π r )
1
2 exp(− θ∗

2 (1−θ∗
1 r )2

2 θ∗
1

2 r
) θ∗

1 = θ1/c, θ∗
2 = θ2/c

Lognormal 1√
2πθ2t

exp(− (log(t)−θ1)2

2θ2
) eθ1+θ2/2 e2θ1+θ2 (eθ2 − 1) 1√

2πθ2r
exp(− (log(cr−1)−θ1)

2

20a2
)

Gamma θ
θ1
2

�(tθ−1
1 )

exp(−θ2t) θ1/θ2 θ1/θ2
2

θ∗
2

θ1

�(θ1)r θ1+1 exp(− θ∗
2 /r
2θ2

) θ∗
2 = cθ2
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FIGURE 2 | A simplified diagram of the cardiovascular closed-loop

model. The beat-to-beat R-R interval is modulated by blood pressure (BP)
through the feedback baroreflex loop. The dashed box represents a
closed-loop baroreceptor-cardiac reflex (baroreflex) model. Outside the
dashed box, the respiratory (RP) input also modulates RR through
respiratory sinus arrhythmia (RSA) and modulates BP through mechanical
influences.

the baroreceptors, where the H 21 transfer function includes both
baroreflex and autonomic control to the heart. In a second feed-
back pathway (RP → RR), the changes in lung volume modulates
the beat-to-beat interval. The cardiovascular functions associated
with these two feedback influences, baroreflex sensitivity (BRS)
and respiratory sinus arrhythmia (RSA), operate within specific
frequency bands.

A common methodological approach to characterize a phys-
iological system is through system identification (Nikias and
Petropulu, 1993; Marmarelis, 2004; Xiao et al., 2005). In gen-
eral, let us consider a causal, continuous-time non-linear mapping
F between an output variable y(t ) and two input variables x(t )
and u(t ). Expanding the Wiener-Volterra series of function F (up
to the second-order) with respect to inputs x(t ) and u(t ) yields
(Schetzen, 1980)

y (t ) = F (x (t ) , u (t ))

=
∫ t

0
a (τ ) x (t − τ) dτ +

∫ t

0
b (τ ) u (t − τ) dτ

+
∫ t

0

∫ t

0
h1 (τ1, τ2) x (t − τ1) u (t − τ2) dτ1dτ2

+
∫ t

0

∫ t

0
h2 (τ1, τ2) x (t − τ1) x (t − τ2) dτ1dτ2

+
∫ t

0

∫ t

0
h3 (τ1, τ2) u (t − τ1) u (t − τ2) dτ1dτ2

(5)

where F(·): R2 �→ R is a non-linear function, and a(·), b(·), h1(·,·),
h2(·,·), and h3(·,·) are Volterra kernels with appropriate orders. In
our cardiovascular system identification case, y(t ) represents the
expected heartbeat interval μRR(t ), x(t ) represents the previous
R-R intervals, u(t ) represents the vector of covariates (COV) such
as BP or RP, and the continuous-time integral (convolution) is
approximated by afinite and discrete summation. The first and
second-order Volterra kernels will be replaced by discrete filter
coefficients.

We consider four individual cases of discrete-time Volterra
series expansion, which lead to different formulations to model
the heartbeat interval mean μRR in equation (1).

• Dropping all of second-order terms as well as the COV terms
in the Volterra series expansion (5), we obtain a univariate
(noise-free) AR model

μRR (t ) = a0 (t ) +
p∑

i=1

ai (t ) RRt−i (6)

where the a0 term is incorporated to compensate the non-zero
mean of the R-R intervals.

• Dropping the COV terms in the Volterra series expansion (5),
we obtain

μRR (t ) = a0 (t ) +
p∑

i=1

ai (t ) RRt−i

+
r∑

k=1

r∑
l=1

hkl (t )
(
RRt−k − 〈RR〉t

) (
RRt−l − 〈RR〉t

)

(7)

where 〈RR〉t = 1/�
∑�

k=1 RRt−k (� = max{p, r}) denotes the
local mean of the past � R-R intervals.

• Dropping all of second-order terms in the Volterra series
expansion (5), we obtain a bivariate discrete-time linear system

μRR (t ) = a0 (t ) +
p∑

i=1

ai (t ) RRt−i +
q∑

j=1

bj (t ) COVt−j (8)

where the first two terms represent a linear autoregressive (AR)
model of the past R-R intervals, and COV t−j denotes the pre-
vious jth covariate value prior to time t. Note that the COV
observations will be preprocessed to have zero mean (since the
DC component is of minimal importance to model the oscilla-
tion). Equation (8) can also be viewed as a linear (noise-free)
autoregressive moving average (ARMA) model (Lu et al., 2001).
Also note that here we have used RRt−i instead of μRR(t − i)
as regressors since this would require a higher order p due to
the long-range dependence of μRR(t − i) under a very small
timescale. Due to the absence of driving noise, Equation (8) can
also be viewed as an ARX model, where the COV term serves as
the exogenous input.

• Dropping the last two quadratic terms in the Volterra series
expansion (5), we obtain

μRR (t ) = a0 (t ) +
p∑

i=1

ai (t ) RRt−i +
q∑

j=1

bj (t ) COVt−j

+
r∑

k=1

r∑
l=1

hkl (t )
(
RRt−k − 〈RR〉t

)
COVt−l

(9)

Equation (9) can be viewed as a bivariate bilinear system
(Tsoulkas et al., 2001), which can also be viewed as a (noise-free)
non-linear ARMA or non-linear ARX model (Lu et al., 2001).
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3.4. ONLINE ESTIMATION: ADAPTIVE POINT PROCESS FILTERING AND
LOCAL LIKELIHOOD ESTIMATION

Since our earliest point process cardiovascular characterizations
(Barbieri et al., 2005; Barbieri and Brown, 2006), in order to
optimize the estimation of the model parameters, we have devel-
oped two model fitting algorithms: the adaptive point process
filtering method (based on recursive adaptive filtering, and the
local maximum likelihood (based on local likelihood estimation
using a moving window). These two online estimation methods
enable us to update the parameters of the heartbeat probability
model at each moment in time in order to continuously track the
non-stationary nature of the observations.

In the adaptive filtering method, let ξ = [{ ai}
p
i=0, { bj }

q
j=1,

{ hkl } , θ ]T denote the vector that contains all unknown parameters
in the heartbeat interval probability model. Let the continuous-
time interval be binned with a constant bin size 	. A state-space
formulation of the discrete-time (indexed by k) point process fil-
tering algorithm is described here (Brown et al., 1998; Eden et al.,
2004; Barbieri and Brown, 2006)

ξ k|k−1 = ξ k−1|k−1

Pk|k−1 = Pk−1|k−1 + W

ξ k|k = ξ k|k−1 + Pk|k−1
(∇ log λk

)
[nk − λk	]

Pk|k =
[

P−1
k|k−1 + ∇λk∇λT

k

	

λk
− ∇2 log λk [nk − λk	]

]−1

where P and W denote the parameter and noise covariance matri-
ces, respectively; and 	 denotes the time bin size. The choice
of bin size reflects the timescale of estimation interest, we typi-
cally use 	 = 5 ms. Diagonal noise covariance matrix W, which
determines the level of parameter fluctuation at the timescale of
	, can be either initialized empirically from the random-walk
theory,1 or estimated from the expectation-maximization (EM)
algorithm (Smith and Brown, 2003). In our experiments, a typical
value of noise variance value for the AR parameter is 10−6

∼ 10−7,
and the typical noise variance value for the shape parameter is
10−3

∼ 10−4. The sensitivity analysis of the noise variance will be
illustrated and discussed in the result section.

Symbols 	λk = ∂λk/∂ξ k and ∇2λk = ∂2λk

∂ξ k∂ξT
k

denote the first-

and second-order partial derivatives of the CIF with respect to ξ at
time t = k	, respectively. The indicator variable nk = 1 if a heart-
beat occurs in the time interval ((k − 1)	, k	] and 0 otherwise.
The point process filtering equations can be viewed as a point
process analog of the Kalman filtering equations in the presence
of continuous-valued observations (Eden et al., 2004). Given a
predicted (a priori) estimate ξ k|k−1, the innovations [nk − λk	]
is weighted by Pk|k−1(	logλk) (viewed as an adaptation gain)
to further produce the filtered (a posteriori) estimate ξ k|k. Since
the innovations term is likely to be non-zero in the absence of a
beat, the parameters are always updated at each time step k. The

1According to the Gaussian random-walk theory, the variance or the translational
squared distance of one random variable in one dimension within a time period
is linearly proportional to the associated diagonal entry of W and the total time
traveled.

a posteriori error covariance Pk|k is derived based on a Gaussian
approximation of the log-posterior (Eden et al., 2004). We always
use the a posteriori estimate to the HR, HRV, and other statis-
tics. The time-varying CIF λk is also numerically computed from
equation (2) using the a posteriori estimate.

In the local likelihood estimation method (Loader, 1999), we
can define the log-likelihood given an observation window (t − l,
t ] consisting of n heartbeat events {t − l < u1 < u2 < . . . < un ≤ t }
as (Loader, 1999; Barbieri and Brown, 2006; Kodituwakku et al.,
2012)

log p
(
ut−l :t

) =
n∑

j=2

w
(
t − uj

)
log p

(
uj − uj−1

)

+ w (t − un) log

∫ ∞

t−un

p (v) dv

(10)

where w(t−uj) = αt−uj (0 < α < 1) is a weighting function for the
local likelihood estimation. The weighting time constant α governs
the degree of influence of a previous event observation uj on the
local likelihood at time t. The second term of equation (10) repre-
sents the log-likelihood of the partially observed interval since the
last observed beat un (right censoring). The local log-likelihood
(10) can be optimized using a Newton-Raphson method to obtain
a local maximum likelihood estimate of ξ (Loader, 1999).

The above estimation methods are by no means the only
options. Other alternative methods can be considered. For
instance,particle filtering is known to have a better tracking perfor-
mance for non-linear dynamics at the cost of increasing memory
and computational complexity (Brockwell et al., 2004; Ergun et al.,
2007). In addition, instead of the Gaussian approximation, other
types of approximation approaches may also be employed to
obtain a more accurate point process filtering algorithm (Koyama
et al., 2009, 2010).

3.5. FREQUENCY ANALYSIS
3.5.1. Estimating the frequency response at the feedback pathway

(baroreflex or RSA)
Assuming a linear relation between the input and output of inter-
est, we can estimate the transfer function (based on the Laplace
transform) and the associated frequency response between the
input and output variables (Saul et al., 1991; Pinna and Maestri,
2001; Xiao et al., 2005; Pinna, 2007).

In light of equation (8), the frequency response for the barore-
flex (BP → RR) or RSA (RP → RR) is computed as (Chen et al.,
2009a, 2011a)

H12
(
f , t
) =

∑q
i=1 bi (t ) z−i

∣∣
z=ej2π f2

1 −∑p
i=1 ai (t ) z−i

∣∣
z=ej2π f1

, (11)

where f1 and f2 denote the rate (beat/s) for the R-R and COV-COV
intervals, respectively; here we assume f1 ≈ f2 ≡ f (we typically
assume that the heartbeat period is about the same as the BP-event
period, while the RP measurement can be resampled or interpo-
lated at the beat time). The order of the AR model also determines
the number of poles, or oscillations, in the frequency range. Mod-
ifying the AR coefficients is equivalent to changing the positions
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of the poles and reshaping the frequency response curve. With the
time-varying AR coefficients {ai(t )} and {bj(t )} estimated from
the point process filter, we can evaluate the dynamic frequency
response of (11) at different ranges (LF, 0.04–0.15 Hz; HF, 0.15-
min {0.5, 0.5/RR} Hz, where 0.5/RR denotes the Nyquist sampling
frequency).

In the case where COV is BP, the frequency-dependent
baroreflex gain or BRS, characterized by |H 12(f)|, represents the
frequency-dependent modulation effect of BP on the heartbeat,
mediated by the neural autonomic reflex. In the case where COV
is RP, |H 12(f)| represents the frequency-dependent RSA gain.

3.5.2. Estimating the frequency response at the feedforward
pathway

In the feedforward (RR → BP) pathway of Figure 2, the frequency
response allows us to evaluate the impact of the heartbeat dura-
tions on the hemodynamics. In light of AR modeling in the
feedback pathway, we can also model BP with a bivariate linear
AR model

BPk = c0 (k) +
p∑

i=1

ci (k) BPk−i +
p∑

i=1

di (k) μRR (k − i) , (12)

where μRR(k − i) represents the estimated instantaneous R-R
mean value at the time bin when BP-events occur. The coeffi-
cients {ci(k)}p

i=0 and {di(k)}p
i=1 are dynamically tracked by a RLS

filter. Unlike the point process filter, the update occurs only at the
occurrence time of BP-events, although it is important to highlight
that the point process framework allows for these innovations to
be associated with the evolution of the heartbeat dynamics at the
exact time when the hemodynamic changes occur, without hav-
ing to wait for the next heartbeat to be observed. Similarly, the
frequency response of the RR → BP pathway can be estimated as

H21
(
f
) =

∑p
i=1 di (k) z−i

∣∣
z=ej2π f

1 −
p∑

i=1
ci (k) z−i

∣∣
z=ej2π f

, (13)

where f denotes the sampling rate (beat/s) for BP-BP intervals.
Likewise, we can estimate the dynamic gain and phase of H 21(f) at
each single BP-event (whereas during between-events period, the
coefficient estimates remain unchanged).

3.5.3. Estimating the dynamic R-R spectrum
Let QRR(f) denote the power spectrum of the R-R series. In the
case of equation (6), QRR(f) is estimated by

QRR
(
f , t
) = σ 2

RR (t )∣∣∣1 −∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

. (14)

In the case of equation (8), QRR(f) can be estimated by

QRR
(
f , t
) ≈ σ 2

RR (t )∣∣∣1 −∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

+
∣∣∑q

i=1 bi (t ) z−i
∣∣ σ 2

BP (t )∣∣∣1 −∑p
i=1 ai (t ) z−i

∣∣∣
z=ej2π f

.

(15)

From QRR we can also compute the time-varying LF/HF
power ratio. Note that we have assumed that the variance σ 2

BP(t )
(estimated from the feedforward pathway) remains unchanged
between two consecutive systolic BP values.

3.5.4. Estimating the dynamic coherence
In order to estimate the cross-spectrum in the context of a
closed-loop system, we assume that the noise variance and the
non-linear interactions in the feedforward and feedback loops
are sufficiently small. From equation (11), we can estimate the
cross-spectrum (between BP and RR) in the feedback loop as
Cuy(f ) ≈ H 12(f )QBP(f). As the coefficients {ai(t )} and {bj(t )} are
iteratively updated in time, the point process filter produces an
instantaneous estimate of BRS as well as the cross-spectrum. Sim-
ilarly, from equation (13) we can estimate the cross-spectrum in
the feedforward pathway: Cyu(f) ≈ H 21(f)QRR(f).

Furthermore, the instantaneous normalized cross-spectrum
(i.e., coherence) can be computed as

Coh
(
f , t
) =

∣∣Cuy
(
f , t
)∣∣√∣∣QBP

(
f , t
)∣∣ · ∣∣QRR

(
f , t
)∣∣

=
√∣∣Cuy

(
f , t
)∣∣ · ∣∣Cyu

(
f , t
)∣∣

√∣∣QBP
(
f , t
)∣∣ · ∣∣QRR

(
f , t
)∣∣

=
√∣∣H12

(
f , t
)

H21
(
f , t
)∣∣,

(16)

where |·| denotes the modulus of a complex variable. The sec-
ond equality in equation (16) holds due to the fact that Cyu(f ) =
C∗

uy ( f ) = H12(−f )QBP(f ), where ∗denotes the Hermitian opera-
tor (note that |Cyu| = |Cuy| and has anti-phase against each other).
The third equality indicates that the time-varying coherence func-
tion can be expressed by the multiplication of two (feedback and
feedforward) time-varying transfer functions (Zhao et al., 2005),
computed from equations (11 and 13), respectively.

The time-varying closed-loop coherence function Coh(f, t ) can
be computed at very fine timescales by using two adaptive fil-
ters (i.e., the point process filter at the feedback pathway, and the
RLS filter at the feedforward pathway) either synchronously or
asynchronously, several studies have examined its properties (e.g.,
stability, numerical bound) in detail (Porta et al., 2002; Zhao et al.,
2005, 2007).

3.6. NON-LINEARITY ASSESSMENT
Heartbeat dynamics are well known to be non-linear (Christini
et al., 1995; Chon et al., 1996, 1997; Zhang et al., 2004; Chen
et al., 2010a). In the literature, various non-linear indices such
as the Lyapunov exponent, the fractal exponent, or the approxi-
mate entropy, have been proposed to characterize the non-linear
behavior of the underlying physiological system (Peng et al., 1995;
Ivanov et al., 1999; Akay, 2000; Teich et al., 2001; Costa et al., 2002;
Struzik et al., 2004; Voss et al., 2009). It has been suggested that
such non-linearity indices might provide informative indicators
for diagnosing cardiovascular diseases (Poon and Merill, 1997;
Goldberger et al., 2002; Tulppo et al., 2005; Atyabi et al., 2006).
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Motivated by the importance of quantifying the contribution
of non-linearity to HRV and the heartbeat dynamics, we have
proposed a quantitative index based on the spectrum-bispectrum
ratio (Chen et al., 2010a, 2011a)

Ratio = (cross) spectrum

(cross) spectrum + (cross) bispectrum
, (17)

The nominator of equation (17) corresponds to the R-R spec-
trum (or cross-spectrum between RR and COV in the presence
of covariate), whereas the denominator corresponds to the sum
of the R-R spectrum and R-R bispectrum (or cross-spectrum and
cross-bispectrum in the presence of covariate). The above-defined
ratio is frequency-dependent, and it is dimensionless and bounded
between 0 and 1.

In both cases, the instantaneous ratio is derived as (see Chen
et al., 2010a, 2011a) for assumptions and details)

ρ (t ) = 1

1 + 2
∣∣h (t ) | · |QRR

(
f , t
)∣∣ , (18)

where |h(t )| =
√∑

k

∑
l h2

kl(t ). The spectrum norm defines the

area integrated over the frequency range under the spectral den-
sity curve. When the non-linear or bilinear interaction is small,
the coefficients {hkl} are small, and the ratio is close to 1.

3.7. MODELING NON-STATIONARY WITH THE ARIMA MODEL
In time series modeling, it is common to “detrend” a time series by
taking differences if the series exhibits undesired non-stationary
features. The autoregressive integrated moving average (ARIMA)
process may provide a suitable framework to achieve such a goal
(Vu, 2007). Simply, the original time series is applied by a difference
operator (one or more times) until the non-stationary trends are
not observed in the ultimate series. This is essentially equivalent to
applying a high-pass filter to get rid of the slow oscillation. Non-
stationary trends are often observed in the epochs of experimental
recordings of R-R intervals and/or other physiological measures,
especially during the periods of intervention by external factors
(e.g., drug administration, ventilation).

Motivated by this idea, we define the “increment of R-R
series” {δRRt−i} ≡ {RRt−i − RRt−i−1} and the “increment of
COV series” {δCOVt−i} ≡ {COVt−i − COV t−i−1}, and model the
instantaneous heartbeat interval mean by the following new
equation (Chen et al., 2010b)

μRR (t ) = RRt−1 +
p∑

i=1

ai (t ) δRRt−i +
q∑

i=1

bi (t ) δCOVt−i . (19)

The new series {δRRt−i} and {δCOVt−i} have zero mean and
are combined within a new (noise-free) AR model in parallel with
equation (8). Note that the a0(t ) term in equation (8) has been
replaced by RRt−1 in equation (19).

From equation (19), we can compute the differential frequency
response between δRR and δCOV

H̃ 12
(
f , t
) =

q∑
i=1

bi (t ) z−i
∣∣
z=ej2π f2

1 −
p∑

i=1
ai (t ) z−i

∣∣
z=ej2π f1

, (20)

When using BP as covariate, we call | H̃ 12 | as the differential
BRS; when using RP as covariate, | H̃ 12 | is referred to as the
differential RSA. Rearranging the terms {ai(t )} and {bj(t )} in equa-
tion (19) and applying the frequency analysis further yields the
frequency response (in the conventional sense)

H12
(
f , t
) =

b1 (t ) z−1 + bq (t ) z−q

+
q−1∑
i=2

(bi (t ) − bi−1 (t )) z−i
∣∣
z=ej2π f2

1 − (1 + a1 (t )) z−1 − ap (t ) z−p

−
p−1∑
i=2

(ai (t ) − ai−1 (t )) z−i
∣∣
z=ej2π f1

,

Note: It shall be pointed out that, due to the absence of the dri-
ven noise (equations 6–9, and 19), the terms AR, ARMA, ARX, or
ARIMA models defined in this paper do not coincide with an AR-
type model in the traditional sense. These models can be viewed as
distinctive AR-type models with vanishing noise variance. In other
words, as the uncertainty is embedded in the probability structure,
we did not consider the noise component in modeling the mean.

3.8. MODEL ORDER SELECTION AND GOODNESS-OF-FIT TESTS
Once a model is selected, we would need to predetermine the
model order {p, q} of equations (6–9) in the selected Volterra series
expansion. In general, the need of a tradeoff between model com-
plexity and goodness-of-fit arises when a point process model is
considered. In practice, the order of the model may be determined
based on the Akaike information criterion (AIC; by pre-fitting a
subset of the data using either the point process filter or the local
likelihood method (Loader, 1999; Barbieri et al., 2005) as well as
the Kolmogorov-Smirnov (KS) statistic (Brown et al., 2003) in the
post hoc analysis. For different values p and q, we can compare
the AIC and choose the parameter setup with the minimum AIC
value. Let L designate the log-likelihood value obtained from the
pre-fitted data, the AIC is defined as

AIC = −2L + 2dim (ξ) (21)

where dim(ξ) denotes the dimensionality of unknown parameter
vector ξ used in the probability model of the heartbeat interval. In
the presence of a non-linear or bilinear AR model, once the order
is determined, the initial Volterra coefficients will be estimated by
a least squares method (Westwick and Kearney, 2003). Specifically,
the coefficients {ai} are optimized by solving a Yule-Walker equa-
tion for the linear part using the first few hundreds sample points,
and the coefficients {hij} are estimated by fitting the residual error
via least squares. For the non-linear and bilinear models (equa-
tions 7 and 9), we use a sequential estimation instead of a joint
estimation procedure for fitting the Volterra coefficients, since we
prefer to preserve the interpretation of the linear AR coefficients.
A joint estimation procedure is possible based on orthogonal
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projection, cross-correlation, or least squares (Marmarelis, 1993;
Westwick and Kearney, 2003), although such method may destroy
the structure described by the linear AR coefficients.

The goodness-of-fit of the point process model is based on
the KS test (Brown et al., 2003). Given a point process specified
by J discrete events: 0 < u1 < . . . < uJ < T, the random variables

zj = ∫uj
uj−1 λ(τ)dτ are defined for j = 1, 2,. . ., J − 1. If the model

is correct, then the variables vj = 1 − exp(− zj) are independent,
uniformly distributed within the interval [0, 1], and the variables
gj = �−1(vj) (where �(·) denotes the cumulative distribution
function (cdf) of the standard Gaussian distribution) are sampled
from an independent standard Gaussian distribution. To conduct
the KS test, the vjs are sorted from smallest to largest, and plot-
ted against the cdf of the uniform density defined as (j − 0.5)/J.
If the model is correct, the points should lie on the 45˚ line. The
95% confidence interval lines are defined as y = x ± 1.36

(J−1)1/2 . The

KS distance, defined as the maximum distance between the KS
plot and the 45˚ line, is also used to measure lack-of-fit between
the model and the data. The autocorrelation function of the gjs:

ACF(m) = 1
J−m

∑J−m
j=1 gj gj+m , can also be computed. If the gj s

are independent, ACF(m) shall be small for any lag m, which is
within the 95% confidence interval 1.96

(J−1)1/2 around 0.

3.9. EXPERIMENTAL PROTOCOL AND DATA
A total of 15 healthy volunteer subjects (mean age 24 ± 4), gave
written consent to participate in this study approved by the Mass-
achusetts General Hospital (MGH) Department of Anesthesia and
Critical Clinical Practices Committee, the MGH Human Research
Committee and the MGH General Clinical Research Center. Sub-
jects were evaluated with a detailed review of his/her medical
history, physical examination, electrocardiogram, chest X-ray, a
urine drug test, hearing test, and for female subjects, a pregnancy
test. Any subject whose medical evaluation did not allow him or
her to be classified as American Society of Anesthesiologists (ASA)
Physical Status I was excluded from the study. Other exclusion cri-
teria included neurological abnormalities, hearing impairment,
and use of either prescribed or recreational psychoactive drugs.
Intravenous and arterial lines were placed in each subject. Propofol
was infused intravenously using a previously validated computer
controlled delivery system running STANPUMP (a computer con-
trolled delivery system; Shafer et al., 1988) connected to a Harvard
22 syringe pump (Harvard Apparatus, Holliston, MA), using the
well-established pharmacokinetic and pharmacodynamic models
(Schnider et al., 1998, 1999). In Subject 1, five effect-site target
concentrations (0.0, 1.0, 2.0, 3.0, and 4.0 μg/ml) were each main-
tained for about 15 min respectively, where concentration level
0 corresponds to the conscious and wakefulness baseline. In the
remainder of subjects, an additional effect-site target concentra-
tion of 5.0 μg/ml was administered. Capnography, pulse oximetry,
ECG, and arterial blood pressure were monitored continuously by
an anesthesiologist team throughout the study. Bag-mask venti-
lation with 30% oxygen was administered as needed in the event
of propofol-induced apnea. Because propofol is a potent periph-
eral vasodilator, phenylephrine was administered intravenously to
maintain mean arterial blood pressure (ABP) within 20% of the
baseline value. ECG and ABP were recorded at a sampling rate of

1 kHz using a PowerLab ML795 data acquisition system (ADIn-
struments, Inc., Colorado Springs, CO). Four recordings (Subjects
#6, 11, 12, 14) were excluded for analysis either because the subjects
fell asleep during the experimental behavioral protocol or because
of poor quality of the data recordings.

4. RESULTS
Applications of the proposed point process framework to the
experimental data led to instantaneous assessment of HRV, RSA,
BRS, and of non-linearity of heartbeat dynamics in healthy sub-
jects under progressive stages of propofol anesthesia (Chen et al.,
2009b, 2010b, 2011a). All instantaneous indices are estimated
to accommodate the non-stationary nature of the experimen-
tal recordings. Overall, our observations have revealed interesting
dynamic trends across the experiment for individual subjects. Due
to the tutorial nature of the current article, only three subjects
(Subjects 5, 9, 15) are portrayed here for illustration purpose,
detailed group comparison statistics can be found in (Chen et al.,
2011a). The inverse Gaussian point process model for heartbeat
intervals is considered in all the examples reported here, and all
instantaneous indices are estimated using a point process filter
with 	 = 5 ms temporal resolution.

4.1. TRACKING EXAMPLES AND ESTIMATED INDEX STATISTICS
Figure 3 shows results from a subject (Subject 15) transitioning
from level 0 to level 3 (several time intervals are replaced by shaded
areas to appropriately portray all transitions of interest in one
panel). In this subject, HRV, RSA, and BRS progressively decrease
with increasing propofol administration, accompanied by a rel-
evant increase in linear cardiorespiratory coupling as a result of
dispensation of the first propofol bolus. Two sharp drops in BRS
(within the LF range) are also observed at the level 0 → 1 and 1 → 2
transitions upon increasing the target drug concentration level.
Meanwhile, RSA (within the HF range) also drops accordingly.
Interestingly, the ratio ρ (computed with RP as COV) increases
from level 0 to level 1 and then remains steady, suggesting that
the non-linearity at the HF range slightly decreases with propofol
administration. Table 2 shows a summary of the averaged statis-
tics of the estimated instantaneous indices of interest within levels
1–3 as compared with baseline (level 0).

In a second example, Figure 4 shows a different subject (Subject
9) where, after the initial propofol administration, phenylephrine
is administered to compensate a critical drop in blood pressure,
followed by artificial ventilation. In this case, a sharp decrease in
RSA is observed with anesthetic intervention, respiratory coupling
is then partly restored, but systolic BP progressively decreases to
critical levels, possibly due to baroreflex failure. After phenyle-
phrine is administered (∼2960 s), BRS and systolic BP slightly
recover, but fail to go back to baseline levels. During the period of
apnea, artificial ventilation reflects in RSA variability and acts to
restore HRV (as seen by the increase in σ HR), only partly succeed-
ing in raising BP levels via the feedforward pathway. Table 2 shows
a summary of the averaged statistics of the estimated instanta-
neous indices for levels 1–3 as compared with the baseline (level
0), accompanied by a portrayal of the instantaneous dynamics
observed within each level for the considered indices (Figure 5),
confirming the progressive decrease in HRV, RSA, and BRS, as
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FIGURE 3 |Tracking results of various instantaneous indices for Subject 15. Three transient periods (level 0 → 1, level 1 → 2, level 2 → 3) are shown (Chen
et al. (2011b), Proceedings of EMBC. Reprinted with permission, Copyright ©2011 IEEE).

Table 2 | Averaged statistics of the estimated instantaneous indices in the general anesthesia protocol (level 0–3 for two selected subjects).

μHR (bpm) σHR (bpm) RSA (a.u.) ρ BRS (mmHg/ms)

SUBJECT 15

Level 0 66.8 ± 4.5 4.41 ± 0.88 39.0 ± 2.9 0.89 ± 0.03 6.16 ± 2.96

Level 1 75.1 ± 3.0* 2.09 ± 0.48* 15.2 ± 0.5* 0.97 ± 0.01* 3.34 ± 0.41

Level 2 74.7 ± 2.9* 1.72 ± 0.43* 11.1 ± 0.5* 0.98 ± 0.01* 2.91 ± 0.62*

Level 3 61.8 ± 5.2 3.82 ± 0.83 8.7 ± 1.5* 0.82 ± 0.07 10.07 ± 0.65*

SUBJECT 9

Level 0 61.2 ± 5.8 3.19 ± 0.92 20.8 ± 1.7 0.88 ± 0.05 8.55 ± 3.24

Level 1 61.8 ± 2.7 2.25 ± 0.42 34.7 ± 1.5* 0.95 ± 0.01* 7.33 ± 1.26*

Level 2 64.3 ± 4.1 2.65 ± 1.01 21.6 ± 4.2 0.97 ± 0.01* 3.77 ± 0.64*

Level 3 67.1 ± 2.5* 1.94 ± 0.67 16.1 ± 0.85* 0.85 ± 0.06 3.28 ± 0.42*

The ρ index here was computed based on the respiratory measure as covariate. RSA and ρ are computed in the HF range (0.15-min {0.5, 0.5/RR} Hz), while BRS

is computed in the LF range (0.04–0.15 Hz). RSA has an arbitrary unit since the recorded respiratory signal was non-calibrated. ∗Significant p < 0.05 by pairwise

rank-sum test (compared to level 0).

well as the linear cardiorespiratory coupling increase in the first
two levels of propofol anesthesia.

In addition, for pairwise comparison we also compute the mean
statistic (averaged over time in each epoch) of all instantaneous
indices during level 0 and level 1 drug concentrations for all 11
subjects. Figure 6 show the scatter plots for the mean HR, HRV,
and BRS (LF range) values. More details can also be found in
(Chen et al., 2011a).

4.2. EXAMPLE OF APPLYING THE ARIMA MODEL
Next, we illustrate how the use of ARIMA modeling (Section
3.7) can improve identification in the presence of highly

non-stationary scenarios. The left panels of Figure 7 show the raw
R-R interval series and systolic BP series are shown. In the con-
sidered subject (Subject 5), the systolic BP series has a decreasing
trend (dropping from around 160–130 mmHg) within about 150 s,
showing a high degree of non-stationarity (with a decreasing mean
statistic along time). In contrast, the first-order difference series
δRR and δSBP are stationary and have steady zero mean along
time. As expected, modeling the mean heartbeat interval using
equation (19) is more desirable than using equation (8). To verify
our hypothesis, we have used the same model order (p = q = 8)
for these two equations, and applied the point process model to
fit the observed R-R and systolic BP series. The goodness-of-fit
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FIGURE 4 |Tracking results of various instantaneous indices for

Subject 9. The two dashed lines (∼2010 and ∼3000 s) mark the
drug concentration level 0 → 1 (i.e., propofol administration onset
time) and level 1 → 2, respectively. The dotted dashed line (∼2960 s)

marks the time when phenylephrine was administered; and the
dotted line (∼3125 s) marks the time of hand ventilation (Chen et al.
(2011b), Proceedings of EMBC. Reprinted with permission,
Copyright ©2011 IEEE).

FIGURE 5 | Comparison of the estimated instantaneous indices from four drug concentration levels (0–3) for Subject 9. Note that at each row, the
vertical axes at all four panels have the same scale.

assessment shows that the ARIMA modeling improves the model
fit with decreasing KS distance (from 0.0893 to 0.0513) in the KS

test. Figure 8 shows the KS plot (including the KS statistic compar-
ison) and the autocorrelation plot based on the ARIMA modeling.
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The fact that the curves fall within the 95% confidence intervals in
both the KS and the autocorrelation plots indicates a good model
description of the point process heartbeat events.

4.3. SENSITIVITY ANALYSIS
Finally, we perform sensitivity analysis to test the robustness of
the proposed point process approach and the choice of parame-
ters. Two issues are examined here. One is the choice of probability
distribution (the inverse Gaussian against the Gaussian distribu-
tion) used for the R-R intervals. The other is the choice of the
parameters used in the model and the point process filter.

To illustrate the first issue, we select the raw R-R intervals from
one epoch at the level 0 drug concentration. Under the same point
process framework, we fit the data with both the inverse Gaussian
and Gaussian distributions for the inter-event intervals. Upon fit-
ting the data, we compare their corresponding KS statistics. From
the empirical data histogram (Figure 9A), it can be noticed that
the distribution of the R-R intervals is asymmetric and slightly
skewed (with a longer tail at the high value range). The Q-Q plot
analysis also confirms that the inverse Gaussian distribution pro-
vides a better fit for the data (Figures 9C,D). As expected, the

FIGURE 6 | Scatter plots of the mean statistic (averaged over time in

each epoch) of instantaneous HR, HRV, and BRS (LF range) indices

during level 0 and level 1 drug concentrations for all 11 subjects. The
dashed diagonal indicates a 45˚ line.

final KS statistic improves by using the inverse Gaussian (KS dis-
tance: 0.0562) rather than the Gaussian distribution (KS distance:
0.0719).In this case, although the fitted results from two models
are very similar, only the inverse Gaussian model passes the KS
test, i.e., its KS plot completely falls within the 95% confidence
interval (Figure 9E).

To illustrate the second issue of parameter estimation, the AR-
type model parameters are initialized based on a subset of the same
data used in Figure 9A at the start of the recordings. The data sam-
ple size used for initialization varies between 100, 200, and 300 (the
time duration varies depending on the HR). The noise covariance
matrix W in the filtering equation determines the level of parame-
ter fluctuation at the every time step of 	 = 5 ms. For simplicity,
we select different scale levels for the elements of W related to
the AR parameters, on the order of 10−6, 10−7, and 10−8. Using
the inverse Gaussian model, we compare the fitting KS statistic
values under various parameter initialization setups and show the
comparative result in Figure 9F. As seen, under a wide range of
parameter choices, the fitted results are rather robust. The robust-
ness of the performance can be ascribed to the flexibility of the
random-walk model and to the fact that the tracking performance
is insensitive to the exact value of the noise covariance matrix.
Nevertheless, too large error covariance values will induce insta-
bility in the filtering operation, and cause unsatisfactory tracking
performances. Finding an optimal range of the noise covariance
matrix often involves a trial-and-error process based on a subset
of the available recordings.

5. DISCUSSION
Dynamic assessment of cardiovascular control is of fundamen-
tal importance to monitor physiological states that may change
dramatically in very short time intervals. We have devised a uni-
fied point process probabilistic framework to assess heartbeat
dynamics and autonomic cardiovascular control by using the
heartbeat interval occurrences extracted from ECG recordings,
together with other cardiovascular measures such as ABP and

FIGURE 7 | Experimental R-R interval series and systolic BP (SBP)

series (left panels) from one recording epochs during level 1

propofol concentration. Their corresponding incremental series are also

shown at the right panels. The raw SBP series has a decreasing trend
(Chen et al. (2010b), Proceedings of EMBC. Reprinted with permission,
Copyright ©2010 IEEE).
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FIGURE 8 |The estimated instantaneous indices from the data of

Subject 5 (level 1 epoch) and the associated KS plot (left) and the

autocorrelation plot (right). The KS statistic is improved from 0.0893
(standard model, red curve) to 0.0513 (ARIMA model, blue curve; Chen
et al. (2010b), Proceedings of EMBC. Reprinted with permission, Copyright
©2010 IEEE).

FIGURE 9 | (A) Histogram of the R-R intervals from one selected epoch. (B)

Maximum-likelihood-fitted Gaussian and inverse Gaussian distributions for
the R-R intervals. (C,D) Q-Q plots for the Gaussian and inverse Gaussian
distribution, respectively. (E) Comparative KS plots of point process model
assessment using the inverse Gaussian and Gaussian distributions. (F)

Comparison of KS statistics with different parameter initialization setups.

respiration. The proposed point process framework enables us
to estimate instantaneous heartbeat dynamics (HR and HRV) as
well as other cardiovascular functions (BRS and RSA) at fine tem-
poral resolution. The Wiener-Volterra series expansion allows to
model the instantaneous heartbeat interval based on the previ-
ously observed R-R intervals and selected cardiovascular covari-
ates. The online estimation (adaptive point process filter or local
likelihood method) allows us to track the fast transient dynamics of
the indices. Currently, the model parameters are initialized based
on small subset of recordings, and then allowed to be adapted

based on an online estimation method. In the presence of high
non-stationarity (e.g., baseline shift due to drugs or other effects),
special attention is required in both modeling (such as using the
ARIMA model) and parameter initialization (such as reinitializing
the parameters based on observed informative markers).

Some limitations of our approach are worth mentioning. Cur-
rently, we are using the inverse Gaussian distribution for modeling
the random heartbeat intervals. The inverse Gaussian distribution
is a good candidate since it is more robust in modeling outliers due
to its long-tailed behavior. However, just like many asymmetric
long-tailed distributions (e.g., lognormal), the inverse Gaussian
distribution can only capture outliers in the high value range
(i.e., the long tail lies in the high percentile of the distribution).
Therefore, it is insufficient to characterize potential outliers in the
low-value range (i.e., outliers’ values smaller than the mean statis-
tic). Another limitation of the current approach is that we have not
separated the influences of blood pressure from that of respiration
on HRV, which could produce some estimation bias for both BRS
and RSA due to simplification of our model. How to integrate
these physiological covariates all together still remains the subject
of future investigation. One possibility is to consider a trivariate
model. Another possibility is to incorporate a continuous-valued
latent input that modulates μRR(t ) within the point process model,
and might account for the non-modeled physiological effect; in the
maximum likelihood framework, for example, the latent variable
can be inferred using an EM algorithm (Smith and Brown, 2003).

In applying the proposed point process framework to physi-
ological data under a general anesthesia protocol, our outcomes
have revealed important dynamics involved with procedures of
induction of anesthesia. The study of transient periods due to
pharmacological and physical intervention has demonstrated the
capacity of the point process filter to quickly capture fast physio-
logical changes within the cardiovascular system. For example, sig-
nificant sudden variations in the instantaneous BRS in coincidence
with interventional maneuvers suggests that baroreflex responses
are supposedly triggered by sharp disturbances affecting the con-
trol system, whereas the clear reduction of BRS in correspondence
to increasing induction of anesthesia might suggest that barore-
flex responses are reset with propofol to control HR at a lower BP,
and that BRS further decreases after administration as a result. The
shift in the HR/BP set point may also reflect the propofol’s systemic
vasodilatory effect, whereas baroreflex impairment is most likely
the result of disruption of cardiac control within the central ner-
vous system. The instantaneous indices associated with respiration
further suggest that RSA gradually decreases from baseline after
administration of propofol anesthesia, that RSA is generally sup-
pressed by phenylephrine, and that the linear interactions within
cardiorespiratory control remain stable or increase (Chen et al.,
2009b). Specifically, RSA is likely to be mediated by withdrawal of
vagal efferent activity resulting from either baroreflex response to
spontaneous BP fluctuations, or respiratory gating of central arter-
ial baroreceptor and chemoreceptor afferent inputs. From baseline
to Level 1 we also observed an increase of non-linearity in the
bilinear interactions between RR and systolic BP, accompanied
by a significant decrease in linear coherence between these two
series (Chen et al., 2011a). This seems to indicate that the non-
linear component of the heartbeat dynamics during anesthesia is
mainly generated from the cardiovascular (baroreflex) loop, with a
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more stable linear interaction maintained within cardiorespiratory
coupling. It is also possible that the respiratory system indirectly
influences HR by modulating the baroreceptor and chemoreceptor
input to cardiac vagal neurons although, as in every cardiovascular
system identification study, it is difficult to disentangle the separate
influence of BP from the influence of respiration on HRV.

In light of these promising results, future directions of our
research are aimed at further development and integration of a set
of algorithms to preprocess the recorded signals prior to applica-
tion of the modeling framework, to perform a robust and auto-
mated classification and correction of ECG-derived heartbeats,
and to achieve an automatic determination procedure for tuning
and initialization of the model parameters, with the final goal to
devise a monitoring tool for real-time cardiovascular assessment.

CONCLUSION
In conclusion, we have appraised a comprehensive point process
probabilistic framework to simultaneously assess linear and non-
linear indices of HRV, together with important cardiovascu-
lar functions of interest. To date, the proposed point process
framework has been successfully applied to a wide range of exper-
imental protocols (Barbieri et al., 2005; Barbieri and Brown,

2006; Chen et al., 2009a, 2010a, 2011a; Kodituwakku et al., 2012).
Although all of data analyses have been done in off-line laboratory
settings, all of the developed statistical models pose a solid basis for
devising a real-time quantitative tool to bestow vital indicators for
ambulatory monitoring in clinical practice. Particularly in general
anesthesia settings, the proposed instantaneous indices may pro-
vide a valuable quantitative assessment of the interaction between
heartbeat dynamics and hemodynamics during general anesthe-
sia, and they could be monitored intraoperatively in order to
improve drug administration and reduce side-effects of anesthetic
drugs.
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