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The brain is characterized by a complex and integrated network of interacting cells in which
cell-to-cell communication is critical for proper development and function. Initially consid-
ered as an immune privileged site, the brain is now regarded as an immune specialized
system. Accumulating evidence reveals the presence of immune components in the brain,
as well as extensive bidirectional communication that takes place between the nervous
and the immune system both under homeostatic and pathological conditions. In recent
years the secretion of extracellular membrane vesicles (EMVs) has been described as a
new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs
influencing the microenvironment through the traffic of bioactive molecules that include
proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Increasing
evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-
cell communication pathways. Herein we review the role of EMVs secreted by neural cells
in modulating the immune response(s) within the brain under physiological and pathological
circumstances.
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INTRODUCTION
The central nervous system (CNS) is built upon complex cellu-
lar networks consisting of neurons – embodying about half the
volume of the CNS – and glial cells that make up the rest of the vol-
ume and provide support and protection for neurons. CNS cells
are structurally in close contact with vascular cells that control
their microenvironment through blood flow and the formation of
the blood–brain barrier (BBB), whose presence renders the CNS
a site that is in principle immunologically distinct. As such, until
a few decades ago the brain was generally considered a function-
ally immune privileged site devoid of immune cells, thus implying
its likely “invisibility” to some aspects of immune surveillance
(Wilson et al., 2010).

However, since the late 1980s accumulating evidence has been
provided that immune cells gain access to (and eventually per-
sist into) the healthy CNS and that immune responses can also
be mounted within the CNS (Wekerle et al., 1986). Currently, the
brain is more precisely regarded as an immune “specialized” site
where a close association between resident CNS cells and, impor-
tantly, a bidirectional cell trafficking between the brain and the
blood stream is needed primarily for brain integrity and home-
ostasis, but also for immune functions and repair upon injury
(Bradl, 1996). This relevant neuro-immune interplay takes place
mainly at the level of the neurovascular unit (NU) that represents
a sort of “master checkpoint” of the brain microenvironment. The
NU is the dynamic assembly of endothelial cells within a cap-
illary vessel, the surrounding extracellular matrix (ECM), and a
number of accessory cells, including pericytes, capillary-bound
astrocytes, perivascular dendritic cells (DCs), macrophages, and

neurons (Hawkins and Davis, 2005). On the basis of the evidence
to date, it appears that the brain and the immune system have the
capacity to establish a very sophisticated biochemical intercourse,
which is made of a plethora of paracrine molecules that used to be
naively considered solely immune-modulating, while later show-
ing remarkable additional effects on the CNS (Boulanger et al.,
2001).

The immune status of the CNS at the level of the NU becomes
therefore dichotomous when comparing homeostatic (healthy) to
reactive (pathological) conditions.

In the healthy CNS (i) the intact BBB is a gate to the influx
of immune cells and macromolecules from the blood stream; (ii)
chemokines and cytokines are only produced to a basal level which
is not enough to chemoattract immune cells; (iii) CNS endothelial
cells have a basal (low) expression of adhesion molecules that are
not capable of guiding the migration of immune cells; and (iv) the
antigen presentation capacity of brain immune cells is very limited,
due to negligible expression of molecules of the major histocom-
patibility complex (MHC; Carrithers et al., 2000). This situation
very rapidly changes under certain pathological conditions in
which the brain microenvironment reacts to infections or injuries,
or when disease-induced stresses result in secondary effects in the
CNS, ultimately leading to neuro-inflammation (Carrithers et al.,
2000).

As a consequence of the above, the injured CNS instantly
becomes locally immune competent and immune reactive, as
suggested by the different organized immune responses that are
observed both in and outside the injured area(s). These immune
responses can be either tightly adapted against a specific (self vs.
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Table 1 | Extracellular membrane vesicles in the brain.

Cell type Type of EMVs Function Reference

Microglia Shedding vesicles Non-classical release of IL-1β Bianco et al. (2005)

Exosomes Neuropeptide degradation, glucose catabolism, and

lactate production

Potolicchio et al. (2005)

Exosomes Secretion of insulin-degrading enzyme Tamboli et al. (2010)

Endothelial Cells Endothelial microparticles (EMPs) Cerebrovascular diseases (e.g., stroke) Simak et al. (2006), Jung et al. (2009)

Contribution to MS pathophysiology (enhanced

inflammation and increasing migration), functional

interactions between EMP and leukocytes

Minagar et al. (2001), Jy et al. (2004),

Sheremata et al. (2006)

Contribution to cerebral malaria pathogenesis Combes et al. (2005, 2006, 2010), Coltel

et al. (2006)

NPCs Membrane particles CD133/prominin-1 release Marzesco et al. (2005), Huttner et al.

(2008)

Exosomes None Kang et al. (2008)

Brain tumors Microvesicles miRNA and protein transfer; oncogenesis Skog et al. (2008)

Microvesicles Tumor progression Skog et al. (2008), Al-Nedawi et al. (2009)

Exosomes mtDNA release Guescini et al. (2010)

Exosomes Retrotransposon and oncogene transfer Balaj et al. (2011)

Microvesicles Angiogenesis Svensson et al. (2011)

Microvesicles Transformation Antonyak et al. (2011)

Microvesicles None Graner et al. (2009)

Microvesicles None van der Vos et al. (2011)

non-self) antigens or involve cellular and molecular pathways spe-
cific of innate responses (Griffiths et al., 2007) that involve different
types of immune cells (Doring and Yong, 2011; Graeber et al.,
2011; Miljkovic et al., 2011) and encompass different cell-to-cell
communication programs.

Focusing at cell non-autonomous mechanisms of neuro-
inflammation in auto/dysimmune inflammatory CNS disor-
ders – multiple sclerosis (MS) being among the most didactical
examples – cytokines, chemokines, and other known secreted
paracrine factors of intercellular communication are first released
by myelin-reactive peripheral T lymphocytes, then contribute
to the bystander activation of other circulating immune cells
(e.g., macrophages, neutrophils, and monocytes), and finally
are secreted within the CNS also by endothelial cells and neu-
rons/glia alongside the synthesis of classical neurotransmitters
(Doring and Yong, 2011; Graeber et al., 2011; Miljkovic et al.,
2011). Following these and other mechanisms of information
spread, the BBB is disrupted and the CNS acquires signals that
allow cells from the hematopoietic system (e.g., T lymphocytes
and monocytes) to leave the blood stream and accumulate at
the level of the NU. There, they come in contact with local
CNS cells, including microglia, leading to a second wave of
immune activation, and damage within the CNS (Mae et al.,
2011).

While there is general agreement on the ubiquitous and redun-
dant nature of some of the mechanisms regulating the neuro-
immune cross talk, still there is very little knowledge of the
modalities (as well as the messages) that can be used to convey
immune signals into (and around) the CNS (Blalock, 1994).

The recent description of new specialized structures for inter-
cellular communication, such as extracellular membrane vesicles

(EMVs; Cocucci et al., 2009; Thery et al., 2009; Thery, 2011) and
tunneling nanotubes (Gerdes and Carvalho, 2008; Gousset et al.,
2009), has significantly broadened the range of modalities of inter-
cellular communication. This has led to the challenging hypothesis
that some of these extracellular organelles might work as long-
distance signaling structures acting into either the extracellular
space or biological fluids prior (or as an alternative) establishing
direct cell-to-cell contacts between cells in the CNS (Antonucci
et al., 2012; Huttner et al., 2012; Saman et al., 2012; Street et al.,
2012).

Here we will review the most recent evidence on the role of
(secreted) EMVs in regulating the immune response(s) in the
brain.

EXTRACELLULAR MEMBRANE VESICLES, EXOSOMES,
MICROVESICLES, AND BEYOND
Cells produce many vesicles regulating the transfer of compo-
nents between intracellular compartments, but it is now clear that
eukaryotic cells also generate membrane vesicles that are secreted
into the extracellular space, and are therefore potential carriers
for intercellular communication. EMVs are spherical structures
that are formed by a lipid bilayer and that contain hydrophilic
soluble components. EMVs can form at the plasma membrane
(membrane particles) by direct budding or shedding into the
extracellular space, giving rise to large-size (>100 nm) membrane
particles, also defined as microvesicles, ectosomes, microparticles,
or exovesicles (Thery et al., 2009). Alternatively, EMVs can form
inside internal (late endocytic) compartments from where they
are subsequently secreted by fusion with the plasma membrane.
The recycling pathways of endocytosed components from the
cell surface involve several sorting events, which are regulated by
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molecular motors and take place at different steps of the pathways
(Maxfield and McGraw, 2004). The EMVs generated in multivesic-
ular endosomes (exosomes) are small in size (40–100 nm). The
exact nature of the intracellular compartments from which exo-
somes derive is still unclear. Recently, another class of microvesicles
known as gesicles have been identified (Mangeot et al., 2011).
These particles, approximately 100 nm in diameter and slightly
less dense than exosomes, are highly fusogenic and originate from
cells that have been induced to overexpress the spike glycoprotein
of the vesicular stomatitis virus (VSV-G). Finally, also exosome-
like vesicles (20–50 nm) that express the full-length 55-kDa tumor
necrosis factor (TNF) receptor 1 may originate from multivesic-
ular internal compartments (not necessarily being part of the
endosomal system), though their nature is not completely clear
(Hawari et al., 2004). Irrespective of their origin, all these extracel-
lular vesicles contain cytosol and expose on their outer surface the
extracellular side of the membrane from which they are formed
(flip–flop mechanism). Large membrane particles and ectosomes
have high levels of phosphatidylserine exposed on the outer mem-
brane – usually depending on cell type and stimuli – and express
the complement receptor (CR)-1, whereas exosomes are enriched
in tetraspanins (e.g., CD63, CD9). EMVs highly enriched in his-
tones are also released by dying and apoptotic cells (Thery et al.,
2009).

Despite the lack of definitive evidence for their physiological
function in vivo, EMVs appear to constitute a newly recognized
means of communication found to be shared by an increasing
number of cell types. In 2009 one of the first hypotheses postu-
lating that this sort of mechanism of communication might not
only exist, but also be relevant for neural cells, challenged the field
(Smalheiser, 2007, 2009). Concomitantly, the capacity to secrete
vesicles other than synaptic vesicles has been demonstrated for
almost every cell type that constitutes the brain (Von Bartheld and
Altick, 2011), namely neurons (Faure et al., 2006; Schiera et al.,
2007; Smalheiser, 2007; Putz et al., 2008; Lachenal et al., 2011),
astrocytes (Taylor et al., 2007; Guescini et al., 2010), oligoden-
drocytes (Trajkovic et al., 2008; Hsu et al., 2010; Fitzner et al.,
2011), and microglia (Bianco et al., 2005, 2009; Potolicchio et al.,
2005; Tamboli et al., 2010). Importantly, EMVs are also secreted by
neural stem/precursor cells (Marzesco et al., 2005; Huttner et al.,
2008; Kang et al., 2008; Pluchino et al., 2009b). Elevated levels of
EMVs expressing the neural stem cell marker prominin-1/CD133
in the cerebrospinal fluid (CSF) are observed in glioblastoma and
partial epilepsy, two disease states that are described to be associ-
ated to significant changes in adult neurogenesis (Ming and Song,
2011). This suggests the potential value of circulating EMVs as bio-
markers of either disease statuses or specific micro-environmental
cues in monitoring the behavior of neural progenitors (Huttner
et al., 2008, 2012).

Increasing evidence also suggests that EMVs may control fun-
damental cellular responses, such as intercellular signaling and
immune reactions (Simons and Raposo, 2009; Thery et al., 2009).
Several types of interactions have been proposed as being medi-
ated by secreted EMVs, mostly based on indirect in vitro evidence.
These include the adhesion of EMVs to the recipient cell sur-
face (e.g., through lipids or ligand–receptor interactions; Segura
et al., 2007), the internalization of whole EMVs into endocytic

compartments (e.g., mediated by receptors; Miyanishi et al., 2007),
or the direct fusion of VSV-G expressing gesicles (Mangeot et al.,
2011). However, whether EMV fusion occurs on the surface of the
recipient cell or after endocytosis via internal compartments (or
both) is still unclear. The functional consequences of this sophis-
ticated mode of intercellular communication include the amplifi-
cation and/or modulation of cellular (e.g., immune) responses
(Thery et al., 2009), as well as the acquisition of new func-
tional properties by recipient cells, such as migratory, adhesive,
or metastatic abilities (Al-Nedawi et al., 2008).

Extracellular membrane vesicles in the brain have been linked
to a number of different processes, such as regulation of myelin
membrane biogenesis (Bakhti et al., 2011), transfer of proteins or
mRNAs locally in highly polarized structures like neurons (Twiss
and Fainzilber, 2009), or trafficking of Nedd4 family interacting
protein 1 (Ndfip1) and associated Nedd4 family proteins for the
exosomal sequestration of unwanted metal cation-transporting
proteins during times of stress (Putz et al., 2008). Besides, EMVs
participate in the processing of misfolding/aggregation-prone pro-
teins associated with neurological diseases into their pathological
conformations, as well as their subsequent intercellular trafficking
(Vella et al., 2008). In particular, exosomes containing α-synuclein
have been demonstrated to cause cell death in neurons in vitro,
thus leading to an amplification and propagation of Parkinson’s
disease-related pathology, in vitro (Emmanouilidou et al., 2010).
In Alzheimer’s disease (AD), it has also been reported that β cleav-
age occurs in early endosomes followed by routing of β-amyloid
to multivesicular bodies (MVBs). Subsequently, a minute fraction
of Aβ peptides can be secreted from the cells in association with
exosomes. Also, exosomal proteins were found to accumulate in
the plaques of AD patient brains, suggesting a role in the patho-
genesis (Rajendran et al., 2006; Sharples et al., 2008; Bulloj et al.,
2010; Saman et al., 2012).

Moreover, exosomes are involved in the formation/transfer of
pathogenic proteins such as prions (Fevrier et al., 2004; Vella et al.,
2007; Alais et al., 2008), and may play a role in the spread of
hyperphosphorylated tau, the misfolded protein most commonly
associated with human neurodegenerative diseases (Goedert et al.,
2010).

In addition to proteins, some recent evidence shows that
secreted EMVs also contain nucleic acids, including DNA and
RNAs, some of which are specifically packaged into EMVs and
shuttled to neighboring recipient cells. The RNA has indeed several
advantages as an extracellular signaling molecule, and a number
of recent reports have envisaged a significant role for both cod-
ing and non-coding RNAs carried within EMVs as biologically
relevant extracellular signals (Dinger et al., 2008).

Micro RNAs (miRs) are small (21–23 nt) non-coding RNAs
that post-transcriptionally regulate gene expression by transla-
tional inhibition or destabilization of mRNAs (Bartel, 2009). As
such, a specific miR transferred within EMVs may simultaneously
regulate multiple target genes, thereby enabling complex changes
in multiple protein expression profiles. Recently, miRs have been
found in the extracellular space and fluids such as blood plasma,
urine, saliva, and sperm. Extracellular miR profiles have been con-
sidered as putative biomarkers of pathological states (De Smaele
et al., 2010; Ciesla et al., 2011),and the relatively high stability of the
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cell-free, circulatory miRs has been attributed to their associations
with RNA-binding proteins or their encapsulation within vesicles
(Hunter et al., 2008; Wang et al., 2010; Chen et al., 2012). Intrigu-
ingly, a reminiscence of this evidence dates back to 1977 when
small particles possessing the characteristic of polysomal tumor
virus-specific RNA were first detected in the CSF of patients with
various types of CNS solid tumors (Cuatico et al., 1977). The miR
profiles of tumor-secreted exosomes commonly mirror those of
the parent cells (Taylor and Gercel-Taylor, 2008; Rabinowits et al.,
2009), while viral nucleic acids may hijack the host’s exosomes to
affect immune regulation in recipient cells (Gourzones et al., 2010;
Meckes et al., 2010; Pegtel et al., 2010).

More recent perspectives have expanded beyond the role of
extracellular miRs as passively released indicators of disease.
Indeed, the extracellular secretion of miRs has been found to be
both active and energy-dependent, with sorting of specific miRs
into EMVs occurring prior to release (Gibbings et al., 2009; Kosaka
et al., 2010; Zhang et al., 2010). Some of these studies have in fact
highlighted the fact that some of the identified RNAs [e.g., over
120 mature miRs within exosomes from mast cells and recently
also pre-miRs in EMVs from mesenchymal stem cell (MSC)]
are expressed at higher levels or even uniquely within EMVs, as
compared to donor cells (Valadi et al., 2007; Chen et al., 2010).
Moreover EMVs derived from MSC not only contain pre-miRs
but also Ago2, a component of the machinery for their matura-
tion, as well as mature, functional miR (Collino et al., 2010). This
would suggest the existence of dedicated (and still not clarified)
cellular trafficking control mechanisms for recycling, collecting,
and packaging specific nucleic acids into EMVs.

EXTRACELLULAR VESICLES AS CONVEYORS OF IMMUNE
RESPONSES
Recently, several studies have focused on the role of EMVs as con-
veyors of immune response (Clayton and Mason, 2009; Anand,
2010; Bobrie et al., 2011; Chaput and Thery, 2011). The impact of
EMV-mediated immune modulation remains an on-going con-
troversy, with the net functional effect – that is promotion or
suppression of the immune response – being very much dependent
on the nature of the parent cell (Thery et al., 2009).

Exosomes secreted by antigen presenting cells (APCs), such as
DCs and B lymphocytes, carry a range of immune-stimulatory
molecules including MHC-I, MHC-II, as well as co-stimulatory
molecules such as CD80/B7.1 and CD86/B7.2. DC exosomes acti-
vate T cells, and participate to the development of antigen-specific
immune responses (Raposo et al., 1996; Zitvogel et al., 1998; Thery
et al., 1999; Clayton et al., 2001; Segura et al., 2005a,b; Bhatnagar
et al., 2007).

Similarly, exosomes derived from B lymphocytes are enriched
in proteins that facilitate antigen presentation and can stimulate
T cells in vitro, implying a role in the maintenance of T cell
memory or T cell tolerance (Raposo et al., 1996; Escola et al.,
1998; Muntasell et al., 2007). Furthermore, B cell-derived exo-
somes have been found to be specifically delivered to follicular
DCs (FDCs) in vitro, thus suggesting a potential route by which
FDCs might passively acquire peptide-loaded MHC class II mole-
cules for further stimulation of CD4+ T cells (Denzer et al., 2000).
Preclinical studies have also demonstrated that antigens increase

their immunogenicity when trafficked by exosomes (Chaput and
Thery, 2011).

While it is firmly established that miRs play an important role in
immune regulation (O’Connell et al., 2010), only recently has evi-
dence been presented supporting the exosomal transfer as a route
by which miRs can affect such activity. Mittelbrunn et al. (2011)
have demonstrated in vitro an antigen-driven, immune synapse
(IS)-dependent, unidirectional transfer of exosomes between T
cells and APCs. Antigen-induced IS formation was found to result
in a polarization of exosome-generating MVBs toward the IS and
a concomitant enhancement in exosome secretion. Furthermore,
J77 T cells transduced to overexpress miR-335 were observed to
knockdown the miR-335 target gene Sox4 in recipient Raji B cells
in an antigen-specific manner correlating with the transfer of the
exosomal marker CD63. Inhibition of IS and exosome formation
were found to impair T cell to APC exosome and miR transfer,
respectively. While not directly affirming the role of exosomal miR
delivery in immune regulation, these results do imply the feasibility
of such a mechanism (Mittelbrunn et al., 2011). Nevertheless, the
ultimate contribution of exosomes to immune regulation, and par-
ticularly the role of miRs in this process, remains controversial due
to the inherent complexities of the immune response mechanism.

Given that almost all cell types secrete EMVs it should be taken
into account that, in contrast to the in vitro conditions in which
often only one cell type is analyzed, the in vivo interplay is much
more complex and the vesicle exchange may very likely be bidi-
rectional. The mechanism of vesicle transfer (as well as the signals
conveyed with vesicles) might also be different between various
cell types, thus leading to cell- or context-specific vesicle effects
(Koppler et al., 2006). When trying to translate the immune prop-
erties of a certain subset of vesicles, the perspective from which the
system is evaluated should be carefully taken into account (Brown
et al., 2008). As such, depending on the donor cell type, EMVs
either activate or suppress the immune response (Valenti et al.,
2006, 2007; Wieckowski and Whiteside, 2006; Zhuang et al., 2011).
While the delivery of exogenous miRs to target cells appears to be
facilitated by a vesicle-mediated specificity, a firm understanding
of the recipient uptake mechanisms remains elusive (Chen et al.,
2012).

In the brain, the regulation of immune functions by EMVs has
been convincingly reported for microglia/macrophages, endothe-
lial cells, and brain tumor cells, while only indirectly ascribed to
stem cells, so far (Table 1).

EXTRACELLULAR VESICLES AND MICROGLIA/MACROPHAGES
Microglia, the resident macrophages of CNS parenchyma, and
macrophages, are two related classes of cells (Raivich and Banati,
2004) that are now recognized as the prime components of the
intrinsic brain immune response, alternatively defined as the van-
guard in host defense and tissue repair (Streit and Kincaid-Colton,
1995; Rock and Peterson, 2006).

Historically, the function of microglia has been somewhat con-
troversial. This is in part due to the extremely plastic phenotype
and broad activity of this cell type (Graeber, 2010). However, our
understanding of the role of microglia is now evolving. In addition
to their well-established housekeeping properties (Kettenmann
et al., 2011; Tremblay et al., 2011), microglia are increasingly being
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attributed the function of coordinators of the trafficking of other
immune cells into the nervous system (Aloisi et al., 2001). The cur-
rent concept of microglia is as dynamic sensors of brain trauma,
disease, and degeneration (Kettenmann, 2007), yet there is a gen-
eral agreement that they exhibit both a bright and a dark side in
this role.

Microglia function in normal brain physiology is still poorly
defined, but resident non-activated microglial cells act as poor
APCs due to their constitutive low levels of MHC-I/II mole-
cules. However, upon activation they rapidly express MHC-I/II
proteins and quickly become efficient “non-professional” antigen
presenters. The non-professional nature and CNS-localization of
microglia result in a notably different antigen presentation mech-
anism than that generally established for DCs. Upon internalizing
antigens, DCs exit the tissue in which they reside (typically thought
to be restricted to the spleen, lymph nodes, the skin, and mucosal
surfaces) and enter the draining lymph nodes where they stimulate
naïve T cells (Ransohoff and Cardona,2010). In contrast,microglia
encounter T cells during inflammation when T cells cross the BBB
thanks to specialized surface antigens and then directly bind to
microglia in order to receive antigens. Once they have been pre-
sented with antigens, T cells fulfill a variety of effector functions
including pro-inflammatory recruitment, formation of immuno-
logical memories, and secretion of cytotoxic molecules (Yang et al.,
2010).

Microglial cells secrete EMVs, and proteomic studies have iden-
tified several microglial vesicle proteins that were already reported
in EMVs from B cells and DCs (Potolicchio et al., 2005). Microglial
EMVs (mirroring their parent cells) also express MHC class II
molecules, the levels of which are up regulated in response to
stimulation with interferon (IFN)-γ (Potolicchio et al., 2005). The
release of EMVs from microglial cells is also enhanced in critical
conditions where immune activation is required. Upon activation,
microglia release both soluble pro-inflammatory cytokines, such
as interleukin (IL)-1β, IL-6, and TNF-α, as well as shed mem-
brane vesicles (Bianco et al., 2009). Activated microglial cells also
rapidly release IL-1β by a non-classical pathway of secretion lead-
ing to vesicle shedding (MacKenzie et al., 2001; Bianco et al., 2005)
(Table 1).

There is also evidence of increased number of microglia-
derived EMVs secreted by microglial cells into the CSF circulation
in rodents with CNS inflammation, thus suggesting that circulat-
ing EMVs can be considered as surrogate markers of local (com-
partmentalized) vs. systemic inflammation ultimately affecting the
CNS (Antonucci et al., 2012).

EXTRACELLULAR VESICLES AND ENDOTHELIAL CELLS
Endothelial cells release small membrane vesicles, known as
endothelial microparticles (EMPs), that have been regarded as use-
ful indicators of the functional state of the diseased endothelium;
they may also potentially play key roles in the disease pathogen-
esis (Chironi et al., 2009; Morel et al., 2011). EMPs are found in
the circulation of healthy subjects but their numbers increase in
various pathological conditions such as thrombotic or infectious
diseases, suggesting that these vesicles can act as pro-inflammatory
and pro-coagulant regulators (Rabelink et al., 2010; Morel et al.,
2011). EMPs released from the injured endothelium after cere-
brovascular diseases such as cerebral stroke are found associated

with microcirculatory injury, capillary blocking, acute and chronic
inflammatory processes, and disruption of the BBB. The level of
circulating EMPs has also been correlated with stroke severity,
brain lesion volume, and outcome (Simak et al., 2006; Jung et al.,
2009).

During CNS inflammation, the increased permeability of the
BBB largely results from interactions among activated monocytes
and T cells with cerebral endothelial cells, which – coupled with
lymphokine and chemokine production – leads to cell adhesion
to the cerebrovascular endothelium and trans-endothelial migra-
tion across the BBB. Upon activation by inflammatory cytokines
such as IFN-γ and TNF-α, endothelial cells secrete EMPs. This
has been reported on MS studies in which a correlation between
plasma CD31+ EMP levels and clinical exacerbations, as well as
brain magnetic resonance imaging (MRI) disease activity, has been
reported (Minagar et al., 2001). Interestingly, the plasma levels of
CD31+ EMP decrease upon disease modifying drug therapy with
IFN-β1a (Sheremata et al., 2006) and this decrease correlates well
with decrease in the number and volume of contrast enhancing
T1-weighed lesions in MRIs (Lowery-Nordberg et al., 2011).

The role of EMPs in the pathogenesis of MS has been further
explored and functional interactions between EMP and leuko-
cytes have been assessed in vitro. These studies revealed that
EMPs are captured preferentially by monocytes, less so by neu-
trophils, and have little affinity for lymphocytes (Jy et al., 2004).
Bound EMPs activated monocytes leading to an increased expres-
sion of CD11b and migration through the cerebral endothelial
cell layer. In an in vitro model for trans-endothelial migration,
EMP–monocyte complexes showed a higher rate of migration of
monocytes through monolayers of human cerebral microvascular
endothelial cells (ECs) vs. monocytes alone.

Endothelial microparticles may then contribute to MS patho-
physiology, enhancing inflammation, and increasing trans-
endothelial migration of monocytes by binding to and activating
monocytes, likely through CD54 (Jy et al., 2004).

Circulating EMPs are also increased in patients with severe cere-
bral malaria (CM; Coltel et al., 2006; Combes et al., 2006, 2010),
the major fatal complication of plasmodium infection, where they
appear to have a pathogenic role. This is strongly supported by
the finding that ABCA1 transporter deletion associated with an
impaired EMP production confers a complete protection against
CM (Combes et al., 2005).

Hergenreider et al. have recently investigated a putative role for
EMPs in mediating the atheroprotective properties of the parent
cell. The shear-responsive transcription factor Krüppel-like fac-
tor 2 (KLF2), was recently found to up-regulate the miR-143/145
cluster in KLF2-transduced (or simply shear-stress-stimulated)
ECs. Given the role of miR-143/145 in controlling the pheno-
type of smooth muscle cells (SMCs), Hergenreider et al. have
proposed a miR-143/145-based – EMV-mediated – communica-
tion between parent ECs and SMCs. Real-time PCR analysis of
EMVs isolated from KLF2-activated ECs showed enrichment in
miR-143/145. In vitro EC-to-SMC transfer of miR-143/145 via
EMVs was evidenced in co-cultures by restoration of SMC miR-
143/145 content to levels near those measured pre-knockdown
and a concomitant knockdown of mRNAs known to be targeted by
the miR-143/145 cluster (e.g., ELK1, KLF4, CAMK2d, and SSH2).
In vivo, the delivery of isolated atheroprotective EC EMVs into
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atherosclerosis-prone (ApoE−/−) mice resulted in a reduction of
aortic atherosclerotic lesion formation (Hergenreider et al., 2012)
(Table 1).

EXTRACELLULAR VESICLES AND BRAIN TUMORS
The literature describes contradictory functions in immune
responses of vesicles secreted by tumor cells in vitro: on one hand
transferring antigens to DCs to allow cross-presentation (Wolfers
et al., 2001), and subsequent stimulation of cytotoxic lymphocytes
(Zitvogel et al., 1998; Gastpar et al., 2005); on the other inhibit-
ing several players of the effector step of anti-tumor immune
responses that include the inhibition of natural killer (NK) cell
proliferation and cytolytic function (Liu et al., 2006; Clayton et al.,
2007).

In this context the glioma model system (gliomas are classified
according to the cells that give rise to the tumor, e.g., astrocytoma,
oligodendroglioma, glioblastoma (GBM), and oligo/astrocytoma)
has been extensively examined for vesicle release and function
(Trams et al., 1981; Skog et al., 2008; Al-Nedawi et al., 2009; Graner
et al., 2009; Guescini et al., 2010; Balaj et al., 2011; Graner, 2011;
Svensson et al., 2011; van der Vos et al., 2011).

The original idea was that tumor-derived EMVs would behave
like cancer vaccines because of the presence of tumor-specific anti-
gens and heat shock proteins known to favor APC activation.
Evidence of induction of anti-tumor immune responses in vivo
(Graner et al., 2009) involving both specific CD8+ cytotoxic T-
lymphocyte (CTL) response against autologous tumor cells (Bu
et al., 2011) and an effective antibody production (Graner et al.,
2009) have been reported.

A significant proportion of human gliomas express a truncated,
constitutively active mutant of the epidermal growth factor recep-
tor (EGFR) known as EGFR variant III (EGFRvIII). EGFRvIII
expression is specific to some tumors and defines clinically dis-
tinct glioblastoma subtypes (Pelloski et al., 2007). Thus, a patient’s
EGFRvIII status (positive or negative) determined by analysis of
EMVs carried in the serum can be diagnostic of their tumor type.
EGFRvIII mRNA is found in EMVs from many patients tested,
but in none of the controls. This finding might have diagnostic
implications for EMV as a biomarker (Skog et al., 2008).

Recently it has been demonstrated that EMVs shed by glioma
cells promote oncogenic transformation of neighboring cells
thought the transfer of the above described EGFRvIII (Al-Nedawi
et al., 2008) as well as the protein cross-linking enzyme tissue
transglutaminase (tTG) that conferred certain characteristics of
cancer cells (e.g., anchorage-independent growth and enhanced
survival capability) to non-transformed fibroblasts and epithelial
cells (Antonyak et al., 2011).

Much of the current knowledge regarding the immunology
of tumor-derived EMVs is dominated by the opinion that such
vesicles mediate immune suppression by increasing the activity
of regulatory T cells (Treg) and myeloid-derived suppressor cells,
suppressing activated T cells and NK cells, and by inhibiting DC
maturation (Iero et al., 2008). In the same population of vesi-
cles therefore seems to be a range of immune-stimulatory and
potentially immune-suppressive functions. To date, these findings
have been robustly demonstrated for EMVs released by tumor
types other than brain tumors, but initial evidence of immune

suppression has also been reported for GBM, thus correlating with
the abnormal cellular immune response observed in patients.

In particular, peripheral blood mononuclear cells from healthy
donors exposed in vitro to GBM exosomes displayed a suppressed
phenotype with higher CD14 expression and lower HLA-DR (vs.
non-exposed cells; de Vrij et al., 2011). Moreover, exosomes iso-
lated from U87 and U138 human glioblastoma cell lines signifi-
cantly inhibited the proliferation of T cells in vitro an effect likely
resulting from FasL expression by tumor cells inducing apoptosis
of activated T cells (de Vrij et al., 2011; Sabin et al., 2011).

The stem cell theory of carcinogenesis (Trosko and Chang,
1989) might suggest that a common cell signaling system oper-
ates in normal and malignant neural stem cells (Gilbertson and
Rich, 2007). It has been in fact suggested that intrinsic brain
tumors originate from a population of neural stem/precursor
cells (NPCs) within prototypical germinal niches of the post-natal
brain, including the sub-ventricular zone of the lateral ventricles
(Hemmati et al., 2003; Singh et al., 2004; Uchida et al., 2004;
Vescovi et al., 2006). NPCs, as self-renewing precursors capable
of producing progeny along neuronal or glial lineages, com-
monly possess features associated with CNS tumors, including
a robust proliferative potential and a diversified progeny (Nguyen
et al., 2012). Cancer stem cells also express the stem cell marker
prominin/CD133 (Nguyen et al., 2012). Brain tumor cells are
described as “abnormal deranged cells” of the CNS and may reca-
pitulate many features, albeit exaggerated, of normal cells, thus in
turn helping in the understanding of normal cell biology and cell
differentiation (Sanai et al., 2005; Jacques et al., 2010) (Table 1).

It is therefore plausible that the similarities between normal
stem cells and cancer stem cells could extend to the unique rela-
tionship that stem cells have with their immediate microenviron-
ments.

EXTRACELLULAR VESICLES AND STEM CELLS
Stem cells are the leading candidates as a source for transplan-
tation in patients with neurological diseases. A variety of stem
cells – including hematopoietic stem cells, MSCs and NPCs – dis-
play the potential to promote immune regulation, thus giving rise
to the speculation that these properties are likely due to a com-
mon functional signature that in turn widens the possible source
for cell therapy (Uccelli et al., 2008; Martino et al., 2011). Many
studies focusing at the understanding of the possible crosstalk
between NPCs and immune cells have been conducted, based on
the observation that mouse and human NPCs share the expression
of an array of functional immune-like receptors (e.g., cell adhesion
molecules and pro-inflammatory chemokine receptors; Butovsky
et al., 2006). The immune regulatory actions of transplanted NPCs
have been described in different experimental models of neurolog-
ical diseases, such as acute and chronic experimental autoimmune
encephalomyelitis (EAE), spinal cord injury (SCI), stroke, and
neurometabolic diseases. In all these models transplanted cells
improved the clinical outcome mostly by immune modulation,
neurotrophic, and neuroprotective effects, rather than substantial
replacement of endogenous cells.

This has been generally attributed to an in vivo NPC capabil-
ity to modulate the infiltration of blood-borne encephalitogenic
T cells at the level of the CNS, through (i) the down-regulation
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of intercellular adhesion molecule (ICAM)-1 and leukocyte func-
tion associated (LFA)-1, two cell adhesion molecules involved in
T cell migration, at the level of the BBB; (ii) the induction of T
cell-specific apoptosis or; (iii) the increase of the number of regu-
latory T cells (Einstein et al., 2003; Pluchino et al., 2005). The very
same findings are consistent with in vitro observations document-
ing the capacity of NPCs to inhibit both non-antigen-specific as
well as antigen-specific T cell activation and proliferation (Einstein
et al., 2003; Fainstein et al., 2008), and apoptosis induction via a
FasL-dependent mechanism (Knight et al., 2010). The suppres-
sion of T cell proliferation has been attributed at least in part to
the production of soluble mediators, such as nitric oxide (NO) and
prostaglandin E2 (PGE2; Wang et al., 2009). An enhanced efficacy
has been obtained with genetically engineered NPCs expressing IL-
10, an anti-inflammatory cytokine that efficiently suppresses EAE
(Croxford et al., 2001), as compared to control (non-engineered)
NPCs (Yang et al., 2009). Similar results to those achieved in
rodent EAE have been obtained in non-human primates with
human NPCs (Kim et al., 2009a; Pluchino et al., 2009a). Fur-
ther work on rodent models of stroke documented that, thanks to
their reactivity to CCL2/CCR2 and CXCL12/CXCR4 axes, NPCs
migrate in the perilesional area and persist there in an undiffer-
entiated phenotype (Imitola et al., 2004; Darsalia et al., 2007;
Bacigaluppi et al., 2009; Sun et al., 2010; Andres et al., 2011).
Transplanted NPCs, engaged in a complex interplay with the
inflammatory environment, are able to reduce the number of infil-
trating cells (neutrophils) in the brain as well as the numbers of
activated macrophages in lymphoid organs (Lee et al., 2008). NPCs
also vary the bioavailability of immune mediators (Kilic et al.,
2008), i.e., increasing gene expression levels of vascular-endothelial
growth factor (VEGF) and down-regulating in the ischemic region
multiple RNA species involved in inflammation, including IFN-
γ, TNF-α, IL-1β, IL-6, and leptin receptor (Bacigaluppi et al.,
2009). In models of stroke, NPCs demonstrated the ability to
modify the ischemic environment via induction of neurotrophic
factors [such as stromal-derived factor (SDF)-1/CXCL12, insulin-
like growth factor (IGF)-1, VEGF, transforming growth factor
(TGF)-β, and brain-derived growth factor (BDNF)] and activa-
tion of selected aspects of the inflammatory response, particularly
CD11b+ microglia/macrophages (Capone et al., 2007).

Several studies have also highlighted the crucial role of the inter-
action between transplanted NPCs and microglia/macrophages,
although with controversial results. On one side there is the idea
that microglia activation might be required for transplanted NPCs
to exert their neuroprotective action, given the indirect evidence
of its increased number after NPC-transplantation in models
of stroke (Capone et al., 2007; Daadi et al., 2010). This is also
more directly suggested by the increased ischemic volume in mice
affected by experimental middle cerebral artery occlusion (MCAo)
after selective ablation of CD11b+ microglia in CD11b-thymidine
kinase mutant-30 mice (Lalancette-Hebert et al., 2007). On the
other hand, significant reduction of microglia/macrophages is
observed after the intravenous NPC-transplantation in wild type
MCAo mice that leads to increased neuronal survival and recovery
of locomotor functions (Lee et al., 2008; Bacigaluppi et al., 2009).

In experimental SCI, NPCs injected into the CSF synergize
with myelin-specific T cells used as a vaccination therapy that

stimulated transplanted NPCs to specifically migrate to the site
of injury, while also instructing the local macrophages/microglial
cells toward a tissue-protective phenotype (Ziv et al., 2006).
Recently, NPCs that were implanted focally at the level of the
severely contused mouse spinal cord, survived at the boundaries
of the injured spinal cord, always in very close contiguity with
blood vessels, while retaining undifferentiated morphology and
ultrastructure and intimately interacting with phagocytic cells and
astrocytes via cellular junctional coupling. This was associated to
increased levels of inflammatory mRNAs and significant reduc-
tion of the proportion of “classically activated” (M1) infiltrating
macrophages and, in turn, remarkable promotion of the healing
of the injured cord (Cusimano et al., 2012).

Immune regulation mediated by transplanted NPCs may take
place in the CNS (Pluchino et al., 2005), as well as in secondary
lymphoid organs such as the lymph nodes or the spleen (Ein-
stein et al., 2007; Pluchino et al., 2009b). Einstein et al. have
shown that in the production of pro-inflammatory cytokines in
response to myelin oligodendrocyte glycoprotein (MOG) 33–35
peptide EAE-derived lymph node cells were strongly inhibited
by NPCs. Furthermore, primed T cells from mice treated with
NPCs were also deficient in their ability to adoptively trans-
fer EAE to a naïve host (Einstein et al., 2007). We have shown
striking peripheral (i.e., at the level of the secondary lymphoid
organs) accumulation, survival, and long-term persistence of
NPCs injected sub-cutaneously into mice with EAE. In this experi-
mental context, NPCs showed negligible propensity to accumulate
into the brain, but rather were consistently capable of modify-
ing the perivascular lymph node microenvironment by hindering
the activation of myeloid DCs via a bone morphogenetic pro-
tein (BMP)-4 dependent mechanism, which in turn limited the
expansion of antigen-specific encephalitogenic T cells at the sites
of antigen presentation (Pluchino et al., 2009b). The survival
of NPCs outside the CNS was likely promoted by the in situ
increased levels of major stem cell-fate determinants, including
the BMP-4 and -7, sonic hedgehog (Shh), and the BMP antago-
nist Noggin, which were released both by transplanted NPCs and
immune cells (Pluchino et al., 2009b). Also human NPCs have
been shown to interfere with a number of major DC functions,
such as the differentiation of myeloid precursor cells (MPCs)
into immature DCs (iDCs), and the maturation of iDCs into
functional (antigen presenting) mature DCs. (Pluchino et al.,
2009a).

The general consensus from these and other studies is now that
transplanted non-hematopoietic stem cells promote remarkable
clinical and pathological amelioration from inflammatory-driven
CNS damage and that this is due to mechanisms alternative to the
initially expected cell replacement (Martino and Pluchino, 2006).

It is therefore possible to speculate that in addition to paracrine
and endocrine factors that transplanted stem cells will undoubt-
edly release at the level of the extracellular space, EMVs are also
likely to play a role in the mediation of some of the parental cell’s
functions in shaping the host microenvironment.

One of the first reports on stem cell-derived EMVs identi-
fied two classes of membrane particles (named P2 and P4 by
the authors), with diameters of 600 and 50–80 nm, respectively,
which carry the stem cell marker prominin-1/CD133, a pentaspan
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membrane protein found on the membrane protrusions of the
apical surface of neuroepithelial cells, in the lumen of the neural
tube in the developing embryonic mouse brain. The P2 and P4
classes of particles were observed in the ventricular fluid dur-
ing the onset and early stages of neurogenesis, respectively, and
their presence correlated with a change in the nature of the
neuroepithelial membrane protrusions. It has been hypothesized
that these particles may exert a signaling role or they may be a
mean of discharging membrane microdomains that endow these
cells with stem/progenitor cell properties contributing to their
differentiation (Marzesco et al., 2005).

Embryonic stem (ES) cells have also been shown to be a rich
source of EMVs. Mouse and human ES cell–EMVs traffic various
stem cell-specific molecules that regulate self-renewal of pluripo-
tent cells in embryoid bodies and may affect the growth of recipient
cells, e.g., contributing to cell-fate decision.

Embryonic stem cell–EMVs are in fact highly enriched in Wnt-
3 protein and mRNAs for transcription factors such as Oct-4,
Nanog, and Rex-1, which are markers of pluripotency that are typ-
ically implicated in self-renewal. Furthermore, they are capable of
reprogramming hematopoietic progenitors cells (HPCs) not only
by stimulating them with surface-expressed ligands but also by
delivering ES-derived Oct-4 mRNA which is subsequently trans-
lated into Oct-4 protein within the recipient cell (Ratajczak et al.,
2006).

Recently, ES cell–EMVs have been demonstrated to be capable
of transferring a subset of miRs to mouse embryonic fibroblasts
(MEFs); the most efficiently transferred miRs (as determined by
real-time quantitative RT-PCR analysis of the recipient cells) were
those abundant in the parent ES cells but relatively deficient in
recipient fibroblasts (i.e.,miR-290,miR-291-3p,miR-292-3p,miR-
294, and miR-295), suggesting a tightly regulated transfer process
(Yuan et al., 2009).

It has been also recently proposed that the interaction of stem
cells with the microenvironment has a critical role in defining stem
cell phenotype. This concept acquires relevance especially in the
context of tissue/cellular injury, as the continuous genetic modula-
tion through EMV transfer between neighboring cells can be a key
determinant of stem cell phenotype variation (Quesenberry and
Aliotta, 2008; Aliotta et al., 2010). This hypothesis was first pro-
posed for marrow cells and their capacity to assume the phenotype
of other hematopoietic cells or non-hematopoietic cells (conver-
sion). The “continuum model” of stem cell regulation states that
the potential of marrow stem cells continually changes with cell
cycle transit and that marrow stem cell are indeed cycling cells
(Quesenberry and Aliotta, 2008; Aliotta et al., 2010). Studies with
mouse lung-derived EMVs and mouse bone marrow cells have
shown that the capacity to take up EMVs varies with cycle phase.
Thus, phenotype modulation at the stem cell level involves both
cell cycle and EMV phenotype change (Quesenberry and Aliotta,
2008).

Extracellular membrane vesicles derived from human liver stem
cells (HLSC) induce proliferation and apoptosis resistance in cul-
tured human hepatocytes and favor liver regeneration in hepatec-
tomized rats through the transfer of a defined pattern of mRNAs
associated with cell functions related to the control of transcription
(e.g., DMRT2, HOXC12, NFIX, and HOXA3), translation (AGO2),

and proliferation (e.g., MATK, MRE11A, CHECK2, and CDK2;
Herrera et al., 2010).

Interestingly, the pattern of genes present in HLSC-derived
EMVs is substantially different from that of EPCs and MSCs
(Deregibus et al., 2007; Bruno et al., 2009) indicating a parental
cell-specific signature.

Exosomes from human ES cell-derived MSCs have been
recently shown to reduce infarct size in a mouse model of myocar-
dial ischemia/reperfusion injury and in this setting exosomes
have been identified as the cardioprotective component in the
MSC paracrine secretion (Lai et al., 2010). These very same
MSC-derived exosomes contained the hsa-let-7b and hsa-let-7g
predominantly in the precursor form (Chen et al., 2010).

Systemically injected EMVs from human bone marrow-derived
MSCs have been shown to accelerate kidney repair in a mouse
model of acute kidney injury (AKI) by inhibiting apoptosis and
stimulating tubular epithelial cell proliferation. EMVs also signifi-
cantly reduced the impairment of renal function. Pretreatment of
EMVs with RNase to inactivate their RNA cargo abrogated these
protective effects. Moreover, EMVs capable of reducing the acute
injury also protected from later chronic kidney disease (Gatti et al.,
2011).

All these studies suggest the existence of a bidirectional
exchange of genetic information between stem and neighboring
cells, or reciprocally from injured cells to bone marrow-derived
or resident stem cells that in turn lead to tissue repair (Camussi
et al., 2010). In this context, embryonic and adult stem cell-derived
EMVs shuttle defined patterns of mRNAs and miRs that are inter-
nalized by a receptor-mediated mechanism in target cells, and may
induce de-differentiation of cells surviving injury with cell cycle
re-entry and tissue self-repair; conversely, it might be envisaged
that transcripts delivered by EMVs from injured cells may repro-
gram the phenotype of stem cells to acquire specific features of the
inflamed/damaged microenvironment.

The first tentative evidence of immune modulation by NPC-
derived exosomes emerged from experiments in which the culture
supernatant of hNPC (HB1.F3) suppressed the activation and
proliferation of human T cells by apoptosis and cell cycle arrest.
Exosomes isolated from hNPCs and added to the supernatant of
cultured T cells resulted in a similar suppression by G0/G1 cell
cycle arrest. This reinforces the possibility that (at least part of)
the immune modulatory effects of hNPCs might be mediated by
secreted EMVs/exosomes (Kim et al., 2009b).

The hypothesis of EMV secretion by NPCs introduces a com-
pletely different dimension to the therapeutic applications of
NPCs in regenerative medicine. By replacing transplantation of
NPCs with administration of their secreted products (including
EMVs), many of the limitations and safety concerns associated
with the transplantation of viable replicating cells, such as tumors
arising from transplanted NPCs, could be mitigated (Amariglio
et al., 2009).

As naturally occurring“nanoparticles,”EMVs may benefit from
the expression of specific membrane molecules that might confer
them a potential mechanism for the homing to a specific tissue or
microenvironment.

The future challenge is the discovery of the molecules (i.e., pro-
teins, mRNAs, or miRs) that might recapitulate the therapeutic
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efficacy of transplanted NPCs, the engineering or modification of
the exosome surface antigen and internal content, and their in vivo
delivery to the target site.

Very recent studies report on the use of exosomes as a fast and
selective brain-targeted delivery system of therapeutic molecules
able to overcome the major hurdle imposed by the BBB. Sys-
temically injected immature DC-derived exosomes, engineered to
express Lamp2b fused to the CNS-specific rabies viral glycoprotein
(RVG) peptide, have been shown to deliver GAPDH short interfer-
ing RNA (siRNA) to the mouse brain (Alvarez-Erviti et al., 2011).
The siRNA was efficiently delivered to neurons, microglia, oligo-
dendrocytes, and oligodendrocyte precursors. The same report
details similar achievements with siRNA that interfere with the
enzyme β-secretase 1 (BACE-1), a foremost target for the treat-
ment of AD, where the amyloid-β (Aβ) peptide is believed to
play a key role in the pathogenesis of AD (Alvarez-Erviti et al.,
2011).

Zhuang et al. have recently explored the use of T cell-
derived exosomes to deliver anti-inflammatory drugs to the
mouse brain through a non-invasive intranasal route. The
authors challenged three different models of brain inflamma-
tion that included lipopolysaccharide (LPS)-induced inflamma-
tion, MOG-induced EAE and the orthotopic glioblastoma (GL-
26) model. Intranasally administered exosome-encapsulated anti-
inflammatory drugs (curcumin or the signal transducer and
activator of transcription 3 (Stat3) inhibitor JSI124) were selec-
tively taken up by microglia, both “resting” and “activated.” The
administration of exo-curcumin led to a significant reduction
in the number of microglial cells, while exo-JSI124 resulted in
the enhancement of tumor apoptosis and a concomitant reduc-
tion in disease progression in all the tested models. The immune
reaction toward the parental cell exosomal antigens, in terms of
immune tolerance or immune responsiveness, needs further eval-
uation. The authors speculate that exosomes taken up by naïve
microglial cells may lead to the induction of an immune toler-
ance to antigens released from the cells producing the exosomes,

whereas the exosomes taken up by activated microglial cells may
lead to activation of immune cells (Zhuang et al., 2011) (Table 1).

The feasibility of scaling up production and purification of
clinical grade exosomes using a Good Laboratory Practice process
using DC-derived exosomes has been partially addressed (Escudier
et al., 2005), and various clinical trials are about to start (Chaput
and Thery, 2011).

CONCLUSION
Depending on their origin, EMVs are able to either stimulate or
repress functions of the immune system and drive regenerative
processes. Vesicles secreted by stem cell sources other than NPCs
have begun to prove that vesicles are endowed with immune mod-
ulatory properties that might make them promising agents to be
exploited for therapeutic purposes.

The future challenge for exosomal research is to continue look-
ing into innate (physiological) mechanisms with the focus of
translating the knowledge of basal (vs. reactive) cell functions into
innovative highly clinical impact therapeutics.
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