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The aim of the present study was to assess quercetin’s mechanism of action in rat pial
microvessels during transient bilateral common carotid artery occlusion (BCCAO) and reper-
fusion. Rat pial microcirculation was visualized using fluorescence microscopy through
a closed cranial window. Pial arterioles were classified in five orders of branchings. In
ischemic rats, 30 min BCCAO and 60 min reperfusion caused arteriolar diameter decrease,
microvascular leakage, leukocyte adhesion in venules, and reduction of capillary perfusion.
Quercetin highest dose determined dilation in all arteriolar orders, by 40 ± 4% of baseline
in order 2 vessels, and prevented microvascular permeability [0.15 ± 0.02 normalized gray
levels (NGL)], leukocyte adhesion, and capillary failure. Protein kinase C (PKC) inhibition
exerted by chelerythrine prior to quercetin attenuated quercetin-induced effects: order 2
arterioles dilated by 19.0 ± 2.4% baseline, while there was an increase in permeability
(0.40 ± 0.05 NGL) and leukocyte adhesion with a marked decrease in capillary perfusion.
Tyrosine kinase (TK) inhibition by tyrphostin 47 prior to quercetin lessened smaller pial arte-
rioles responses, dilating by 20.7 ± 2.5% of baseline, while leakage increased (0.39 ± 0.04
NGL) sustained by slight leukocyte adhesion and ameliorated capillary perfusion. Inhibition
of endothelium nitric oxide synthase (eNOS) by NG-nitro-L-arginine-methyl ester (L-NAME)
prior to PKC or TK reduced the quercetin’s effects on pial arteriolar diameter and leak-
age. eNOS inhibition by L-NAME reduced quercetin effects on pial arteriolar diameter and
leakage. Finally, combined inhibition of PKC and TK prior to quercetin abolished quercetin-
induced effects, decreasing eNOS expression, while blocking ATP-sensitive potassium
(KATP) channels by glibenclamide suppressed arteriolar dilation. In conclusion, the protec-
tive effects of quercetin could be due to different mechanisms resulting in NO release
throughout PKC and TK intracellular signaling pathway activation.

Keywords: bilateral common carotid artery occlusion, reperfusion, pial microcirculation, quercetin, nitric oxide,
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INTRODUCTION
The cerebral transient hypoperfusion induced in rats by bilat-
eral common carotid artery occlusion (BCCAO) and followed by
reperfusion has been shown to induce a decrease in pial arteri-
olar diameter, disruption of the blood–brain barrier, leukocyte
adhesion, and a reduction in capillary perfusion. These microvas-
cular responses were significantly affected by quercetin, a natural
flavonoid, effective in preventing arteriolar diameter decrease and
macromolecular leakage, in reducing leukocyte adhesion, and
facilitating capillary perfusion (Lapi et al., 2012). These protective
quercetin effects have been suggested to be related to nitric oxide
release, throughout endothelium nitric oxide synthase (eNOS)
activation to increase as expression and activity detected by West-
ern blotting (Lapi et al., 2012). Conversely, nitric oxide (NO)
increase was not related to activation of neuronal nor inducible
NOS. Moreover, the protection exerted by quercetin, especially on
leukocyte adhesion, has been correlated to decrease in formation

of reactive oxygen species (ROS), as reported in the joined paper
(Huk et al., 1998; Rice-Evans, 2001; Lapi et al., 2012). How-
ever, several studies have suggested that quercetin can modulate
vascular tone by protein kinase C (PKC) or cAMP- or cGMP-
phosphodiesterase or tyrosine kinase (TK) intracellular signaling
pathways (Picq et al., 1989; Cogolludo et al., 2007; Negash et al.,
2007; Chiwororo and Ojewole, 2010). To date, quercetin action
mechanism remains partially unexplained.

According to our results in the rat pial microcirculation, we
hypothesized pial arterioles dilation, prevention of leakage, and
preservation of capillary perfusion during BCCAO and reperfu-
sion may be due to activation of PKC or/and TK intracellular
signaling pathway, with consequent increase in NO production
and release. In several experimental models of preconditioning in
different organs the protection is exerted through activation of
PKC and TK signaling pathways (Fryer et al., 1999; Pagliaro et al.,
2001; Sakamoto et al., 2005). The present study was aimed to
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investigate the quercetin’s mechanism of action in rat pial micro-
circulation during BCCAO and reperfusion to gain new insight in
prevention of ischemic injury.

We assessed the role of PKC and TK intracellular signaling
pathways in the protection exerted by quercetin. We inhibited,
indeed, PKC by chelerythrine or/and TK by tyrphostin 47; more-
over, either inhibition was coupled to eNOS blockade by NG-
nitro-l-arginine-methyl ester (l-NAME) to clarify the quercetin’s
mechanism of action. Furthermore, potassium channels have been
suggested to be activated during ischemia reperfusion injury and
preconditioning in experimental models through PKC and TK sig-
naling pathway stimulation (Pagliaro et al., 2001). Therefore, we
assessed the role of potassium channels in the dilation induced
by quercetin, blocking ATP-sensitive potassium (KATP) channels
by glibenclamide. Finally, we investigated the effects of combined
PKC and TK inhibition on eNOS expression.

We used in vivo fluorescence technique to visualize rat pial
microcirculation to determine changes in pial arteriole diameter,
permeability increase, leukocyte adhesion, and capillary perfusion,
as previously reported (Lapi et al., 2012). These data might be
important to clarify the mechanisms effective in brain damage
during hypoperfusion and reperfusion and to improve strategies
against brain injury.

MATERIALS AND METHODS
EXPERIMENTAL GROUPS
Male Wistar rats weighing 250–300 g (Harlan, Italy) were ran-
domly assigned to eight group: (1) The first group was composed
by the animals not subjected to BCCAO and reperfusion [Sham-
Operated (S) group, n = 14], as indicated in the previous paper
(Lapi et al., 2012). Moreover, sham-operated rats received intra-
venously (i.v.) chelerythrine, 3.0 mg/Kg b.w. (group SC, n = 5)
or i.v. tyrphostin 47, 2.2 mg/Kg b.w. (group ST, n = 5), or i.v.
glibenclamide, 1.0 mg/100 g b.w. (group SG, n = 5). (2) Ischemic
rats (group I, n = 20) were treated with 1.5 ml vehicle (physio-
logical saline solution), i.v. injected, and subjected to 30 min of
BCCAO and 60 min of reperfusion, as reported in the previous
manuscript (Lapi et al., 2012). (3) The third group (Q3 group,
n = 14) was treated with i.v. quercetin 5.0 mg/Kg b.w. (4) The
fourth group of rats (CQ group, n = 9) received i.v. chelerythrine
(3.0 mg/Kg b.w.) prior to i.v. quercetin (5.0 mg/Kg b.w.). (5) The
fifth group of animals (group TQ, n = 9) was subjected to i.v.
treatment with tyrphostin 47 (2.2 mg/Kg b.w.) before quercetin
(5.0 mg/Kg b.w.). (6) The sixth group of rats (LCQ group, n = 9)
was treated with i.v. l-NAME (10.0 mg/Kg b.w.) before i.v. chelery-
thrine (3.0 mg/Kg b.w.) and i.v. quercetin (5.0 mg/Kg b.w.) with
an interval of 10 min among each drug administration. (7) The
seventh group of rats (group LTQ, n = 9) was treated with i.v.
l-NAME (10.0 mg/Kg b.w.) prior to i.v. tyrphostin 47 (2.2 mg/Kg
b.w.) and i.v. quercetin (5.0 mg/Kg b.w.) with an interval of 10 min
after each drug administration. (8) The eighth group of ani-
mals (CTQ group, n = 14) was treated with i.v. chelerythrine
(3.0 mg/Kg b.w.) prior to i.v. tyrphostin 47 (2.2 mg/Kg b.w.) and
i.v. quercetin (5.0 mg/Kg b.w.) with an interval of 10 min after each
drug administration. Nine animals were utilized for microvascular
studies, five to evaluate the eNOS expression by Western blotting.
(9) The ninth group of rats (group GQ, n = 9) was treated with i.v.

glibenclamide (1.0 mg/100 g b.w.) prior to quercetin (5.0 mg/Kg
b.w.). (10) Finally, the last group of rats of rats received chel-
erythrine (3.0 mg/Kg b.w.) or tyrphostin 47 (2.2 mg/Kg b.w.) or
glibenclamide (1.0 mg/100 g b.w.; group C, T, and G, n = 9, respec-
tively), i.v. injected 10 min before BCCAO and at the beginning of
reperfusion.

DRUGS ADMINISTRATION
Quercetin solutions were obtained dissolving 5.0 mg/Kg b.w. in
0.5 ml of saline solution and i.v. infused (3 min) to the rats 10 min
before BCCAO and at the beginning of reperfusion (Cho et al.,
2006).

Chelerythrine (3.0 mg/Kg b.w.; Colantuoni et al., 2005), tyr-
phostin 47 (2.2 mg/Kg b.w.), glibenclamide (1.0 mg/100 Kg b.w.),
and l-NAME (10.0 mg/Kg b.w.; Xu et al., 2002; Lapi et al., 2008),
were dissolved in 0.5 ml of saline solution, respectively. Each sub-
stance was i.v. administered 10 min prior to quercetin (5.0 mg/Kg
b.w.) before BCCAO and at the beginning of reperfusion (Lapi
et al., 2012). The drugs were purchased by Sigma Chemical, St.
Louis, MO, USA.

In previous experiments i.v. infusion of l-NAME at the dosage
of 10 mg/Kg b.w., chosen for the present study, abolished vasodila-
tion due to topical application of acetylcholine, 100 μM (n = 10),
while the diameter increase was by 42.3 ± 3.2% of baseline in
sham-operated animals treated with acetylcholine, n = 10 (Oriji,
1999).

ANIMAL PREPARATION
Anesthesia was induced with α-chloralose (50 mg/Kg b.w., i.p.)
plus urethane (600 mg/Kg b.w., i.p.) and maintained with ure-
thane alone (100 mg/Kg b.w., i.v. every hour). Rats were tra-
cheotomized, paralyzed with tubocurarine chloride (1 mg/Kg·h,
i.v.) and mechanically ventilated with room air and supplemen-
tal oxygen, as previously reported (Lapi et al., 2012). Briefly, the
right and left common carotid arteries were isolated for succes-
sive clamping. A catheter was placed in the left femoral artery, to
measure arterial blood pressure, and in the right femoral vein for
fluorescent tracers injection [fluorescein isothiocyanate bound to
dextran, molecular weight 70 KDa (FD 70), 50 mg/100 g b.w., i.v. as
5% wt/vol solution, and rhodamine 6G, 1 mg/100 g b.w. in 0.3 ml,
as a bolus with supplemental injection throughout BCCAO and
reperfusion (final volume 0.3 ml·100 g−1·h−1) to label leukocytes
for adhesion evaluation] and of drugs. Blood gas measurements
were carried out on arterial blood samples (ABL5; Radiometer,
Copenhagen, Denmark). Throughout all experiments, mean arte-
rial blood pressure, heart rate, respiratory CO2, and blood gases
values were recorded and stable settled within physiological ranges.
Rectal temperature was monitored and preserved at 37.0 ± 0.5˚C,
as previously reported (Lapi et al., 2012).

To observe the pial microcirculation, a closed cranial window
(4 mm × 5 mm) was implanted above the left frontoparietal cortex
(posterior 1.5 mm to bregma; lateral, 3 mm to the midline; Chau
et al., 2002). The dura mater was gently removed and a 150-μm-
thick quarz microscope coverglass was sealed to the bone with
dental cement. The brain parenchyma was continuously super-
fused with artificial cerebrospinal fluid (aCSF; Ngai et al., 1988;
Moreau et al., 1995). The rate of superfusion was 0.5 ml/min
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controlled by a peristaltic pump. The composition of the aCSF
was: 119.0 mM NaCl, 2.5 mM KCl, 1.3 mM MgSO4·7H2O, 1.0 mM
NaH2PO4, 26.2 mM NaHCO3, 2.5 mM CaCl2, and 11.0 mM glu-
cose (equilibrated with 10.0% O2, 6.0% CO2, and 84.0% N2; pH
7.38 ± 0.02). The temperature was settled at 37.0 ± 0.5˚C.

Cerebral blood flow reduction was produced by placement of
two atraumatic microvascular clips for 30 min on common carotid
arteries, previously isolated. After removing the clamp, the pial
microcirculation was observed for 60 min (reperfusion period).

All experiments conform to the Guide for the Care and Use
of Laboratory Animals published by the US National Institutes of
Health (NIH Publication No. 85-23, revised 1996) and to institu-
tional rules for the care and handling of experimental animals. The
protocol was approved by the “Federico II” University of Naples
Ethical Committee.

INTRAVITAL MICROSCOPY AND MICROVASCULAR PARAMETER
EVALUATION
Observations of pial vessels were conducted by a fluorescence
microscope (Leitz Orthoplan), as previously described (Lapi et al.,
2012). Epiillumination was provided by a 100-W mercury lamp
using the appropriate filters for FITC, for rhodamine 6G,and a heat
filter (Leitz KG1). The pial microcirculation was televised with a
DAGE MTI 300RC low-light level digital camera and recorded
by a computer based frame grabber (Pinnacle DC 10 plus, Avid
Technology, MA, USA).

Microvascular measurements were made off-line using a
computer-assisted imaging software system (MIP Image, CNR
Institute of Clinical Physiology, Pisa, Italy). We reported data
under baseline conditions, at the end of BCCAO and at the end
of reperfusion (RE). In Figure 1 we showed the time-dependent
changes in arteriolar diameters to clarify the time-dependent
pattern of order 2 arteriole response.

In each animal one order 4 arteriole, two order 3, and two order
2 arterioles were studied during each experiment. We chose to
present only the data regarding order 2 vessels, the most responsive
arterioles, as previously reported (Lapi et al., 2012).

Arteriolar diameters were measured with a computer-assisted
method (MIP Image, CNR, frame by frame). The results of diame-
ter measurements were comparable with those obtained by shear-
ing method (±0.5 μm). To avoid bias due to single operator
measurements, two independent “blinded” operators measured
the vessel diameters. Their measurements overlapped in all cases.

The increase in permeability was calculated and reported as
normalized gray levels (NGL): NGL = (I − Ir)/Ir, where Ir is the
average baseline gray level at the end of vessel filling with flu-
orescence (average of five windows located outside the blood
vessels with the same windows being used throughout the exper-
imental procedure), and I is the same parameter at the end of
BCCAO or RE.

Adherent leukocytes (i.e., cells on vessel walls that did not
move over a 30-s observation period) were quantified in terms of
number/100 μm of venular length (v.l.)/30 s using higher magni-
fication (32×, microscope objectives). In each experimental group
45 venules were studied.

Perfused capillary length (PCL) was measured by MIP Image in
an area of 150 μm × 150 μm. In this system the length of perfused

FIGURE 1 |Time course plots of diameter changes in the experimental

groups. (A) Diameter changes of order 2 arterioles, expressed as percent
of baseline, under baseline conditions and during BCCAO and reperfusion
in sham-operated group (S), in ischemic group (I) and in quercetin
(5.0 mg/Kg b.w.) treated group (Q3); (B) Diameter changes of order 2
arterioles, expressed as percent of baseline, under baseline conditions and
during BCCAO and reperfusion in quercetin (5.0 mg/Kg b.w.) treated group
(Q3), in chelerythrine + quercetin (5.0 mg/Kg b.w.) treated group (CQ) and in
tyrphostin 47 + quercetin (5.0 mg/Kg b.w.) treated group (TQ); (C) Diameter
changes of order 2 arterioles, expressed as percent of baseline, under
baseline conditions, and during BCCAO and reperfusion in quercetin
(5.0 mg/Kg b.w.) treated group (Q3), in L-NAME + chelerythrine + quercetin
(5.0 mg/Kg b.w.) treated group (LCQ), in LTQ = L-NAME + tyrphostin
47 + quercetin (5.0 mg/Kg b.w.) group and chelerythrine + tyrphostin
47 + quercetin (5.0 mg/Kg b.w.) treated group (CTQ). ˚p < 0.01 vs. baseline;
*p < 0.01 vs. I group; #p < 0.01 vs. Q3 group.
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capillaries is easily established by the automated process because
it is outlined by dextran (Xu et al., 2002).

Moreover, for each experimental group 27 pial venules were
studied to evaluate the single pial venule blood flow, Q, calculated
according to the following equation: Q = α × V CL × A, where α

was a constant related to the vessel diameter, VCL was the red
blood cell centerline velocity and A was the cross-section area.

Mean arterial blood pressure (MABP; Viggo-Spectramed
P10E2 transducer – Oxnard, CA, USA – connected to a catheter in
the femoral artery) and heart rate were monitored with a Gould
Windograf recorder (model 13-6615-10S, Gould, OH, USA). Data
were recorded and stored in a computer. Blood gas measurements
were carried out on arterial blood samples withdrawn from arter-
ial catheter at 30 min time period intervals (ABL5; Radiometer,
Copenhagen, Denmark). The hematocrit was measured under
baseline conditions, at the end of BCCAO and at RE.

WESTERN BLOT ANALYSIS
Protein concentrations were determined by the Bio-Rad protein
assay (Bio-Rad). To detect the proteins of interest, specific antibod-
ies: anti-eNOS (mouse monoclonal antibody, 1:200, Santa Cruz
Biotechnology, Santa Cruz, CA, USA), anti-phosphorylated eNOS
[Rabbit (polyclonal) Anti-eNOS (pS116) phosphospecific antibody
unconjugated, Invitrogen] and anti-β-actin (mouse monoclonal,
1:1000, Sigma) were used. Immunoreaction was revealed using
anti-mouse IgG conjugated to peroxidase, 1:2000 (GE Healthcare)
by the ECL reagent (GE Healthcare). The optical density of the
bands was determined by Chemi Doc Imaging System (Bio-Rad)
and normalized to the optical density of β-actin. eNOS and phos-
phorylated eNOS were evaluated to define concentrations of the
expressed and active proteins, respectively.

STATISTICAL ANALYSIS
All reported values are means ± SD. Data were tested for nor-
mal distribution with the Kolmogorov–Smirnov test. Parametric
(Student’s t -tests, Anova, and Bonferroni post hoc test) or non-
parametric tests (Wilcoxon, Mann–Whitney, and Kruskal–Wallis
tests) were used; non-parametric tests were applied to compare
diameter and length data among experimental groups. The sta-
tistical analysis was carried out by SPSS 14.0 statistical package.
Statistical significance was set at p < 0.05.

RESULTS
Pial arterioles were classified in five orders according to diameter,
length, and branching as previously reported (Lapi et al., 2012).

SHAM-OPERATED ANIMALS
In sham-operated animals there were neither changes in arte-
riolar diameter nor increase in leakage (NGL: 0.02 ± 0.01) nor
adhesion of leukocytes (1.0 ± 0.5/100 μm v.l./30 s) and perfused
capillary length was 100 ± 4% of baseline during the same period
of observation as in the other experimental groups.

The animals treated with PKC inhibitor chelerythrine
(3.0 mg/Kg b.w.) or TK inhibitor tyrphostin 47 (2.2 mg/Kg b.w.)
did not show significant changes in all parameters when compared
with baseline (Table 1).

Pilot studies showed i.v. administration of chelerythrine
(3.0 mg/Kg b.w.) abolished the arteriolar responses due to topical

application of Phorbol-12,13-dibutyrate (PDBu), a PKC activator,
at the dosage 100 μM (n = 7; Hudetz et al., 1995). Under control
conditions, PDBu was effective in inducing transient arteriolar
dilation by 12.0 ± 2.0% of baseline in sham-operated animals
within 10 ± 1 min of administration, followed by a significant
decrease in arteriolar diameter by 10.0 ± 1.5% of baseline within
15 ± 1 min (n = 7).

Tyrphostin 47 (2.2 mg/Kg b.w.) infusion completely suppressed
order 2 arterioles dilation due to topical application of vas-
cular endothelial growth factor (VEGF), a TK activator at the
dosage 0.1 nM (n = 7; Morii et al., 1986). The diameter increased
by 16.0 ± 2.5% of baseline in sham-operated animals treated
with VEGF, n = 7. MABP did not undergo with any significant
variation.

BCCAO-REPERFUSION
At the end of BCCAO, ischemic animals (group I) showed a
decrease in diameter of order 2 vessels by 19.0 ± 3.0% of base-
line (Figure 1A), with increased permeability (NGL: 0.21 ± 0.03,
p < 0.01 compared with S group) as previously reported (Lapi
et al., 2012).

At the end of reperfusion, order 2 arterioles constricted by
14.5 ± 3.3% of baseline (Figure 1A), venular permeability signif-
icantly increased (NGL: 0.47 ± 0.04, p < 0.01 vs. S group), with
marked leukocyte adhesion (9.0 ± 2.0/100 μm v.l./30 s; p < 0.01
vs. S group) in venules and decreased capillary perfusion (PCL;
60 ± 7% of baseline, p < 0.01 vs. S group; Tables 1 and 2).
In single pial venules (SPV, diameter 30–40 μm) the blood
flow was reduced by 30 ± 1% of baseline (p < 0.01 vs. baseline:
247 ± 10 nl/s).

QUERCETIN
At the end of BCCAO quercetin highest dose caused (Q3 group)
an increase in order 2 arteriole diameter by 13.4 ± 3.4% of base-
line (p < 0.01 vs. ischemic animals; Figure 1A), while preventing
microvascular permeability (NGL: 0.08 ± 0.02, p < 0.01 vs. S and
I groups).

At RE order 2 arterioles dilated by 40 ± 4% of baseline (p < 0.01
vs. ischemic animals; Figure 1A), while leakage of FD70 was pre-
vented (NGL: 0.15 ± 0.02, p < 0.01 vs. S and I groups) as well
as leukocyte adhesion (3.0 ± 1.0/100 μm v.l./30 s; p < 0.01 vs. S
and I groups). Capillary perfusion was protected (PCL: 90 ± 4%
of baseline, p < 0.01 vs. S and I groups; Tables 1 and 2). SPV
blood flow was significantly increased by 50.0 ± 0.9% of baseline:
235 ± 12 nl/s, p < 0.01 vs. baseline and I group.

PKC INHIBITION PLUS QUERCETIN
Chelerythrine, PKC inhibitor, administered before quercetin
(group CQ), blunted quercetin-induced effects after BCCAO,
because there was reduction in diameter of all pial arterioles as
observed in ischemic animals at the end of BCCAO (Figure 1B),
while MABP did not significantly change (Table 3). Leakage sig-
nificantly increased (NGL: 0.19 ± 0.02) compared to the animals
treated with 5.0 mg/Kg b.w. of quercetin (p < 0.01 vs. Q3 group,
p = NS vs. I group).

At RE, all arterioles dilated: by 19.0 ± 2.4% of baseline in order
2 (p < 0.01 compared with I and Q3 groups; Figure 1B) with
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Table 1 | Drug treatment (T): doses, route, and time of administration in the different experimental groups.

Group H/R plusT NO H/R plusT Time N

I Saline solution 1.5 ml i.v. Prior to BCCAO, at Reperfusion beginning 20

Q3 Quercetin 5.0 mg/Kg b.w. i.v. Prior to BCCAO, at R beginning 9

CQ Chelerythrine 3.0 mg/Kg b.w. i.v. Prior to quercetin 9

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

TQ Tyrphostin 47 2.2 mg/Kg b.w. i.v. Prior to quercetin 9

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

LCQ L-NAME 10.0 mg/Kg b.w. i.v. Prior to quercetin 9

Chelerythrine 3.0 mg/Kg b.w. i.v. Prior to quercetin

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

LTQ L-NAME 11.0 mg/Kg b.w. i.v. Prior to quercetin 9

Tyrphostin 47 2.2 mg/Kg b.w. i.v. Prior to quercetin

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

CTQ Chelerythrine 3.0 mg/Kg b.w. i.v. Prior to quercetin 9

Tyrphostin 47 2.2 mg/Kg b.w. i.v. Prior to quercetin

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

GQ Glibenclamide 1.0 mg/100 g b.w. i.v. Prior to quercetin 9

Quercetin 5.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning

C Chelerythrine 3.0 mg/Kg b.w. i.v Prior to BCCAO, at R beginning 9

T Tyrphostin 47 2.2 mg/Kg b.w. i.v. Prior to BCCAO, at R beginning 9

G Glibenclamide 1.0 mg/100 g b.w. i.v. Prior to BCCAO, at R beginning 9

S Saline solution 1.5 ml i.v. Twice at 50 min interval 13

SC Chelerythrine 3.0 mg/Kg b.w. i.v. Twice at 50 min interval 5

ST Tyrphostin 47 2.2 mg/Kg b.w. i.v. Twice at 50 min interval 5

H/R: animals subjected to hypoperfusion and reperfusion and NO H/R: animals not subjected to hypoperfusion and reperfusion; N, number of rats utilized.

Table 2 | Variations of the main parameters in sham-operated (S) group, ischemic (I) group, quercetin (Q3) group (5 mg/Kg b.w.), chelerythrine

plus quercetin (CQ) group, tyrphostin 47 plus quercetin (TQ) group, L-NAME and chelerythrine plus quercetin (LCQ) group, L-NAME and

tyrphostin 47 plus quercetin (LTQ) group, chelerythrine and tyrphostin 47 plus quercetin (CTQ) group, glibenclamide plus quercetin (GQ) group

at the end of reperfusion.

Group Arteriolar diameter (%) Microvascular

permeability (NGL)

Leukocyte adhesion (number

of leukocytes/100 μm of

venular length/30 s)

Capillary perfusion (%)

S 100.0 ± 5.0 0.02 ± 0.01 1.0 ± 0.5 100 ± 4

I 85.5 ± 3.3˚ 0.47 ± 0.04˚ 9.0 ± 2.0˚ 60 ± 7˚

Q3 140.0 ± 4.0˚* 0.15 ± 0.02˚* 3.0 ± 1.0˚* 90 ± 4˚*

CQ 119.0 ± 2.4˚*# 0.40 ± 0.05˚# 7.0 ± 1.0˚# 62 ± 7˚#

TQ 120.7 ± 2.5˚*# 0.39 ± 0.04˚# 4.0 ± 1.0˚*# 81 ± 9˚*

LCQ 93.5 ± 3.0*# 0.42 ± 0.03˚# 7.0 ± 1.0˚# 63 ± 5˚#

LTQ 91.0 ± 2.0˚*# 0.37 ± 0.03˚*# 5.0 ± 1.0˚* 80 ± 6˚*#

CTQ 89.5 ± 1.0˚*# 0.42 ± 0.03˚# 8.0 ± 2.0˚# 60 ± 4˚#

GQ 99.0 ± 4.0 *# 0.22 ± 0.03˚*# 3.5 ± 1.0˚* 85 ± 4˚*

Arteriolar diameter and capillary perfusion are reported as percent changes of 100% baseline values. NGL, normalized gray levels. ˚p < 0.01 vs. S group, *p < 0.01 vs.

I group, #p < 0.01 vs. Q3 group.

no significant changes in MABP (Table 3). Leakage was marked
(0.40 ± 0.05, p < 0.01 vs. Q3 groups); the adherent leukocytes
were 7.0 ± 1.0/100 μm v.l./30 s, as observed in ischemic animals
(p = NS vs. I group and p < 0.01 vs. Q3 group); PCL significantly
diminished compared with Q3 group (62 ± 7% of baseline, p = NS
vs. I group, p < 0.01 vs. Q3 group; Tables 1 and 2). SPV blood flow

was significantly reduced by 25.7 ± 0.8% of baseline: 215 ± 11 nl/s,
p < 0.01 vs. baseline, I and Q group.

TK INHIBITION PLUS QUERCETIN
Tyrphostin 47, TK inhibitor administration, before quercetin
(group TQ) did not affect quercetin-induced dilation of arterioles:
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Table 3 | Mean arterial blood pressure (MABP) under baseline

conditions, at the end of bilateral common carotid artery occlusion

(BCCAO) and at the end of reperfusion (RE) in sham-operated (S)

group, ischemic (I) group, quercetin (Q3) group (5 mg/Kg b.w.),

chelerythrine plus quercetin (CQ) group, tyrphostin 47 plus quercetin

(TQ) group, L-NAME and chelerythrine plus quercetin (LCQ) group,

L-NAME and tyrphostin 47 plus quercetin (LTQ) group, chelerythrine

and tyrphostin 47 plus quercetin (CTQ) group, glibenclamide plus

quercetin (GQ) group.

Group Baseline (mmHg) BCCAO (mmHg) RE (mmHg)

I 101.0 ± 3.5 99.0 ± 4.0 100.0 ± 3.5

Q3 104.0 ± 5.5 102.0 ± 4.0 103.0 ± 5.0

CQ 99.0 ± 5.0 98.0 ± 4.0 100.0 ± 4.5

TQ 100.0 ± 4.0 99.0 ± 5.0 100.0 ± 5.0

LCQ 101.0 ± 5.5 99.0 ± 5.0 100.0 ± 5.0

LTQ 102.0 ± 3.5 100.0 ± 4.5 101.0 ± 4.5

CTQ 101.0 ± 5.0 100.0 ± 5.0 101.5 ± 4.0

GQ 98.0 ± 4.5 96.0 ± 4.0 99.0 ± 5.5

Values are means ± SD.

by 5.0 ± 2.7% of baseline in order 2 (p < 0.01 vs. controls) at the
end of BCCAO (Figure 1B) without significant change in MABP
(Table 3). Leakage was marked (NGL: 0.18 ± 0.02) as observed in
ischemic animals (p = NS compared with I group, p < 0.01 vs. Q3

group).
At RE tyrphostin 47 partially blunted only the dilation in

smaller arterioles (increase in order 2 diameter by 20.7 ± 2.5%
of baseline, p < 0.01 vs. I and Q3 groups; Figure 1B), while MABP
did not significantly change (Table 3). There was increased leakage
(NGL: 0.39 ± 0.04) compared to Q3 group (p < 0.01 vs. Q3 group),
while leukocyte adhesion was partly prevented (4.0 ± 1.0/100 μm
v.l./30 s, p < 0.01 vs. I and Q3 groups) and capillary perfusion
was partially protected (PCL: 81 ± 9% of baseline, p < 0.01 vs. I
group; Tables 1 and 2). In single pial venules blood flow decreased
by 16.5 ± 0.8% of baseline: 293 ± 8 nl/s, p < 0.01 vs. baseline, I and
Q group.

NO SYNTHASE AND PKC INHIBITION PLUS QUERCETIN
At the end of BCCAO, l-NAME, eNOS inhibitor, administered
before PKC inhibitor, chelerythrine, and quercetin (group LCQ)
caused a decrease in diameter of all arterioles: by 8.2 ± 2.0%
of baseline in order 2 (p < 0.05 vs. ischemic animals, p < 0.01
vs. Q3 group; Figure 1C), without significant changes in MABP
(Table 2). Permeability increased (NGL: 0.21 ± 0.03, p = NS
vs. I group, p < 0.01 vs. Q3 group), as reported in ischemic
animals.

At RE, all arterioles constricted: by 6.5 ± 3.0% of baseline in
order 2 (p < 0.01 vs. Q3 group; Figure 1C), while no significant
changes in MABP were detected (Table 3). Leakage was slightly dif-
ferent when compared with ischemic animals (NGL: 0.42 ± 0.03,
p = NS vs. I group, p < 0.01 vs. Q3 group). The other parameters
did not significantly change compared with CQ group: adherent
leukocytes were 7.0 ± 1.0/100 μm v.l./30 s, p < 0.01 vs. Q3 group;
p = NS vs. I group), while PCL was 63 ± 5% of baseline (p < 0.01
vs. Q3 group, p = NS vs. I group; Tables 1 and 2). SPV blood flow

decreased by 28.1 ± 0.6% of baseline: 226.3 ± 10.5 nl/s, p < 0.01
vs. baseline and Q group.

NO SYNTHASE AND TK INHIBITION PLUS QUERCETIN
At the end of BCCAO, l-NAME, eNOS inhibitor, prior to tyr-
phostin 47, TK inhibitor, and quercetin (group LTQ) caused
decrease in diameter of all arterioles: by 9.0 ± 3.0% of base-
line in order 2 (p < 0.01 vs. Q3 group; Figure 1C). MABP
did not significantly change (Table 3). Leakage was attenuated
(NGL: 0.15 ± 0.02, p < 0.01 vs. I group) compared to ischemic
animals.

At RE all arterioles constricted: by 9.0 ± 2.0% of baseline in
order 2 (p < 0.01 vs. Q3 group; Figure 1C), without signifi-
cant increase in MABP (Table 3). Leakage was not so high as
in ischemic animals (NGL: 0.37 ± 0.03, p < 0.01 vs. I group);
adhesion of leukocytes was attenuated (5.0 ± 1.0/100 μm v.l./30 s,
p < 0.01 vs. I group) and capillary perfusion was higher than in
ischemic animals (PCL: 80 ± 6% of baseline, p < 0.01 vs. I and
Q3 groups; Tables 1 and 2). SPV blood flow was reduced by
23.5 ± 0.5% of baseline: 250 ± 9 nl/s, p < 0.01 vs. baseline, I and
Q group.

PKC AND TK INHIBITION PLUS QUERCETIN
At the end of BCCAO, the inhibition of both PKC and TK prior
to quercetin (group CTQ) caused a decrease in diameter of all
arterioles: by 12.0 ± 1.5% of baseline in order 2 (p < 0.01 vs. Q3

group; Figure 1C); however, MABP did not significantly change
(Table 3). Leakage was marked (NGL: 0.20 ± 0.02, p = NS vs. I
group, p < 0.01 vs. Q3 group).

At RE the arterioles constricted: by 10.5 ± 1.0% of baseline
in order 2 (p < 0.01 vs. Q3 group; Figure 1C), while MABP
did not significantly change (Table 3). Leakage was pronounced
(NGL: 0.42 ± 0.03, p < 0.01 vs. Q3 group); the adherent leuko-
cytes increased in number (8.0 ± 2.0/100 μm v.l./30 s, p < 0.01 vs.
Q3 group), PCL diminished (60 ± 4% of baseline, p = NS vs. I
group, p < 0.01 vs. Q3 group; Tables 1 and 2). SPV blood flow was
markedly decreased by 31.8 ± 0.7% of baseline: 237.3 ± 9.5 nl/s,
p < 0.01 vs. baseline and Q group.

ATP-SENSITIVE POTASSIUM (KATP) CHANNEL INHIBITION PLUS
QUERCETIN
At the end of BCCAO KATP channel inhibition prior to quercetin
(group GQ) caused a slight decrease in diameter of all arteri-
oles, by 5.4 ± 2.1% of baseline in order 2 (p < 0.01 vs. I and Q3

groups), while microvascular permeability was not affected (NGL:
0.10 ± 0.02, p < 0.01 vs. I group). MABP did not significantly
change (Table 3).

At RE the arterioles did not significantly dilate compared with
baseline (p < 0.01 vs. I and Q3 groups), while MABP did not signif-
icantly change (Table 3). FD70 leakage was moderately prevented
compared with that observed in Q3 group (NGL: 0.22 ± 0.03,
p < 0.01 vs. S, I, and Q3 groups). Adherent leukocytes were
3.5 ± 1.0/100 μm v.l./30 s (p < 0.01 vs. S and I groups). Capillary
perfusion slightly decreased (PCL: 85 ± 4% of baseline, p < 0.01
vs. S and I groups; Tables 1 and 2). SPV blood flow was signifi-
cantly reduced by 29.0 ± 0.4% of baseline: 274 ± 11 nl/s, p < 0.01
vs. baseline and Q group.
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PKC, TK, AND KATP CHANNEL INHIBITION PRIOR TO BCCAO AND
REPERFUSION
Protein kinase C inhibition by chelerythrine (C group) or TK inhi-
bition by tyrphostin 47 (T group) or KATP channel inhibition by
glibenclamide (G group) did not affect the microvascular changes
observed in rats submitted to BCCAO and reperfusion (Table 1).

Finally, physiological parameters, such as hematocrit, MABP,
heart rate, pH, PCO2, and PO2 did not change in the different
experimental groups up to RE.

eNOS EXPRESSION
Western blot analysis showed that at the end of reperfusion eNOS
protein concentration significantly increased in animals treated
with highest dose quercetin compared with I and S group. On the
contrary, there was no significant increase in animals treated with
chelerythrine and tyrphostin 47 before quercetin when compared
with I group (Figure 2). Moreover, eNOS protein concentrations
were not uniformly expressed in cortex, striatum, and hippocam-
pus, because the higher were detected in hippocampus and cortex,
while the lower in striatum of all animals. The same trend was
observed for phosphorylated eNOS protein concentrations: no
significant increase after combined PKC and TK inhibition.

DISCUSSION
In rats submitted to hypoperfusion by BCCAO and reperfusion
there were peculiar microvascular responses, characterized by
decrease in arteriolar diameter, increase in microvascular perme-
ability and leukocyte adhesion, reduction in capillary perfusion,
as previously reported (Lapi et al., 2012).

Quercetin, a plant derived compound with multiple proposed
therapeutic effects (Rice-Evans, 2001), was effective in reducing
pial microvascular alterations caused by BCCAO and reperfusion,
inducing dilation of arterioles, prevention of leakage and leukocyte
adhesion, facilitating capillary perfusion. These protective effects
have been observed to be partly reduced by inhibition of nitric
oxide release by l-NAME, eNOS inhibitor, able to decrease dila-
tion of arterioles and capillary perfusion, to increase leakage, while
there were no significant effect on leukocyte adhesion (Lapi et al.,
2012).

Previous data indicate quercetin is able to activate or inhibit
intracellular signaling pathways (Williams et al., 2004), such as
those triggered by PKC or TK; in particular, quercetin increases
PKC activity derived from rat brain (Chiwororo and Ojewole,
2010). Moreover, PKC has been suggested to regulate eNOS expres-
sion and activity in vascular cells, through different isoform activa-
tion (Davda et al., 1994; Fleming et al., 2001; Michell et al., 2001).
PKC-β and PKC-ε appear to inhibit NO release, while PKC-α and
PKC-δ are likely to increase NO formation in vessels (Partov-
ian et al., 2005; Zhang et al., 2005; Motley et al., 2007; Fleming,
2008). Therefore, we hypothesized quercetin could activate differ-
ent intracellular signaling pathways in our model. To define mech-
anisms involved in the quercetin-induced protective effects, PKC
inhibition exerted by chelerythrine before quercetin was induced
during BCCAO and reperfusion. The results indicate PKC inhibi-
tion significantly affected quercetin-triggered effects: the arterioles
partially dilated at the end of reperfusion, while leakage and leuko-
cyte adhesion were marked accompanied by capillary perfusion

impairment. Therefore, our data suggest quercetin partially caused
arteriolar dilation by activation of PKC intracellular signaling
pathway promoting NO release. PKC appeared uniformly distrib-
uted in all pial arterioles, because there was homogenous response
of all arteriolar orders after its inhibition. Furthermore, inhibition
of both NO release and PKC signaling pathway abolished dilation
induced by quercetin causing slight constriction of pial arterioles
(by 6.5 ± 3.0% of baseline) at the end of reperfusion and marked
decrease in single pial venule blood flow (by 25.7 ± 0.8% of base-
line). Therefore, it is reasonable to suggest that the final result
triggered by quercetin was mainly related to NO release, able to
prevent blood–brain barrier disruption and to facilitate capillary
perfusion.

Some in vitro studies indicate PKC activation can induce cere-
bral arteries constriction (Osol et al., 1991; Bonev et al., 1997). Our
data show that PKC stimulation by PDBu induced dilation at first
and then constriction of pial arterioles under baseline conditions.
However, PKC inhibition by chelerythrine was not able to affect
pial arteriolar diameter both in sham-operated animals and prior
to BCCAO.

Quercetin is known to activate also the TK intracellular sig-
naling pathway, as previously reported (Williams et al., 2004).
In particular, TK has been reported to facilitate eNOS activation
followed by increased NO release in arterioles under different con-
ditions (Ayajiki et al., 1996; Corson et al., 1996; Fleming et al.,
1998). Therefore, another hypothesis was TK inhibition could
influence the quercetin-induced effects. Our data indicate TK inhi-
bition by tyrphostin 47 administered prior to quercetin partly
reduced dilation particularly in the smallest arterioles; this par-
tial arteriolar dilation prevention might be due to decrease in NO
release. The different arterioles responses to TK inhibition may
be related to differentiated TK receptor distribution or involve-
ment in dilation of pial arterioles. Consequently, the smaller ones
were more responsive to tyrphostin 47; however, on the other end
the decrease in single pial venule blood flow was by 16.5 ± 0.8%
of baseline, corresponding to attenuated leukocyte adhesion and
capillary failure. Microvascular permeability increased when com-
pared with that observed in quercetin-treated groups. Therefore,
TK inhibition appears to affect more vessel permeability (higher
compared to animals treated by quercetin alone) than other vascu-
lar parameters. Combined NO release and TK signaling pathway
inhibition abolished quercetin-induced arteriolar dilation caus-
ing moderate constriction (by 9 ± 2% of baseline) at the end
of reperfusion corresponding to decrease in single pial venule
blood flow by 23.5 ± 0.5% of baseline. Therefore, TK pathway
may partly contribute to the overall effects exerted by quercetin
on pial microvasculature.

It is important to note PKC and TK intracellular signaling path-
ways were mainly triggered by quercetin administration, because
PKC or TK inhibition did not cause any protective effects on
pial microcirculation in animals not treated by quercetin and
submitted to hypoperfusion and reperfusion.

It is worth underlying combined inhibition of PKC and TK
pathways completely reversed protection triggered by quercetin
causing the strongest arteriolar constriction (by 10.5 ± 1.0% of
baseline) at the end of reperfusion and marked decrease in sin-
gle pial venule blood flow by 31.8 ± 0.7% of baseline. These
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FIGURE 2 | Western blotting of eNOS expression in three cerebral

zones [cortex (A), striatum (B), hippocampus (C)] at the end of

reperfusion in sham-operated group (S group), in

quercetin-treated (5 mg/Kg b.w.) group (Q3 group), in ischemic

group (I group) and in chelerythrine and tyrphostin 47 plus

quercetin-treated group (CTQ group). Corresponding densitometric
values (mean ± SD) are reported on the bottom. ˚p < 0.01 vs. S group,
#p < 0.01 vs. Q3 group.

effects indicate PKC and TK signaling pathways could mediate
quercetin-induced pial vessel responses. In several previous stud-
ies quercetin has been observed to bind to the ATP-binding sites

of a large number of proteins, such as PKC – modulating many
cellular responses – such as inducible adhesion molecule ICAM-
1 expression in human endothelial cells (Kobuchi et al., 1999;
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Williams et al., 2004). Furthermore, quercetin may activate the
MAPK pathway (ERK 2, JNK1, and p38) leading to expression
of survival and defensive genes (i.e., glutathione-S-transferase,
etc.) resulting in survival and protective mechanisms (homeostasis
response; Kong et al., 2000). The effects on pial arteriolar dila-
tion exerted by quercetin might be related to activation of NO
releasing mechanisms through stimulation of both PKC and TK
intracellular signaling pathways. Finally, both PKC and TK activa-
tion have been suggested to facilitate vascular preconditioning, i.e.,
coronary vasculature protection from endothelial dysfunction by
ischemic preconditioning (brief heart exposure to ischemia before
prolonged ischemia). These effects have been related to NO release
through PKC and TK stimulation, as linear or parallel pathways
(Sakamoto et al., 2005), and to KATP channel (both mitochondrial
and sarcoplasmatic) involvement in dilation mechanisms.

In our model, coupled inhibition of both PKC and TK pathways
was able to abolish all effects exerted by quercetin, while inhibition
of NO release did not completely suppress dilation. Western blot
analysis, indeed, indicates that combined PKC and TK inhibition
caused a decrease in eNOS expression and activation completely
blunting quercetin’s effects. Therefore, these effects on pial arte-
riolar dilation are mostly due to eNOS activation, although other
mechanisms may contribute, such as KATP channel involvement.
To support this hypothesis we tested KATP channel blocking effects

on arteriolar dilation triggered by quercetin and we observed sup-
pression of dilation. Therefore, it is reasonable to suggest these
channels contribute to arteriolar dilation and consequently to the
overall effects induced by quercetin.

Furthermore, quercetin effects on leukocyte adhesion may
be due to inhibition of adhesion molecule expression and
quercetin anti-inflammatory properties. Therefore, quercetin’s
action appears to be complex, depending on several mecha-
nisms including NO release stimulation. However, further stud-
ies are required to clarify all involved molecular mechanisms,
in particular, the PKC isoforms role in the quercetin-induced
protection.

In conclusion, quercetin prevented microvascular leakage and
leukocyte adhesion accompanied by increase in arteriolar diam-
eter and protection of capillary perfusion facilitating adequate
blood flow as indicated by enhanced pial venular blood flow.
Our data indicate quercetin’s effects appear to be related to an
increase in eNOS expression, NO release, and activity with the
involvement, to a different extent, of PKC- and TK-dependent
intracellular pathways. However, PKC and TK activation may also
play a role in the prevention of blood–brain barrier disruption in
association with quercetin scavenger activity, effective in prevent-
ing ROS formation and blood–brain barrier impairment (Fraser,
2011).
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