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When investigating fractal phenomena, the following questions are fundamental for the
applied researcher: (1) What are essential statistical properties of 1/f noise? (2) Which
estimators are available for measuring fractality? (3) Which measurement instruments are
appropriate and how are they applied?The purpose of this article is to give clear and compre-
hensible answers to these questions. First, theoretical characteristics of a fractal pattern
(self-similarity, long memory, power law) and the related fractal parameters (the Hurst
coefficient, the scaling exponent α, the fractional differencing parameter d of the autore-
gressive fractionally integrated moving average methodology, the power exponent β of
the spectral analysis) are discussed. Then, estimators of fractal parameters from different
software packages commonly used by applied researchers (R, SAS, SPSS) are introduced
and evaluated. Advantages, disadvantages, and constrains of the popular estimators (d̂ML,
power spectral density, detrended fluctuation analysis, signal summation conversion) are
illustrated by elaborate examples. Finally, crucial steps of fractal analysis (plotting time
series data, autocorrelation, and spectral functions; performing stationarity tests; choos-
ing an adequate estimator; estimating fractal parameters; distinguishing fractal processes
from short-memory patterns) are demonstrated with empirical time series.
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MEASURING FRACTALITY
Fractal patterns have been observed in numerous scientific areas
including biology, physiology, and psychology. A specific structure
known as pink or 1/f noise represents the most prominent frac-
tal phenomenon. Because it is intermediate between white noise
and red or Brown noise, it exhibits both stability and adaptability,
thus properties typical for healthy complex systems (Bak et al.,
1987). Consequently, pink noise serves as an adequate model for
many biological systems and psychological states. For instance,
pink noise was found in human gait (Hausdorf et al., 1999),
rhythmic movements like tapping (Chen et al., 1997, 2001; Ding
et al., 2002; Delignières et al., 2004; Torre and Wagenmakers,
2009), visual perception (Aks and Sprott, 2003), brain activity
(Linkenkaer-Hansen, 2002), heart rate fluctuations, and DNA
sequences (Hausdorf and Peng, 1996; Eke et al., 2002; Norris et al.,
2006). Hence, one of the main objectives for measuring fractality
is to distinguish reliably between fractal (healthy) and non-fractal
(unhealthy) patterns for diagnostic purposes. For instance, many
diseases result from dysfunctional connections between organs,
which can be viewed as loss of adaptive behavior of the body as a
complex system. Therefore, deviations from the 1/f structure can
serve as indicators for disease severity.

Additionally, Gilden et al. (1995), Van Orden et al. (2003, 2005)
discovered fractality in controlled cognitive performances and
other mental activities. The most striking feature of the observed
patterns was their long memory. Serial correlations were not nec-
essarily large in absolute magnitude but very persistent, which is
typical for 1/f noise. Since memory characteristics are decisive for
the development of a process, an accurate measurement of frac-
tality is indispensible for correct statistical inference concerning

the properties of empirical data and precise forecasting. There-
fore, further important goals of fractal analyses are to test for the
effective presence of genuine long-range correlations and provide
an accurate estimation of their strength.

There are different methodological approaches, and their
respective statistical parameters, to capture fractality. For each
parameter, numerous estimators have been developed, but there is
no clear winner among them (Stroe-Kunold et al., 2009; Stad-
nytska et al., 2010; Stadnitski, 2012). Furthermore, statistical
characteristics of some non-fractal empirical structures can resem-
ble those of 1/f noise, which may cause erroneous classifications
(Wagenmakers et al., 2004; Thornton and Gilden, 2005). There-
fore, proper measurement of fractality and reliable discrimination
of pink noise from other fractal or non-fractal patterns represent
crucial challenges for applied researchers. The main purposes of
this paper are to introduce appropriate measurement strategies to
practitioners and to show how to use them in applied settings. The
article intends to outline the basics of fractal analysis by providing
insight into its concepts and algorithms. Detailed descriptions of
the methods are beyond the scope of this paper and can be found
in Beran (1994), Brockwell and Davis (2002), Delignières et al.
(2006), Eke et al. (2002), Jensen (1998), and Warner (1998).

THEORETICAL CHARACTERISTICS OF FRACTAL PATTERNS
What are essential attributes of 1/f noise? The answer is long mem-
ory and self-similarity. Fractals are self-similar structures where the
whole has the same shape as its parts (e.g., broccoli or the Koch
snowflake). Hence, characteristics of a 1/f noise process remain
similar when viewed at different scales of time or space. This
implies the following statistical properties: (1) a hyperbolically
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(i.e., very slow) decaying autocorrelation function (ACF) and (2) a
specific relation between frequency (f) and size of process variation
(S): S(f)∝ 1/f. This so-called power low means that the power (vari-
ance or amplitude) of the 1/f noise process is inversely proportional
to the frequency.

The ACF describes the correlation of a signal with itself at
different lags. In other words, it reflects the similarity between
observations in reference to the amount of time between them.
Hyperbolically decaying autocorrelations imply statistical depen-
dence between observations separated by a large number of time
units or a long memory of the process. In contrast, if a process has
a short-memory and can be predicted by its immediate past, the
autocorrelations decay quickly (e.g., exponentially) as the number
of intervening observations increases. White noise is a sequence
of time-ordered uncorrelated random variables, sometimes called
random shocks or innovations, and therefore has no memory.
Brown noise or a random walk evolves from integrating white noise,
and thus can also be represented as the sum of random shocks. As
a result, the impact of a particular innovation does not dissipate
and a random walk remembers the shock forever, which implies
an infinite memory and no decay in ACF. The upper section of
Figure 1 compares the ACF of processes with different memory
characteristics.

Granger and Joyeux (1980) and Hosking (1981, 1984) demon-
strated that hyperbolically decaying autocorrelations of pink noise
can be parsimoniously modeled by means of the differencing
parameter d of the Box–Jenkins autoregressive integrated moving
average (ARIMA) methodology, allowing it to take on continuous
values (Box and Jenkins, 1970). The ARIMA method describes
processes through the three parameters p, d, and q. For example,
the following process

Yt = φ1Yt−1 + ut + θ1ut−1, ut ∼ IIDN
(
0,σ2) .

is called ARMA (1, 1) because it contains one autoregressive (Yt − 1)
and one moving average term (ut − 1). Therefore, the value of the

autoregressive parameter p reflects how many preceding observa-
tions influence the current observation. The value of the moving
average term q describes how many previous random shocks must
be taken into account when describing the dependency present in
the time series. φ is the autoregressive prediction weight and θ is the
proportion of the previous random component that still affects the
observation at a time T. Within the Box–Jenkins ARIMA frame-
work, d is whole number and refers to the order of differencing
that is necessary to make a process stationary (d = 0). Statistical
characteristics of a stationary process do not change over time or
position, i.e., mean, variance, and autocorrelation remain stable.
Thus the ARMA (1, 1) process can also be written as ARIMA (1, 0,
1). White noise is ARIMA (0, 0, 0). Models with d = 1 correspond
to a process with an infinite persistence of random shocks and
are called integrated of order 1. Brown noise is ARIMA (0, 1, 0).
Autoregressive fractionally integrated moving average (ARFIMA)
modeling extends the traditional Box–Jenkins approach by allow-
ing the differencing parameter d to take on non-integer values.
This enables ARFIMA-models to give parsimonious descriptions
of any long-range dependencies in time series. Pink noise has d
of 0.5. Stationary fractal processes with finite long memory can
be modeled with 0 < d < 0.5. For 0.5 ≤ d ≤ 1, the process is non-
stationary. Consult Beran (1994) and Brockwell and Davis (2002)
for more background on long memory and ARFIMA modeling.

The so-called power spectrum determines how much power
(i.e., variance or amplitude) is accounted for by each frequency
in the series. The term frequency describes how rapidly things
repeat themselves. Thus, there exist fast and slow frequencies. For
instance, a time series with T = 100 observations can be recon-
structed in 50 periodic or cyclic components (T /1, T /2, T /3,. . ., 2).
The frequency is the reciprocal of the period and can be expressed
in terms of number of cycles per observation. Therefore, f = 0
implies no repetition, f = 1/T the slowest, and f = 0.5 the fastest
frequency. Spectral density function gives the amount of variance
accounted for by each frequency we can measure. The analysis of
power distribution can be seen as a type of ANOVA where the

FIGURE 1 | Autocorrelation functions, logarithmic power spectra and parameter values of different fractal and non-fractal patterns.
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overall process variance is divided into variance components due
to independent cycles of different length. If the data are cyclic, there
are a few so-called major frequencies that explain a great amount
of the series’ variance (i.e., all of the series’ power is concentrated
at one or a few frequencies). For non-periodic processes like white
noise, the variance is equally distributed across all possible fre-
quencies. For pink noise, there is a special kind of relationship
between frequency and variance, which is expressed by the follow-
ing power low: S(f)∝ 1/f. Self-similarity of this process implies
that its variance is inversely proportional to its frequency. This
property becomes more vivid if the power spectrum is plotted on
a log–log scale, showing that the logarithmic power function of 1/f
noise follows a straight line with slope –1. In contrast, the power
of Brown noise falls off rapidly with increasing frequency, which
means that low frequency components predominate. As a result,
the log–log power function of Brown noise is a line with a slope of
−2. The logarithmic power spectrum of white noise has a slope of
0. Denoting the power spectrum function 1/f β, where β is called
the power exponent, we obtain β = 0 for white noise, β = 2 for
Brown noise, and β = 1 for pink noise. For short-memory (e.g.,
autoregressive) processes, the log–log power spectrum in not a
straight line because the linear relation between the power and
the frequency breaks down at the low frequencies where random
variation appears. As a result, a flat plateau (the zero slope of
white noise) dominates low frequencies in spectral plots. The bot-
tom section of Figure 1 shows the power spectra of the discussed
processes. For more details on spectral analyses, consult Warner
(1998).

Self-similarity of pink noise can also be expressed by the fol-
lowing power low: F(n) ∝ n α with α = 1. Dividing a process in
intervals of equal length n allows viewing it on different scales.
Fluctuations (F) of pink noise are proportional to n, i.e., they
increase with growing interval length. The scaling exponent α of
Brown noise is 1.5; white noise has α of 0.5.

The so-called Hurst phenomenon represents a further manifes-
tation of self-similarity (Hurst, 1965). It expresses the probability
that an event in a process is followed by a similar event. This prob-
ability, expressed as the Hurst coefficient (H ), is 0.5 for both white
and Brown noises, which is not surprising because white noise is
a sequence of independent innovations and Brown noise consists
of uncorrelated increments. The Hurst coefficient of self-similar
processes deviates from 0.5. For pink noise, H = 1. In general, we
distinguish two different classes of fractal signals: fractional Brown-
ian motions (fBm) and fractional Gaussian noises (fGn; Mandelbrot
and van Ness, 1968; Mandelbrot and Wallis, 1969). Gaussian noises
are stationary processes with constant mean and variance, whereas
Brownian motions are non-stationary with stationary increments.
Differencing Brownian motion creates Gaussian noise and sum-
ming Gaussian noise produces Brownian motion. The related
processes are characterized by the same Hurst coefficient.

To summarize, long memory and self-similarity are specific
characteristics of 1/f noise. These properties become manifest
in the hyperbolically decaying ACF and power lows. The differ-
encing statistic d, the power exponent β, the scaling exponent α,
and the Hurst coefficient H are parameters that reflect fractality.
The expected theoretical parameter values of the pink noise are
d = 0.5, β = 1, α = 1, H = 1. Figure 1 outlines relations between

parameters and contrasts the autocorrelation and spectral density
functions of 1/f noise with those of other processes.

To understand subsequent explanations, it is important to con-
ceive the difference between the following concepts: parameter,
estimator, and estimate. A parameter is a quantity that defines a
particular system, e.g., the mean μ of the normal distribution. H,β,
α, and d are fractal parameters that express exactly the same statis-
tical characteristics. The formulas presented in Figure 1 allow for
unequivocal transformations from one quantity into the other. For
instance, a stationary process with the scaling exponent α = 0.8 can
be alternatively specified by H = 0.8, d = α − 0.5 = 0.3, or β = 2,
d = 0.6. An estimator is a rule or formula that is used to infer the
value of an unknown parameter from the sample information.
For each parameter, there are usually different estimators with
diverse statistical properties. In contrast to parameters, estimators
are not numbers but functions characterized by their distributions,
expectancy values, and variances. For example, μ can be estimated
using the arithmetic mean μ̂ = X̄ = 1

T ΣT
i=1Xi or the median

μ̂ = X0.5. Both methods are unbiased, which implies that their
expected values match μ : E(X̄) = E(X0.5) = μ. However, X̄
is the better estimator of μ because of its smaller variance ensur-
ing narrower confidence intervals and thus more precise inference.
The superiority of X̄ is determined mathematically. Unfortunately,
it is not always possible to find out the best estimator this way. In
such cases, Monte Carlo simulations represent adequate tools to
determine the best method to use under the given circumstances.
For instance, computational algorithms can generate a population
with a known parameter value, e.g., a process with α = 1. Repeated
samples of the same size can be drawn from this population, e.g.,
1000 time series with T = 500, and different estimators can be
applied to the series. As a result one gets 1000 estimates of the
parameter per method. Estimate is a particular numerical value
obtained by the estimator in an application. Good estimators are
unbiased, i.e., their means equal the true parameter value, and
have small variability, i.e., their estimates do not differ strongly.
Considering that just one estimate per method is available in a
typical research situation, an estimator with the narrow range, e.g.,
[α̂(1)min = 0.9; α̂(1)max = 1.1] for α = 1, is obviously better that
the one with the broad range, e.g., [α̂(2)min = 0.5; α̂(2)max = 1.5].

ESTIMATORS OF FRACTAL PARAMETERS
Numerous procedures for measuring the fractal parameters β, α,
H, and d have been developed in recent years. Table 1 includes
estimators that are available in software packages traditionally
used by psychologists (R, SPSS, and SAS). The methods can
be assigned to three categories: (1) exact or approximate maxi-
mum likelihood (EML or AML) ARFIMA estimation of d with
the corresponding conditional sum of squares (CSS) algorithm;
(2) detrended fluctuation analysis (DFA) and signal summation
conversion (SSC), fractal methods predicated on the relationship
F(n) ∝ n α; (3) periodogram based procedures like power spec-
tral density (PSD), Whittle (FDWhittle), Sperio (fdSperio), and
Geweke–Porter-Hudak (fdGPH). The periodogram is an estimate
of the spectral density function.

Autoregressive fractionally integrated moving average algo-
rithms were described and evaluated by Stadnytska and Werner
(2006) and Torre et al. (2007). Eke et al. (2000), Delignières
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Table 1 | Estimators of fractal parameters from statistical packages R, SAS, and SPSS.

Method Outputs Available Command

ARFIMA

EML d̂ , φ̂, θ̂ SAS: IML subroutine

FARMAFIT

Fitting ARFIMA (1, d, 1): call farmafit(d, ar, ma, sigma, x, opt=1) p=1 q=1;

print d ar ma sigma;

CSS d̂ , φ̂, θ̂ SAS: IML subroutine

FARMAFIT

call farmafit(d, ar, ma, sigma, x, opt=0) p=1 q=1; print d ar ma sigma;

AML d̂ , φ̂, θ̂ R: library fracdiff summary(fracdiff(x, nar=1, nma=1))

FRACTAL

DFA α̂ R: library fractal DFA(x, detrend="bridge", sum.order=1)

SSC α̂ R-Code SSC.R Download the file SSC.R from http://www.psychologie.uni-heidelberg.de/projekte/zeitreihen/

R_Code_Data_Files.html then click “read R-code” from the data menu and start the test via

command SSC(x)

PERIODOGRAM

lowPSD β̂ SPSS, SAS, R SPSS-, SAS-, and R-Codes in Appendix
lowPSDwe β̂ R-Code lowPSDwe.R Download the file lowPSDwe.R from http://www.psychologie.uni-heidelberg.de/projekte/

zeitreihen/R_Code_Data_Files.html then click “read R-code” from the data menu and start the

test via command PSD(x)

hurstSpec α̂ R: library fractal hurstSpec(x)

fdGPH d̂ R: library fracdiff fdGPH(x)

fdSperio d̂ R: library fracdiff fdSperio(x)

FDWhittle d̂ R: library fractal FDWhittle(x)

x is the time series name. For further details, consult Stadnytska et al. (2010) and Stadnitski (2012).

et al. (2006), Stroe-Kunold et al. (2009), Stadnytska et al. (2010),
Stadnitski (2012) systematically analyzed different fractal and peri-
odogram based methods. What are the key findings of these
studies? First, all estimators require at least 500 observations for
acceptable measurement accuracy. Further, for researchers study-
ing fractality, it is essential to know that there exist different
procedures with diverging characteristics. Unfortunately for the
researcher, none of the procedures is superior to the other. The
central difficulty is that there is no clear winner among them. Sim-
ulation studies on this topic demonstrated that the performance
of the methods strongly depends on aspects like the complex-
ity of the underlying process or parameterizations. As a result,
elaborated strategies to estimate the fractality parameters are nec-
essary. Thornton and Gilden (2005) developed a spectral classifier
procedure that estimates the likelihood of a time series by com-
paring its power spectrum with spectra of the competing memory
models. Stadnytska et al. (2010) proposed a method to estimate
the long memory parameter d that combines different techniques
and incorporates ARFIMA approaches from Wagenmakers et al.
(2004). The application of this strategy to an empirical time series
will be presented later. A brief overview of procedures summarized
in Table 1 precedes the empirical demonstration.

ARFIMA METHODS
The most popular estimators of the fractional differencing para-
meter d are the EML method proposed by Sowell (1992a), the
CSS approach introduced by Chung (1996) and the approximate
method (AML) of Haslett and Raftery (1989). The main advantage
of the ARFIMA methods is the possibility of the joint estima-
tion of the short-memory and long memory parameters. This

solves a potential finite-sample problem of biased overestimation
of fractality in time series which contain both long-range and
short-range components (see Sowell, 1992b, for details). More-
over, goodness of fit statistics based on the likelihood function,
like the Akaike information criterion (AIC) or the Bayesian infor-
mation criterion (BIC), allow to determine the amount of “short-
term contamination”and enable a reliable discrimination between
short- and long memory processes.

The greatest problem with ARFIMA estimators is that they work
only for stationary series, because their range is confined to (0; 0.5).
This entails erroneous classifications of non-stationary processes
with d > 0.5 as 1/f noise. Recall that the theoretical parameter
values of pink noise are d = 0.5, β = 1, α = 1, H = 1. To illus-
trate this problem, a Brown noise series [ARIMA (0, 1, 0) with
d = 1, β = 2, α = 1.5, H = 0.5] of length T = 500 was simulated.
The upper section of Figure 2 shows the series with its ACF and
logarithmic power spectrum. Applying ARFIMA methods to this

data provided estimates of d close to 0.5 : d̂AML = 0.499, d̂EML =
0.5, d̂CSS = 0.49. Hence, checking for stationarity is a necessary
precondition for ARFIMA estimation.

Special procedures called unit root tests were developed to
prove stationarity (see Stadnytska, 2010, for a comprehensive
overview). The augmented Dickey–Fuller (ADF) test, the most
popular method available in statistical packages R or SAS, checks
the null hypothesis d = 1 against d = 0. Hence, an empirical series
with d close to 0.5 will probably be misclassified as non-stationary.
In contrast, the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
acts on the assumption that process is stationary (H 0: d = 0).
Therefore the combination of both procedures allows to determine
the properties of the series under study: (1) if the ADF is significant
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FIGURE 2 | Comparison of ACF and power spectra of empirical Series: (1) Brown Noise or ARIMA (0, 1, 0); Short-Memory Series ARIMA (1, 0, 1); (3)

Fractal Series ARFIMA (1, d, 1) with d = 0.3.

and the KPSS is not, then the data are probably stationary with
d ∈ (0; 0.5); (2) in the Brown noise case, an insignificant ADF and
a significant KPSS results are expected; (3) d ∈ (0; 1), if both tests
are significant. Applying the unit root tests to the simulated Brown
noise series showed the following p-values: pADF = 0.3839 and
pKPSS < 0.01 (see Figure 3). According to this outcome, the series
is probably non-stationary, and estimating fractal parameters with
the ARFIMA methods is inappropriate.

FRACTAL AND PERIODOGRAM BASED METHODS
In contrast to ARFIMA procedures, methods like PSD (Eke
et al., 2002), DFA (Peng et al., 1993), or SSC (Eke et al.,
2000) can be applied directly to different classes of time series.
Consequently, they represent adequate tools for distinguishing
fGn and fBm signals. For the simulated Brown noise series

the following results were obtained: d̂DFA = 1.1, d̂SSC =
0.8, d̂PSD = 0.83, d̂hurstSpec = 1.1, d̂fdGPH = 0.88, d̂fdSperio =
0.79, d̂FDWhittle = 1 (see Figure 3). All estimates were converted

to d̂ using the formulas in Figure 1 to make the comparison
more convenient. For instance, DFA outputs α̂DFA = 1.595 ≈ 1.6

(see Table 1; Figure 3), thus d̂DFA = α̂DFA − 0.5 = 1.1. The
estimate of β presented in Figure 3 is β̂PSD = 1.66, hence

d̂PSD = β̂PSD/2 = 0.83. Recall that the true d-value of Brown
noise is 1, therefore, compared to the ARFIMA algorithms, the
most estimates reflect the parameter rather accurate.

However, due to considerably larger biases and more pro-
nounced SEs, the precision of fractal and periodogram based
methods is distinctly inferior to that of the ARFIMA approaches.
Moreover, algorithms like PSD, DFA, or SSC use different data

transformations like detrending or filtering. As a result, the per-
formance of estimators strongly depends on the manipulations
employed. For instance, numerous modifications have been sug-
gested to improve the PSD estimation. The method designated
as lowPSDwe consists of the following operations: (1) subtracting
the mean of the series from each value, (2) applying a para-
bolic window to the data (w), (3) performing a bridge detrend-
ing (e), (4) estimating β excluding 7/8 of high-frequency power
estimates (low). The estimator lowPSD is constructed without
transformations 2 and 3. Simulation studies demonstrated that
lowPSD were more accurate for fGn noises whereas lowPSDwe

were accurate for fBm signals (Delignières et al., 2006; Stadnitski,
2012).

The greatest disadvantage of fractal and periodogram based
methods is their poor performance for complex processes that
combine long- and short-term components. Stadnitski (2012)
demonstrated that FDWhittle, the best procedure for pure noises,
showed the worst accuracy in complex cases. To illustrate this
problem, the following two series with T = 500 observations
were simulated: a short-memory ARIMA (1, 0, 1) model with
d = 0, φ = 0.8, and θ = − 0.1; a long memory ARFIMA (1, d,
1) model with d = 0.3, φ = 0.8, and θ = −0.1 (see Figure 2).
Recall that within the scope of the ARFIMA methodology the
short-memory components of a time series can be captured
through the autoregressive terms weighted with φ and the mov-
ing average terms weighted with θ. The following estimates were
obtained for the short-memory series with the true d-value of

0 : d̂DFA = 0.53, d̂SSC = 0.22, d̂PSD = 0.55, d̂hurstSpec =
0.62, d̂fdGPH = 0.38, d̂fdSperio = 0.12, d̂FDWhittle = 0.67 (see
Figure 4). Hence, most estimators erroneously indicate a 1/f
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FIGURE 3 | R commands and results for the simulated Brown noise ARIMA (0, 1, 0) series.

pattern for this non-fractal series. For the long memory series

with the true d-value of 0.3, we obtained d̂DFA = 0.85, d̂SSC =
0.49, d̂PSD = 0.97, d̂hurstSpec = 0.91, d̂fdGPH = 0.2, d̂fdSperio =
0.28, d̂FDWhittle = 1.16. Except for fdGPH and fdSperio, we
observed here a pronounced positive bias. As a result, this sta-
tionary fGn series could be misclassified as a non-stationary fBm
signal.

The following example demonstrates the advantages of
ARFIMA methodology for complex cases. Since not every data
generating process can adequately be represented by a simple
(0, d, 0)-structure, information Criteria AIC and BIC of differ-
ent ARFIMA-models were compared first. Recall that the smallest
AIC or BIC indicate the best model. The results summarized in
Table 2 clearly favored the (1, d, 1)-pattern for the simulated long
memory ARFIMA (1, d, 1) with d = 0.3, φ = 0.8, and θ = − 0.1.

The AML estimates for this structure were d̂AML = 0.2, φ̂AML =
0.83, θ̂AML = −0.23. The point estimate of d is comparable to
those of fdGPH and fdSperio, but AML has a distinctly smaller
SE (SEAML = 0.007 vs. SEfdGPH = 0.17, SEfdSperio = 0.07) assuring
smaller confidence intervals, i.e., a more precise measurement. For
the short-memory series with d = 0, φ = 0.8, and θ = −0.1, there
were two plausible models: (1, 0, 1) according to the AIC and
(1, d, 0) according to the BIC. Fitting the (1, d, 0) model to the

data provided d̂AML ≈ 0, φ̂AML = 0.75 (see Figure 4). There-
fore, in both cases the series was correctly identified as non-fractal
short-memory structure.

FRACTAL ANALYSIS WITH EMPIRICAL DATA
As demonstrated previously, strategic approach is necessary for
a proper measurement of fractal parameters. In the following
we show how to apply the estimation methodology proposed by
Stadnytska et al. (2010) to empirical data by employing the R
software.

R can be downloaded free of charge from http://www.r-project.
org/. To perform fractal analyses, we need three packages (fracdiff,
fractal, tseries) that do not come with the standard installation.
Click install packages under the packages menu, select these pack-
ages and confirm with ok. Now the packages will be available for
use in the future. Since every command of R is a function that
is stored in one of the packages (libraries), you have to load the
libraries fracdiff, fractal, tseries each R session before performing
fractal analyses. To do so, click load packages under the packages
menu then choose the package and confirm with ok.

R is able to read data in many different formats. An easy way
to get an excel file into R is to save it in the csv format, and read it
using the command like

data=read.csv2 ("C:/ /data.csv")

Now data is a data frame with named columns ready for analysis.
If data contains three variables x, y, and z, you can analyze them
with the commands like

mean(data$x)
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FIGURE 4 | R output for the simulated short-memory ARIMA (1, 0, 1) series.

summary(data$y)
cor(data$x,data$z)

You can easily rename variables using the following command
x=data$x.

The empirical series of length T = 512 that is analyzed below
was generated in the context of a reaction time task experiment
described by Stadnitski (2012). Response time between stimu-
lus presentation and reaction served as dependent measurement
(Figure 5A).

The first step of the analysis is to plot a series and examine
its ACF and logarithmic power spectrum. Recall that for 1/f noise
we expect a slower hyperbolic decaying autocorrelations and a
straight line with a slope of −1 in the log plot. If the autocor-
relations decline quickly or exponentially, the series is definitely
non-fractal.

plot(x, ty=‘‘l‘‘)
acf(x)
PSD-Code of R (see Appendix)

Satisfactory stability in level and variability of the series as well as a
slow decay of its ACF, depicted in Figure 5A, signalized a finite long
memory typical for fractal noises. The negative slope β̂PSD = 0.347
is, however, distinctly smaller than 1. It is important to know that

the original PSD procedure is not always the best method. Sim-
ulation studies demonstrated that excluding the high-frequency
spectral estimates from fitting for the spectral slope may improve
estimation (Taqqu and Teverovsky, 1997; Eke et al., 2000). Apply-
ing the lowPSD method (see Appendix) provided β̂lowPSD = 1.11.
Thus, the logarithmic power spectrum of the series seems to be
compatible with the pink noise pattern. The problem is that the
log–log power spectrum of short-memory ARMA (p, q) processes
can resemble the spectrum of 1/f noise (see, for example, the log
plot of the ARMA (1,1) structure in Figure 2).

Unit root tests may help to find out more about the statistical
properties of the series.

adf.test(x)
kpss.test(x)

The following p-values were observed for the analyzed series:
pADF < 0.01 and pKPSS < 0.01. According to these results, the data
under study is probably not Brown noise but it can be both fGn
and fBm. Thus, ARFIMA as well as fractal and periodogram based
method are appropriate here (see commands in Table 1). To make
the comparison of results more convenient, the fractal, and peri-

odogram based estimators were converted to d̂ and presented
in Figure 5A. The estimates ranged from 0.248 to 0.577 indi-
cating a fractal pattern. We know, however, that these methods
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overestimate fractality in time series that contain both long-range
and short-range components. Since the obtained values were all
smaller than 0.6, the ARFIMA analysis appeared appropriate.

Table 2 | Values of the information criteria AIC and BIC for the

simulated short-memory ARMA and long memory ARFIMA series in

dependence of the fitted model.

Fitted

model

ARMA (φ = 0.8,

d = 0. θ = − 0.1)

ARFIMA (φ = 0.8,

d = 0.3, φ = − 0.1)

AIC BIC AIC BIC

(2, 0, 2) 579.9649 605.2525 1439.242 1464.530

(2, 0, 1) 578.1632 599.2363 1439.540 1460.613

(1, 0, 2) 578.1626 599.2356 1438.977 1460.050

(2, 0, 0) 576.2489 593.1073 1439.350 1456.209

(0, 0, 2) 576.2489 678.1116 1763.675 1780.533

(1, 0, 1) 576.1626 593.0210 1439.625 1456.483

(1, 0, 0) 577.5258 590.1697 1489.436 1502.080

(0, 0, 1) 738.9594 751.6032 2059.512 2072.156

(0, 0, 0) 984.6744 993.0052 2573.536 2581.965

(2, d, 2) 580.3508 605.6384 1440.078 1465.366

(2, d, 1) 578.3731 599.4461 1438.590 1459.663

(1, d, 2) 578.3752 599.4482 1438.261 1459.334

(2, d, 0) 576.5114 593.3699 1437.906 1454.764

(0, d, 2) 588.8440 605.7024 1465.847 1482.706

(1, d, 1) 577.2761 594.1346 1436.262 1453.121

(1, d, 0) 578.5751 591.2189 1447.913 1460.557

(0, d, 1) 592.3358 604.9797 1526.298 1538.942

(0, d, 0) 612.2110 620.5418 1761.094 1769.523

Bold are estimates from the models with the smallest Akaike information criterion

(AIC) or Bayesian information criterion (BIC).

The preceding analyses do not allow rejecting the hypothesis
of non-fractality of the analyzed series. Therefore AIC and BIC
of different short- and long memory models were compared. The
following commands compute AIC of the (1, d, 1) and (1, 0, 1)
models:

AIC(fracdiff(x, nar = 1, nma = 1))
AIC(arima(x, order=c(1,0,1)))

To obtain BIC instead of AIC, use

AIC(fracdiff(x, nar = 1, nma = 1), k=log(n))
AIC(arima(x, order=c(1,0,1)), k=log(n)),

n is the number of observations (see Figure 4).
The results summarized in Table 3 indicated either the long

memory model (1, d, 2; the smallest AIC) or the short-memory

Table 3 | Values of the information criteria AIC and BIC for the

empirical time series.

Model

ARMA

AIC BIC Model

ARFIMA

AIC BIC

(0, 0, 0) 5308.030 5316.506 (0, d, 0) 5181.524 5190.001

(1, 0, 0) 5256.566 5269.281 (1, d, 0) 5170.354 5183.069

(0, 0, 1) 5274.145 5286.860 (0, d, 1) 5163.365 5176.080

(1, 0, 1) 5158.735 5175.688 (1, d, 1) 5161.513 5178.466

(2, 0, 1) 5160.726 5181.917 (2, d, 1) 5156.040 5177.208

(1, 0, 2) 5160.729 5181.920 (1, d, 2) 5156.016 5177.232

(2, 0, 0) 5226.219 5243.172 (2, d, 0) 5165.411 5182.365

(0, 0, 2) 5256.336 5273.29 (0, d, 2) 5162.237 5179.190

(2, 0, 2) 5162.699 5188.129 (2, d, 2) 5158.016 5183.446

Bold are estimates from the models with the smallest AIC or BIC.

FIGURE 5 | ADF and log–log plot of (A) empirical series obtained from temporal estimation task; (B) simulated ARIMA (1, 0, 1) series with φ = 0.99, and

θ = −0.92.
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model (1, 0, 1; the smallest BIC). Fitting the (1, d, 2) pattern to the
data with the command “summary(fracdiff(x, nar=1, nma=2)),”

provided the d estimate very close to 0 : d̂AML = 0.06, SEAML =
0.026, KI0.95 = (0.009; 0.111). Therefore, the series is probably
not generated from the 1/f noise process.

Fitting the (1, 0, 1) model to the data using “arima(x,
order=c(1,0,1)),” resulted in φ̂AML = 0.99, SEφ = 0.005 and

θ̂AML = −0.92, SEθ = 0.021. To demonstrate that short-
memory series with such parameter values can mimic the sta-
tistical properties of the pink noise, we simulated the ARIMA
(1, 0, 1) models of length T = 512 with the true values d = 0,
φ = 0.99, and θ = − 0.92. Figure 5B shows that its ACF, log
plot, and estimates obtained from fractal and periodogram based
methods are very similar to those of the analyzed empirical
series. For explanations of this phenomenon, consult Thornton
and Gilden (2005), Wagenmakers et al. (2004), and Stadnit-
ski (2012). Detailed descriptions of R analyses are presented in
Appendix.

CONCLUDING REMARKS
Self-similarity and long memory are essential characteristics of
a fractal pattern. Slow hyperbolically decaying autocorrelations
and power lows reflect these properties, which can be expressed
with the correspondent parameters d, β, α, and H. The frac-
tal parameters express exactly the same statistical characteristics,
thus each quantity can be converted to the other. The expected
theoretical values of pink noise are d = 0.5, β = 1, α = 1, H = 1.

There are two major types of estimators for these parame-
ters: ARFIMA algorithms and procedures searching for power
laws. The former are very accurate methods capable of mea-
suring both long- and short-term dependencies, but they can
handle only stationary processes. The latter are adequate pro-
cedures for stationary and non-stationary data, their precision,
however, is distinctly inferior to that of the ARFIMA meth-
ods. Moreover, they tend to overrate fractal parameters in series
containing short-memory components. The greatest problem
is that no estimator is superior for a majority of theoretical
series. Moreover, in a typical research situation it is usually
unclear what kind of process generated empirical data. Con-
sequently, the estimation of fractality requires elaborate strate-
gies. The spectral classifier procedure by Thornton and Gilden
(2005) and the ARFIMA estimation proposed by Stadnytska
et al. (2010) are examples of such strategic approaches. Fur-
thermore, depending of the hypotheses of the research, diverse
key objectives of fractal analyses can be distinguished: discrim-
inate between fractal and non-fractal patterns for diagnostic
purposes, test for the effective presence of genuine persistent
correlations in the series, provide an accurate estimation of the
strength of these long-range dependencies, or identify the short-
term process that accompanies a fractal pattern. Delignières et al.
(2005) point out that different objectives require distinct strate-
gies. This paper demonstrated how to distinguish between fractal
and non-fractal empirical time series employing the open source
software R.
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APPENDIX
low PSD SPSS-Code for series X with T = 512 to obtain a PSD-estimate of β.
β̂ is the negative slope of the regression ln _p = b0 + b1 ln _f (β̂ = −b1).

SPECTRA
/VARIABLES=X
/CENTER
/SAVE FREQ(f) P(SS).

COMPUTE ln_f = LN(f).
EXECUTE.
COMPUTE ln_p = LN(SS_1).
EXECUTE.
COMPUTE filter_$=(T>1 and T<(512/2*1/8+2)).
FILTER BY filter_$.

REGRESSION
/STATISTICS COEFF
/DEPENDENT ln_p
/METHOD=ENTER ln_f .

low PSD SAS-Code for series X with T = 512 to obtain a PSD-estimate of β.

proc spectra data=data out=spec p s center;
var X;
run;

data spec;
set spec;
T+1;
run;

data loglog;
set spec;
if FREQ=0 then delete;
if T>(512/2*(1/8)+1) then delete;
ln_f=log(FREQ);
ln_p=log(S_01);
keep ln_f ln_p;
run;

proc reg data=loglog;
model ln_p=ln_f;
run;

low PSD R-Code for series X to obtain a PSD-estimate of β.

n <- length(x)
spec <- spectrum(x, detrend=FALSE, demean=TRUE, taper=0)
nr <- (n/2) * (1/8)
specfreq <- spec$freq[1:nr]
specspec <- spec$spec[1:nr]
logfreq <- log(specfreq)
logspec <- log(specspec)
lmb <- lm(logspec ˜ logfreq)
b <- coef(lmb)
beta=-b[2]
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plot (logfreq, logspec, type="l")
abline(lmb)
print(beta)

PSD R-Code for series X to obtain a PSD-estimate of β.

spec <- spectrum(x, detrend=FALSE, demean=TRUE, taper=0)
specfreq <- spec$freq
specspec <- spec$spec
logfreq <- log(specfreq)
logspec <- log(specspec)
lmb <- lm(logspec ˜ logfreq)
b <- coef(lmb)
beta=-b[2]
plot (logfreq, logspec, type="l")
abline(lmb)
print(beta)

FRACTAL ANALYSES WITH R
1. Step “Preparation”

• Install R from http://www.r-project.org/
• Install the packages fracdiff, fractal, tseries [Click install packages under the packages menu, select these packages and confirm with

ok].
Some tips for comfortably working with R:
• R commands can be typed directly in the R console after the symbol “>” (see Figures 3 and 4). To obtain the R output, just press

[ENTER].
• The easiest way to administer R commands is to open a new script [click data − new script ] and write the commands there. You

can enter one or more commands in the R console by selecting them and pressing [CTRL + R].
2. Step “Data Import in R”

• Create an excel file (e.g., for one time series of length T = 500, type the name “x” in the first row of the first column, then type 500
observations in the subsequent rows of the column).

• Save data in csv format [Excel: click save as, then activate save as type and choose CSV (Comma delimited)]. As a result, you obtain
an excel file name.csv.

• Open R and click data − change directory and choose the directory where you saved the file name.csv. Typing the command
getwd() shows the current working directory of R.

• Get the excel file name.csv into R by writing in the R console the command data=read.csv2(“name.csv”) (see Figure 4).
• Choose the variable x from the frame data by typing x=data$x. Because the file name.csv and accordingly the R frame data

consist of one variable saved in the first column, you can alternatively get the variable x using the command x=data[,1]. Note
that the command data[2,] outputs the second row of the frame data.

3. Step “Performing fractal analyses”
• Load the packages fracdiff, fractal, tseries [type the commands library (fracdiff), library (fractal), library(tseries)].
• Load SSC and lowPSDwe (download the files SSC.R and lowPSDwe.R from http://www.psychologie.uni-heidelberg.de/projekte/

zeitreihen/R_Code_Data_Files.html, then click read R-code from the data menu).
• Type the following commands in the R console (see Figures 3 and 4) or write them in a script and submit by pressing [CTRL + R].

plot(x, ty=’’l’’)
acf(x)
adf.test(x)
kpss.test(x)
PSD(x)
SSC(x)
DFA(x, detrend="bridge", sum.order=1)
fdSperio(x)
fdGPH(x)
FDWhittle(x)
hurstSpec(x)
fracdiff(x)
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4. Step “ARFIMA analyses”
• Compute AIC and BIC of different long and short-memory models (see Tables 2 and 3). The command AIC(fracdiff(x, nar = 2,

nma = 2)) outputs the AIC of the ARFIMA (2, d, 2) model. The command AIC(arima(x, order=c(2,0,1))) calculates the AIC of
the ARIMA (2, 0, 1) structure.

• Estimate d of the model with the smallest AIC or BIC using the command summary(fracdiff(x, nar=0, nma=2)).

• Compute a 0.95-confidence interval using the estimate of d (d̂) and its SE: [d̂ − 1.96 · SE ; d̂ + 1.96SE].
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