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Remote ischemic conditioning (RIC) is a therapeutic strategy for protecting organs or tissue
against the detrimental effects of acute ischemia-reperfusion injury (IRI). It describes an
endogenous phenomenon in which the application of one or more brief cycles of non-lethal
ischemia and reperfusion to an organ or tissue protects a remote organ or tissue from a
sustained episode of lethal IRI. Although RIC protection was first demonstrated to protect
the heart against acute myocardial infarction, its beneficial effects are also seen in other
organs (lung, liver, kidney, intestine, brain) and tissues (skeletal muscle) subjected to acute
IRI. The recent discovery that RIC can be induced non-invasively by simply inflating and
deflating a standard blood pressure cuff placed on the upper arm or leg, has facilitated its
translation into the clinical setting, where it has been reported to be beneficial in a variety
of cardiac scenarios. In this review article we provide an overview of RIC, the potential
underlying mechanisms, and its potential as a novel therapeutic strategy for protecting the
heart and other organs from acute IRI.
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INTRODUCTION
Coronary heart disease (CHD) is the leading cause of morbidity
and mortality worldwide (Lloyd-Jones et al., 2009). Despite opti-
mal therapy, patients with CHD still suffer significant morbidity
and mortality. As such, novel therapeutic strategies for protect-
ing the heart against the detrimental effects of acute ischemia-
reperfusion injury (IRI), the major pathological consequence of
CHD, are required to improve clinical outcomes in patients with
CHD.

In this regard, the phenomenon of ischemic conditioning may
provide an endogenous strategy for protecting the heart against
acute IRI. Murry et al. (1986) first described the phenomenon
of ischemic preconditioning (IPC) in which the application of
brief cycles of non-lethal ischemia and reperfusion to the heart
reduced subsequent myocardial infarct size in the canine heart.
The drawback of this therapeutic strategy is the requirement
for the intervention to be applied prior to the index ischemic
event, which in the case of an acute myocardial infarction (MI)
is impossible to predict. However, the introduction of ischemic
postconditioning in 2003 (Zhao et al., 2003), a phenomenon in
which the process of myocardial reperfusion is interrupted by sev-
eral short-lived episodes of ischemia, overcomes this problem, and
can be applied at the onset of myocardial reperfusion in patients
presenting with an acute MI. However, both IPC and ischemic
postconditioning require an intervention to be applied to the heart
directly which may not be feasible in all clinical settings. In this
regard, remote ischemic conditioning (RIC) may provide a non-
invasive endogenous therapeutic strategy for protecting the heart
against acute IRI.

Remote ischemic conditioning describes the cardioprotective
effect elicited from applying one or cycles of non-lethal ischemia-
reperfusion to an organ or tissue remote from the heart. It was

originally described by Przyklenk et al. (1993), who demonstrated
that the application of brief occlusions and reperfusion of the cir-
cumflex coronary artery dramatically reduced the size of the MI
arising from a sustained occlusion of the left anterior descending
coronary artery. This form of intramyocardial cardioprotection
across coronary territories was then extended beyond the heart
such that the latter could be protected by applying the RIC stim-
ulus to organs and tissues remote from the heart (Kanoria et al.,
2007; Hausenloy and Yellon, 2008; Tapuria et al., 2008; Candilio
et al., 2011). Furthermore, experimental studies found that it was
possible to protect non-cardiac organs and tissues from acute IRI.
As such RIC represents a form of systemic protection against acute
IRI, which has been recently translated into the clinical setting,
with the discovery that the RIC stimulus could be non-invasively
induced using a standard blood pressure cuff placed on the upper
arm or leg (Kharbanda et al., 2002). Crucially, the timing of the
RIC stimulus can accommodate most clinical settings of acute
IRI, as it has been reported to protect the organ or tissue whether
applied prior to (termed remote ischemic preconditioning, RIPC;
Przyklenk et al., 1993), after the onset of ischemia (termed remote
ischemic perconditioning; Schmidt et al., 2007), or even at the
time of reperfusion (termed remote ischemic postconditioning,
RIPost; Kerendi et al., 2005; Figure 1). This review article provides
an overview of RIC as a protective phenomenon, the underlying
mechanisms and its recent translation into the clinical arena.

APPLYING THE REMOTE ISCHEMIC CONDITIONING
STIMULUS
The original experimental study describing RIC demonstrated
intramyocardial cardioprotection across different coronary artery
territories (Przyklenk et al., 1993). However, soon after this dis-
covery it was demonstrated that the heart could be protected by a
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FIGURE 1 |The timing and the potential mechanisms underlying

remote ischemic conditioning (RIC). The RIC stimulus can be applied
prior to ischemia (preconditioning), after the onset of ischemia
(perconditioning), or at the time of reperfusion (postconditioning). A variety
of intracellular signaling mediators have been implicated in the protective
effect of RIC. Three main mechanisms for transmitting the protective signal
from the organ or tissue, in which the RIC stimulus is applied, to the target
organ or tissue (these are not mutually exclusive): (1) neural pathway, (2)
the release of circulating humoral factor(s), and (3) activation of a systemic
protective effect (such as an anti-apoptotic or anti-inflammatory response).

RIC stimulus applied to an organ remote from the heart such as
the kidney (McClanahan et al., 1993).

KIDNEY
McClanahan et al. (1993) demonstrated for the first time that
a brief period of renal ischemia and reperfusion induced by
renal artery occlusion and reflow significantly reduced myocar-
dial infarct size in the rabbit. It is of interest that Gho et al.
(1996) subsequently showed that 15 min of renal artery occlu-
sion followed by 10 min of reperfusion reduced myocardial IRI in
rats under hypothermic conditions but not normothermic condi-
tions. Similar findings were also demonstrated in a pig model of
acute myocardial IRI by the same research group (Verdouw et al.,
1996). These findings suggest that remote renal precondition-
ing may be temperature-sensitive, an observation that warrants
further investigation. Subsequent mechanistic studies have impli-
cated the involvement of adenosine (Pell et al., 1998; Takaoka
et al., 1999), ATP-sensitive potassium channels (KATP) channels
(Pell et al., 1998; Diwan et al., 2008b), angiotensin A1 receptors
(Singh and Chopra, 2004), erythropoietin (Diwan et al., 2008b),
NFκB (Diwan et al., 2008b; Kant et al., 2008), hypoxia-inducible
factor (Kant et al., 2008), PPARα and γ (Lotz et al., 2011) in medi-
ating the protective effect of remote renal preconditioning (see
Mechanisms Underlying RIC).

SMALL INTESTINE
Gho et al. (1996) first demonstrated that a 15-min occlusion of the
anterior mesenteric artery could limit MI size in a rat model of IRI,
a finding which was confirmed in a recent study (Tapuria et al.,
2008). Unlike RIC induced by brief renal ischemia, the experimen-
tal study performed by Verdouw et al. (1996) found that 15 min of

mesenteric ischemia followed by 10 min of reperfusion protected
the pig heart from subsequent IRI under both normothermic and
hypothermic conditions. Heidbreder et al. (2008) linked the car-
dioprotective effect of remote intestinal preconditioning to the
activation of p38 MAPK, ERK1/2, and JNK1/2 within the intesti-
nal tissue but not the heart. This result may suggest the activation
of local, but not the target organ, MAPK proteins to be an essen-
tial event for remote intestinal preconditioning (Heidbreder et al.,
2008). Pro-survival kinase activation within the heart in response
to remote organ preconditioning has been reported in several
recent studies (see Mechanisms Underlying RIC).

LIVER
A few experimental studies have investigated the liver as a site for
applying a RIC stimulus. Ates et al. (2002) first showed that 10 min
of hepatic ischemia followed by 10 min of reperfusion could ren-
der the kidney resistant to subsequent IRI. Similarly, RIC induced
by occlusion and reflow of the common hepatic artery and portal
vein was demonstrated to attenuate gastric mucosal lesion induced
by prolonged IRI, a protective effect which appeared to be medi-
ated by the cyclooxygenase pathway and the activation of sensory
afferent nerves (Brzozowski et al., 2004a). In addition to sensory
nerves, Brzozowski et al. (2004b) also demonstrated that the pro-
tection induced by RIC of liver was attenuated in vagotomized rats
suggesting an important role of vagal nerves in the brain–gut axis.
Moreover, the gastroprotection afforded by RIC of liver was shown
to be comparable to those induced by RIC of the myocardium and
the direct stomach IPC (Brzozowski et al., 2004a,b).

BRAIN
As a vital organ that is susceptible to ischemic injury, the brain is
not the most suitable choice as a site for applying a RIC stimulus.
An early porcine study showed that 10 or 30 min of brain ischemia
with reperfusion, induced by elevating the intracranial pressure,
did not protect the heart from subsequent acute myocardial IRI
(de Zeeuw et al., 2001). On the contrary,Valen’s group showed that
sustained brain ischemia (without reperfusion) induced by bilat-
eral internal carotid permanent ligation effectively reduced MI and
improved cardiac function in mice (Tokuno et al., 2002; Schulte
et al., 2004). Although the reason for this discrepancy remains
unclear, the differences in animal species, degree of ischemic stim-
ulus, and type of brain ischemia may explain these contradictory
results. It is interesting that this is one of the first experimen-
tal studies to demonstrate protection elicited with an episode of
ischemia alone in the absence of reperfusion.

LIMB
The above experimental studies were dependent on the RIC stim-
ulus being invasively applied to a non-cardiac organ. However, the
clinical application of RIC would require a less invasive method
for applying the RIC stimulus. In this regard, Birnbaum et al.
(1997) made the critical observation that briefly restricting blood
flow to skeletal muscle of the lower limb and pacing the gastroc-
nemius leg muscle prior to an acute coronary artery occlusion
was able to reduce the subsequent myocardial infarct size by 65%
in the rabbit heart. A less invasive method of inducing hindlimb
ischemia as a RIC stimulus was described by Oxman et al. (1997)
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who demonstrated that applying a tourniquet to the hindlimb to
induce 10 min of limb ischemia reduced reperfusion arrhythmias
in a rat heart following a sustained ischemic insult. Since then, a
number of experimental studies have confirmed the use of lower
limb as a site for applying an RIC stimulus given it ease of access
and the fact that it can be applied using a simple tourniquet. In
general, limb RIC can be achieved by either tourniquet applica-
tion to the limb or direct occlusion of the femoral artery, and has
been shown to be effective and reproducible in reducing injury of
other organ in both animals and human (Tapuria et al., 2008). The
ability to induce RIC using limb ischemia and reperfusion facili-
tated the translation of RIC into the clinical setting (see Clinical
Application).

THE TARGETS OF REMOTE ISCHEMIC CONDITIONING
HEART
The cytoprotective phenomenon of RIC was first described in the
heart by Przyklenk et al. (1993) and has since been extended
to other organs and tissues (Kanoria et al., 2007; Hausenloy
and Yellon, 2008; Tapuria et al., 2008). The cardioprotective end
points conferred by RIC include infarct size reduction, improve-
ment of ATP recovery post-ischemia (Takaoka et al., 1999), anti-
arrhythmia (Oxman et al., 1997), and improvement of ventricular
contractile function (Kharbanda et al., 2002). The mechanisms
underlying the cardioprotective effect of RIC involve multiple
intricate endogenous signaling pathways (see Mechanisms Under-
lying RIC for detail). In brief, pre-clinical studies have provided
first evidence to implicate the activation of adenosine (Pell et al.,
1998), bradykinin-2 (Schoemaker and van Heijningen, 2000), opi-
oid (Patel et al., 2002), angiotensin-1 (Singh and Chopra, 2004),
and CB2 endocannabinoid (Hajrasouliha et al., 2008) receptors,
opening of KATP channels (Pell et al., 1998), calcitonin gene-related
peptide (CGRP; Tang et al., 1999), signaling reactive oxygen species
(Weinbrenner et al., 2004), noradrenaline (Oxman et al., 1997),
nitric oxide (Wang et al., 2001), and heat shock proteins (HSPs;
Tanaka et al., 1998).

BRAIN
Stroke as a result of cerebral ischemia or intracranial hemorrhage
is the second leading cause of mortality and disability worldwide.
An elegant study by Jensen et al. (2011) found that RIPC of the
limb reduced brain edema, hemorrhage, and neuronal damage
caused by hypothermic circulatory arrest in pig, and these ben-
eficial effects were associated with significant improvement of
neurological function. In a rat model of focal cerebral ischemia,
neuroprotection was also evident in animals subjected to either
RIPC (Ren et al., 2008) or RIPost (Ren et al., 2009) of the limb.

KIDNEY
Acute kidney injury due to acute IRI is a frequent cause of morbid-
ity and mortality following a number of medical conditions and
operative procedures. Renoprotection by RIC was first demon-
strated by Ates et al. (2002) who showed that brief liver ischemia
significantly reduced the biochemical (TNFα and tissue thiobar-
bituric acid-reactive substances) and histopathological markers of
renal ischemic injury. Similar renoprotection was reported using
limb ischemia, induced by brief infrarenal artery occlusion, as the

RIC stimulus (Lazaris et al., 2009). This is in agreement with a
recent study which reported renoprotection by remote limb pre-
conditioning via an adenosine-independent mechanism (Wever
et al., 2011). Interestingly, the author also showed that bilateral
RIPC was more effective than unilateral RIPC in reducing kidney
injury suggesting that the threshold of protection may be deter-
mined by the volume/mass of conditioned tissue (Wever et al.,
2011).

LIVER AND PANCREAS
Remote ischemic conditioning also has the potential to protect
the liver from IRI. In animal model of hepatic IRI, limb RIC has
been shown to reduce liver injury by improving hepatic blood
flow, reducing serum aminotransferase levels, maintaining mean
arterial pressure, and reducing neutrophil adhesion and cell death
(Kanoria et al., 2006; Tapuria et al., 2009). Subsequent mechanistic
studies have implicated heme oxygenase-1 (HO-1; Lai et al., 2006;
Tapuria et al., 2009), nitric oxide (Abu-Amara et al., 2011a), and
eNOS (Abu-Amara et al., 2011b) as the potential mediators of RIC-
induced liver protection. Peralta et al. (2001) have demonstrated
that brief hepatic ischemia resulted in less neutrophil infiltration,
less oxidative damage, and reduced vascular leakage in the pan-
creas following hepatic IRI, possibly by suppressing systemic TNFα

release from the liver, and thus preventing adhesion molecule
P-selectin upregulation. This finding may suggest a therapeutic
potential of RIC in pancreatic diseases such as pancreatitis.

LUNG
During coronary artery bypass graft surgery the lung is subjected
to acute IRI, a scenario which can be reproduced experimentally
by repeated coronary artery occlusion and reperfusion to induce
pulmonary IRI. Using this experimental model, Xia et al. (2003)
showed that RIC of the limb preserved lung function in sheep.
Furthermore, RIC also reduced lung damage following liver IRI
(Peralta et al., 2001) or liver transplantation (Fernandez et al.,
2002). More recently, RIPC through intermittent limb ischemia
has also been reported to mitigate lung injury (inflammation,
oxidative stress, leukocyte infiltration, edema) resulting from hem-
orrhagic shock and resuscitation via a HO-1 dependent manner
(Jan et al., 2011). In addition to these secondary lung injuries, RIC
can also protect lung from direct IRI as determined by improved
lung function and oxygenation capacity, and reduced pulmonary
hypertension (Waldow et al., 2005).

GASTROINTESTINAL TRACT
Remote ischemic conditioning induced gastroprotection was first
illustrated by Brzozowski et al. (2004a) using a rat model of gas-
tric IRI. The authors showed that RIC applied to the heart or
liver significantly reduced gastric mucosal lesions, improved gas-
tric blood flow, increased mucosal prostaglandin E2 production,
and suppressed plasma proinflammatory cytokines (IL-1β and
TNFα) levels (Brzozowski et al., 2004a,b). Furthermore, Dickson
et al. (2002) have demonstrated that coronary effluent of ischemic
preconditioned rabbit hearts contained humoral factor(s) that
improved jejunum resistance to ischemic injury through the acti-
vation of opioid receptors and opening of KATP channels. Others
have shown that RIC also reduced intestinal injury resulting from
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hepatic IRI (Peralta et al., 2001) and anastomotic insufficiency
(Holzner et al., 2011).

SKELETAL MUSCLE AND SKIN FLAP
Several experimental studies have demonstrated the cytoprotective
effect of RIC on muscle flaps. Pre-clinical studies have illustrated
a protective effect of RIC against tissue necrosis of epigastric
adipocutaneous flaps (Kuntscher et al., 2003a,b) and skeletal mus-
cles such as cremaster (Kuntscher et al., 2002, 2003b; Wang et al.,
2004), gastrocnemius (Eberlin et al., 2009), latissimus dorsi, gra-
cilis, and rectus abdominis muscle flaps (Addison et al., 2003;
Moses et al., 2005). The protection was demonstrated to be associ-
ated with improved microcirculation and endothelium function,
reduced leukocyte adhesion and accumulation, and preserved ATP
content (Addison et al., 2003; Kuntscher et al., 2003b; Wang et al.,
2004).

MECHANISMS UNDERLYING RIC
A better understanding of the cellular and molecular mecha-
nisms underlying RIC may allow us to exploit the protective
effect pharmacologically. In general, the mechanisms underlying
the phenomenon of RIC can be considered as three inter-related
events (Kanoria et al., 2007; Hausenloy and Yellon, 2008; Tapuria
et al., 2008): (1) the initial events occurring in the remote organ
or tissue in response to the RIC stimulus. The application of brief
episodes of IR to the remote organ or tissue is believed to gen-
erate endogenous autocoids or factors which can protect target
organ or tissue from injury. (2) The protective signal which is
conveyed from the remote organ or tissue to the target organ or
tissue. The transmission of the protective signal may be multi-
factoral comprising blood-borne factor(s), neuronal mechanisms,
and/or systemic responses. (3) The events occurring in the target
organ or tissue which confer the protective effect.

The intracellular signaling pathways recruited in the organ or
tissue in which the RIC stimulus is applied and the target organ
or tissue which has been protected are presumed to be similar
to those recruited in direct IPC and ischemic postconditioning.
There are a number of different signaling mediators including
G-protein cell surface coupled receptors (adenosine, bradykinin,
opioids, angiotensin), PKC, reactive oxygen species, nitric oxide,
Akt, Erk1/2, p38 MAPK, and STAT5 (Hausenloy and Yellon, 2008;
Heusch et al., 2012; Figure 1).

NEURONAL PATHWAY
Several experimental studies have implicated a neuronal path-
way as mediating the connection between the remote conditioned
organ or tissue to the protected organ and tissue (Hausenloy and
Yellon, 2008). Evidence for the involvement of the autonomic
nervous system are derived from studies using ganglion blockers
[hexamethonium (Gho et al., 1996; Schoemaker and van Heijnin-
gen, 2000; Liem et al., 2002; Wolfrum et al., 2002) and trimetaphan
(Loukogeorgakis et al., 2005)] to inhibit the protective effect of
RIC. Others have implicated the neuronal pathway by demon-
strating the loss of RIC protection in animals subjected to nerve
resection (Ding et al., 2001; Dong et al., 2004; Lim et al., 2010) and
vagotomy (Brzozowski et al., 2004b). We have recently reported
that in the murine model of remote limb preconditioning the

neural pathway can be divided into separate components served
by the femoral and the sciatic nerves, as resection of either of
these nerves alone only partially blocked the protection (Lim et al.,
2010).

The current understanding of the neuronal pathway involves
the release of endogenous autocoids, including neuropeptides such
as CGRP (Tang et al., 1999; Xiao et al., 2001; Brzozowski et al.,
2004a), adenosine (Ding et al., 2001; Liem et al., 2002; Dong et al.,
2004), and bradykinin (Schoemaker and van Heijningen, 2000),
from the remotely conditioned organ or tissue to activate local
afferent nerves which then stimulate efferent nerves that terminate
at the remote organ and tissue to mediate protection. Numerous
studies have further implicated sensory C-fibers as the essential
first leg of neurotransmission since RIC-induced protection can
be abrogated when subjects were pre-treated with capsaicin to
deactivate the afferent sensory nerves (Tang et al., 1999; Xiao et al.,
2001; Brzozowski et al., 2004a).

HUMORAL PATHWAY
A blood-borne factor conveying the cardioprotective signal from
the remote organ or tissue has been supported by two main
observations: (1) coronary effluent from the ischemic condi-
tioned heart (Dickson et al., 1999a, 2001) or blood from the
conditioned animal (Dickson et al., 1999b) can protect a naive
recipient heart from IRI, suggesting the transfer of protective
humoral factor(s); and (2) a period of reperfusion of the remote
conditioned organ was required for protection suggesting that pro-
tective stimulus required wash-out of a protective blood-borne
humoral factor(s) generated in the conditioned site and trans-
ported throughout the circulation (McClanahan et al., 1993; Gho
et al., 1996; Weinbrenner et al., 2002).

Activation of adenosine (Pell et al., 1998; Takaoka et al., 1999;
Kerendi et al., 2005; Tsubota et al., 2010), bradykinin-2 (Wol-
frum et al., 2002), opioids (Dickson et al., 2001, 2002; Patel et al.,
2002; Weinbrenner et al., 2004; Zhou et al., 2011), erythropoietin
(Diwan et al., 2008a,b), CB2 endocannabinoid (Hajrasouliha et al.,
2008), angiotensin-1 (Singh and Chopra, 2004), and prostaglandin
(Brzozowski et al., 2004a) receptors and the associated signaling
pathways has been implicated in mediating the protective effect of
RIC. However, whether they constitute the endogenous substances
that are generated in the remote conditioned organ or tissue
and being transported to the injured organ target through blood
circulation remains unknown. Although the actual identity of cir-
culating humoral factors remains unknown, an elegant study by
Shimizu et al. (2009) has identified the cardioprotective humoral
factors, generated in response to RIPC of limb, to be hydropho-
bic and <15 kDa in size. Serejo et al. (2007) showed that the
humoral factors released from the ischemic preconditioned heart
were thermolabile, hydrophobic, and >3.5 kDa, which cardiopro-
tect via PKC activation. Similarly, Breivik et al. (2011) reported
that coronary IPC effluent contained hydrophobic cytoprotective
factors with molecular mass of <30 kDa, which conferred cardio-
protection via PI3K/Akt pathway when administered either as a
preconditioning or postconditioning mimetic. An early proteomic
study of renal RIC in rats did not detect any supported protective
factors with molecular mass of >8 kDa (Lang et al., 2006). Taken
together, the humoral factors are likely to be hydrophobic with a
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molecular mass between 3.5 and 8 kDa. Why the identification of
the humoral factor(s) continues to elude investigators thus far is
unclear.

SYSTEMIC RESPONSE
Remote ischemic conditioning has been shown to provoke a
systemic protective response involving modulation of immune
cells either at post-translational level or through transcriptional
regulation (Saxena et al., 2010). Microarray analysis of blood
samples obtained from healthy human volunteers subjected to
brief forearm ischemia revealed suppression of proinflamma-
tory genes encoding proteins involve in leukocyte chemotaxis,
adhesion, migration, and exocytosis, as well as innate immu-
nity responses, cytokine synthesis, and apoptosis. On the other
hand, anti-inflammatory genes such HSP 70 and calpastatin were
upregulated (Konstantinov et al., 2004). The changes of this gene
expression profile were later found to be correlated with functional
changes in human leukocytes, an effect last up to 10 days after
RIPC (Shimizu et al., 2010). This finding was in agreement with
a previous study reported that RIPC of forearm reduced expres-
sion of neutrophil CD11b and platelet–neutrophil complexes in
human volunteers (Kharbanda et al., 2001). IPC of liver has also
been shown to attenuate increased in P-selectin expression and
neutrophil infiltration in multiple remote organs (including lung,
stomach, pancreas, small intestine, and colon) through inhibition
of systemic TNFα production (Peralta et al., 2001). Subsequent
studies in mice also showed upregulation of genes associated
with cytoprotection, growth and metabolism, DNA repair, and
redox regulation by RIPC of the limb (Konstantinov et al., 2005a)
and mesenteric (Huda et al., 2005). Furthermore, Li et al. (2004)
demonstrated that delayed RIPC-induced cardioprotection was
abrogated in mice with deficient in transcription factor NFκB
p105 subunit supporting the important role of gene transcription
in mediating the protective effect of RIC.

NOVEL CONCEPTS IN REMOTE ISCHEMIC CONDITIONING
DELAYED REMOTE ISCHEMIC PRECONDITIONING
Similar to IPC, there are two phases of RIPC: early RIPC results in
acute protection through post-translational protein modification,

and delayed RIPC providing second phase of prolonged protection
against ischemic injury (Table 1). An elegant temporal charac-
teristic study by Moses et al. (2005) has demonstrated that the
therapeutic time window of delayed RIPC is similar to conven-
tional IPC, i.e., from 24 h and lasting for up to 72 h. Interestingly,
a recent study in rat focal cerebral ischemia has shown that the
delayed protection of RIPC can be initiated as early as 12 h after
stimulus, narrowing the gap between the early and delayed pro-
tection (Ren et al., 2008). Several studies have implicated iNOS
as one of the mechanism underlying the delayed RIPC (Wang
et al., 2001; Xiao et al., 2001; Tokuno et al., 2002; Li et al., 2004).
Other potential mechanisms include α-CGRP (Tang et al., 1999;
Xiao et al., 2001; Hu et al., 2002), sarcolemmal KATP channels
(Moses et al., 2005), mitochondria KATP channels (Moses et al.,
2005; Wu et al., 2011), and antioxidant MnSOD (Yuan et al.,
2010; Wu et al., 2011). Using a knock-out model, Schulte et al.
(2004) have shown that adenosine A1 receptor is essential for the
delayed cardioprotection induced by permanent bilateral ligation
of the internal carotid arteries. However, this delayed protection
may not be considered as a “true” preconditioning because it was
not produced by the conventional protocol of brief ischemia and
reperfusion.

DELAYED REMOTE ISCHEMIC POSTCONDITIONING
Previous studies have suggested that reperfusion-induced inflam-
matory responses occur not only at the early phase of reperfusion,
but also extend to prolonged reperfusion (Boyle et al., 1997). Sim-
ilarly, Zhao et al. (2000, 2001) have demonstrated a progressive
increase in the extent of myocardial injury from early (6 h) to late
periods (24–48 h) of reperfusion in canine hearts. These findings
suggest that myocardial reperfusion injury may be an ongoing
process resulting in a “wavefront of reperfusion injury” thereby
providing an extended window for therapeutic intervention. In
this regard, Ren et al. (2009) showed that, at least in the brain, the
infarct-sparing effect of RIPost was still evident when the appli-
cation of RIPost was delayed by 3 h, but not 6 h, into reperfusion.
Whether it is possible to delay RIC in other organs or tissue remains
to be determined.

Table 1 | Experimental studies on delayed remote ischemic preconditioning.

Species RIPC site Delayed duration (h) Site of ischemic insult Potential mechanisms Study

Mouse Hindlimb 24 Heart iNOS, NFκB Li et al. (2004)

Brain 24–32 iNOS Tokuno et al. (2002)

24 Adenosine A1 Schulte et al. (2004)

Rat Hindlimb 12 and 48 Brain – Ren et al. (2008)

24 MnSOD, xanthine oxidase Yuan et al. (2010)

24 Heart MnSOD, mKATP Wu et al. (2011)

24 Cremaster muscle – Kuntscher et al. (2003b)

Intestine 24 Heart iNOS Wang et al. (2001)

24–72 iNOS, CGRP Xiao et al. (2001)

24 CGRP Hu et al. (2002)

Rabbit Intestine 24 Heart CGRP Tang et al. (1999)

Pig Hindlimb 24–72 Latissimus dorsi muscle mKATP, sKATP Moses et al. (2005)

Human Arm 24–48 Contralateral arm Autonomic nervous system Loukogeorgakis et al. (2005)
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CHRONIC STIMULUS FOR LONG-TERM PROTECTION
The majority of RIC studies have focused on administering a sin-
gle RIC stimulus and demonstrating acute protection against IRI
(Hausenloy and Yellon, 2008). Intriguingly, a recent experiment
study has demonstrated that administering repeated remote limb
postconditioning over 2 weeks could prevent adverse LV remod-
eling in the rat heart following an acute MI (Wei et al., 2011).
The cardioprotection afforded by repeated RIC was shown to be
associated with reduced myocardial oxidative stress and inflam-
matory cell infiltration (Wei et al., 2011). This finding is in
agreement with the authors’ previous study conducted in healthy
human volunteers in which RIPC applied daily to the forearm for
10 days negatively affected circulating neutrophil function includ-
ing reduction in adhesion, exocytosis, phagocytosis, and enhance-
ment in lipopolysaccharide-induced cytokine secretion (Shimizu
et al., 2010).

REMOTE PRECONDITIONING OF TRAUMA
Ren et al. (2004) showed that a single abdominal surgical incision
protected the murine heart from subsequent acute IRI in a TNFα-
independent manner. This study suggested that protection could
be elicited by non-ischemic stimulus which they term “remote
preconditioning of trauma.” A subsequent mechanistic study by
the same group has revealed the involvement of neurogenic path-
ways whereby transverse abdominal incision stimulates peripheral
nociception which in turn activate the cardiac sympathetic nerves
via spinal nerves and induce cardioprotection through the activa-
tion of PKC-ε and inhibition of PKC-δ in a bradykinin-dependent
manner as well as the activation of the mitochondria KATP chan-
nels (Jones et al., 2009). Furthermore, a recent study by Gross et al.
(2011) has confirmed this protective phenomenon in a larger ani-
mal model (i.e., dog) and has implicated the cytochrome P450
epoxygenase pathway as a mediatory factor. Interesting, remote
preconditioning of trauma could be mimicked non-invasively by
topical application of capsaicin to directly stimulate the cutaneous
sensory C-fibers suggesting a novel clinical application of remote
conditioning without ischemia or trauma (Jones et al., 2009).

REMOTE ISCHEMIC CONDITIONING FOR ORGAN TRANSPLANT
In addition to protecting the host’s organs and tissues, RIC has
been shown to confer the ability to protect transplanted organs
from injury. In a porcine model of orthotopic heart transplanta-
tion, Konstantinov et al. (2005b) demonstrated that four 5 min
cycles of RIPC applied on the recipient’s limb can protect the den-
ervated donor heart from acute IRI. On the other hand, RIPC
applied on the donor’s limb significantly reduced myocardial
injury in explanted donor heart subjected to ex vivo IRI on a
Langendorff preparation (Kristiansen et al., 2005). This finding
suggested that the protective information is remembered within
the explanted heart without the need of ongoing stimulation. Both
studies also showed that the protection conferred by RIPC was
abolished by glibenclamide suggesting a KATP channel-depending
mechanism (Konstantinov et al., 2005b; Kristiansen et al., 2005).
Using specific blockers of KATP channels given before myocar-
dial IRI and after the heart had been explanted, Kristiansen et al.
(2005) further identified activation of mitochondrial KATP, but
not sarcolemmal KATP, channel as the main end effector of RIPC

in the protected organ. These early studies have indicated RIC as
a potential protective strategy for future organ transplantation in
human.

MOBILIZATION OF ENDOGENOUS STEM AND PROGENITOR CELLS
Recent advances in cell biology have identified endogenous stem
and progenitor cells as part of innate reparatory components after
organ or tissue injury. Endogenous stem and progenitor cells can
be mobilized to target tissues and serve as integrated participants
in regenerating the injured organ or tissues and/or as supportive
players via pleiotropic paracrine effects (Chen et al., 2011; Krankel
et al., 2011). An early study by Ii et al. (2005) demonstrated the
ability of IPC to recruit endogenous endothelial progenitor cells
to the infarcted myocardium in a NOS-dependent manner and
this effect was associated with infarct size reduction, increased
angiogenesis, and improvement of cardiac function. The mobi-
lizing and homing effect of IPC was subsequently illustrated on
other cell types including mesenchymal and hematopoietic stem
cells in a porcine model of acute myocardial IRI (Gyongyosi et al.,
2010). In the setting of RIPC, Kamota et al. (2009) showed that
intermittent abdominal aorta occlusion increased the accumu-
lation of bone marrow-derived sca-1+ and c-kit+ stem cells in
infarcted hearts through a SDF-1/CXCR4-dependent mechanism.
These encouraging findings may have a positive impact on future
clinical translation of RIC.

CLINICAL APPLICATION
The ability to recapitulate RIC protection using the upper or
lower limb has greatly facilitated the translation of RIC into the
clinical setting of acute IRI. Preliminary clinical studies by MacAl-
lister’s group (Kharbanda et al., 2002) first demonstrated that RIC
could be non-invasively reproduced in human volunteers using a
standard blood pressure cuff to induce brief cycles of non-lethal
ischemia and reperfusion in the arm. Since then, a number of clin-
ical studies have investigated RIC in different clinical settings of
acute IRI.

PROTECTING THE HEART USING RIC
The majority of the clinical RIC studies have been designed to
investigate whether the heart can be protected against acute IRI
in a variety of clinical settings including cardiac surgery, dur-
ing percutaneous coronary intervention (PCI), and in an acute
MI. In 2006, the first clinical proof-of-concept clinical study to
demonstrate that RIC may be beneficial in the clinical setting was
conducted in children undergoing corrective cardiac surgery for
congenital heart disease (Cheung et al., 2006), an operation which
is normally associated with significant morbidity and mortality
due to inadequate cardioprotection during surgery. In that study,
Cheung et al. (2006) reported that RIC (four 5 min cuff inflations
and deflations of a cuff placed on the thigh to 15 mmHg above sys-
tolic blood pressure) administered prior to cardiac surgery reduced
peri-operative myocardial injury (less troponin I release), lowered
inotrope requirements and reduced airway pressures. A year later,
we demonstrated that (three 5 min cuff inflations and deflations
of a cuff placed on the upper arm to 200 mmHg) administered
prior to cardiac surgery reduced peri-operative myocardial injury
(43% less troponin T release) in adult patients undergoing elective
CABG surgery (Hausenloy et al., 2007).
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Since the publication of these clinical studies there have been
both positive (Venugopal et al., 2009; Li et al., 2010; Thielmann
et al., 2010; Choi et al., 2011) and negative (Rahman et al., 2010;
Karuppasamy et al., 2011) studies with RIC in this clinical set-
ting. The reasons for these divergent findings are not clear but
may be attributable to a number of different factors including:
(1) the use of concomitant medication such as inhaled anes-
thetics (for example isoflurane), intravenous anesthetics such as
propofol, and intravenous nitrates all of which may cardiopro-
tect during CABG surgery; (2) the timing of the RIC stimulus
which was prior to cardiac surgery in the positive studies and
was after surgical incision in one of the negative studies (Rah-
man et al., 2010); (3) the patient population and type of cardiac
surgery. Whether RIC is actually beneficial in the clinical setting
of CABG surgery should become clearer with the completion of
two large multi-center randomized controlled clinical trials in the
UK (the ERICCA trial; Hausenloy et al., 2011) and Germany (the
RIPHeart trial; http://clinicaltrials.gov/ct2/show/NCT01067703).
RIC has also been reported to protect the heart in a number of
different clinical settings of acute IRI including abdominal aor-
tic aneurysm surgery (Ali et al., 2007), elective PCI (Hoole et al.,
2009), and ST-elevation MI (Botker et al., 2010; Munk et al., 2010;
Rentoukas et al., 2010). However, further study is required to char-
acterize the most effective RIC stimulus in these different clinical
settings.

PROTECTING OTHER ORGANS AND TISSUE USING RIC
Remote ischemic conditioning using the upper to lower limb
has the potential to be beneficial in other organs and tissue
such as the kidney, brain, liver, lung, and so on. Acute kidney
injury following CABG or major vascular surgery is associated
with worse clinical outcomes. Preliminary clinical studies have
reported beneficial effects of RIC in these settings in terms of
reduced incidence of acute kidney injury (Ali et al., 2007; Venu-
gopal et al., 2010), although not all studies have been positive
(Rahman et al., 2010; Choi et al., 2011). Recent clinical stud-
ies have implicated remote limb preconditioning to be safe and
well tolerated in patients with aneurysmal subarachnoid hem-
orrhage (Koch et al., 2011) and carotid endarterectomy (Walsh

et al., 2010), supporting the aforementioned encouraging ani-
mal data and future clinical trials. The REPAIR trial is currently
investigating whether RIC can improve graft renal function in
patients undergoing live donor-related renal transplantation. Clin-
ical studies are required to investigate whether RIC can protect
the brain, liver, and other organs against acute IRI. Successful
results from experimental studies raise the possibility of apply-
ing RIC in elective reconstructive and flap microsurgery such
as adipose tissue grafting to the post-mastectomy patient, autol-
ogous muscle transplantation for wound coverage, skin graft-
ing for burn victim, and reattachment of finger or other body
parts.

CONCLUSION
The discovery of RIC has provided an innovative therapeutic strat-
egy for the prevention of acute IRI in susceptible organs and
tissues. The ability to induce RIC using a standard blood pressure
cuff placed on the upper or lower limb has facilitated its transla-
tion into the clinical setting. RIC is simple to apply, non-invasive
and virtually cost-free, and a single RIC stimulus offers multi-
organ protection, lending itself to a variety of clinical settings in
which there is organ or tissue acute IRI. The promising results
obtained from several proof-of-concept clinical studies (mainly in
the heart) have encouraged further laboratory investigation into
the complex mechanisms underlying its protective effect. A better
understanding of the complex signaling events involved in trans-
duction of the RIC signal from the remote organ and tissue to
the protected target may allow the imminent discovery of novel
pharmacological agents to directly activate the protective signaling
pathways. For now large multi-center clinical trials are underway
to investigate whether RIC can actually improve clinical outcomes
in patients with CHD.
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