
REVIEW ARTICLE
published: 17 May 2012

doi: 10.3389/fphys.2012.00139

The yeast retrograde response as a model of intracellular
signaling of mitochondrial dysfunction
S. Michal Jazwinski 1* and Andres Kriete2

1 Department of Medicine, Tulane Center for Aging, Tulane University Health Sciences Center, New Orleans, LA, USA
2 School of Biomedical Engineering, Drexel University, Philadelphia, PA, USA

Edited by:

Vladimir Titorenko, Concordia
University, Canada

Reviewed by:

Christopher Baines, University of
Missouri–Columbia, USA
Mildred Audrey Pointer, North
Carolina Central University, USA

*Correspondence:

S. Michal Jazwinski , Department of
Medicine, Tulane University Health
Sciences Center, 1430 Tulane Avenue,
SL-12, New Orleans, LA 70112, USA.
e-mail: sjazwins@tulane.edu

Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast
longevity, and the best known of these pathways is the retrograde response. More recently,
similar responses have been discerned in other systems, from invertebrates to human cells.
However, the identity of the signal transducers is either unknown or apparently diverse,
contrasting with the well-established signaling module of the yeast retrograde response.
On the other hand, it has become equally clear that several other pathways and processes
interact with the retrograde response, embedding it in a network responsive to a variety
of cellular states. An examination of this network supports the notion that the master reg-
ulator NFκB aggregated a variety of mitochondria-related cellular responses at some point
in evolution and has become the retrograde transcription factor.This has significant conse-
quences for how we view some of the deficits associated with aging, such as inflammation.
The support for NFκB as the retrograde response transcription factor is not only based on
functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is
activated in human cells with dysfunctional mitochondria and impacts cellular metabolism.
Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3.
Further research will be needed to disentangle the pro-aging from the anti-aging effects of
NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast
retrograde response.
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INTRODUCTION
Mitochondrial dysfunction underlies the spectacular manifesta-
tions of a class of diseases known as mitochondrial encephalomy-
opathy. It is found in cardiac hypertrophy and neurological disor-
ders such as Parkinson’s disease. Mitochondrial dysfunction is also
a hallmark of cancer (Wallace and Fan, 2010). It would seem that
the mitochondrial deficits that contribute to the above disorders
would invariably prevent any cell survival. However, cells often
respond to mitochondrial stress with specific responses, allow-
ing them to survive in some cases. Thus, adaptations to loss of
mitochondrial function are widespread (Jazwinski, 2012). It has
become clear over the past decade that these adaptations or com-
pensations are also evident during normal aging, and they may in
part determine lifespan. The best known of these cellular responses
to mitochondrial dysfunction is the yeast (Saccharomyces cere-
visiae) retrograde response (Liu and Butow, 2006), which plays
a role in determining replicative lifespan (Kirchman et al., 1999).
However, similar responses have been described in Caenorhab-
ditis elegans, Drosophila melanogaster, and the mouse (Jazwinski,
2012). They have even been found in human cells in tissue cul-
ture, demonstrating their pervasiveness. We review these develop-
ments here to search for common principles in the response to
mitochondrial dysfunction.

The yeast retrograde signaling pathway has been elucidated
in great detail (Liu and Butow, 2006). The retrograde signaling

pathway cross talks with other signaling pathways in the cell. Thus,
it is embedded in a mesh of signal transduction events that adapt
the cell to a variety of internal and external environments. This
range of interactions has recently expanded, and it is our purpose
to review them here to provide clues to the signaling modules that
may operate in the response of mammalian cells to mitochondr-
ial dysfunction. This augments the bioinformatics approach we
have taken earlier to identify the retrograde response transcrip-
tion factors in mammalian cells (Srinivasan et al., 2010). As that
analysis suggested, the “master regulator” NFκB has likely taken
on in metazoans the role of the yeast retrograde transcription fac-
tor Rtg1–Rtg3. This conclusion gathers further support from the
current review.

THE YEAST RETROGRADE RESPONSE
Yeast cells missing mtDNA (rho0) display a wide variety of changes
in nuclear gene expression compared to rho+ cells (Epstein et al.,
2001; Traven et al., 2001). The activated genes encode metabolic
and stress proteins destined for the mitochondrion, the cytoplasm,
and the peroxisome, and they portend a realignment of metabo-
lism that compensates for the mitochondrial dysfunction. The loss
of respiratory ability in rho0 cells eliminates the tricarboxylic acid
(TCA) cycle as a source of glutamate for biosynthesis, because the
activity of succinate dehydrogenase is compromised. However, the
first three reactions of the TCA cycle remain intact, and this part
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of the TCA cycle can give rise to α-ketoglutarate, the precursor of
glutamate, as long as a supply of citrate is available. This citrate
is provided by the activation of the glyoxylate cycle, which uti-
lizes oxaloacetate and acetyl-coenzyme A to generate citrate, but
unlike the TCA cycle retains the carbons of acetate rather than ulti-
mately releasing them as carbon dioxide. This central feature of
the metabolic adaptation in rho0 cells is surrounded by additional
niceties that allow the cell to function without an active electron
transport chain. The oxidative phosphorylation that is abrogated
in these cells is easily supplanted by the glycolytic production of
ATP. The phenotypic changes described above are together termed
the retrograde response.

The key event in retrograde signaling is the translocation of the
retrograde transcription factor from the cytoplasm to the nucleus
(Rothermel et al., 1995; Rothermel et al., 1997; Sekito et al., 2000).
The retrograde transcription factor is a heterodimer of two basic
helix-loop-helix/leucine zipper proteins, Rtg1 and Rtg3, which
binds to the sequence GTCAC (R box; Liao and Butow, 1993;

Jia et al., 1997). Of the two, Rtg1 is atypical for such proteins
because it possesses a truncated basic domain with no apparent
transcriptional activation domains. Yet, only as a heterodimer can
Rtg3 bind the R box and activate transcription. A hierarchical
analysis of transcription factor regulatory networks in yeast has
shown that Rtg1 is in the top layer, because it is not regulated
by any other transcription factor (Jothi et al., 2009). Top layer
transcription factors are comparatively abundant, long-lived, and
noisy in terms of expression from cell to cell. This variability may
allow at least some members of a yeast clone or population to
respond to one or another environmental challenge by launching
a response whose precision is maximized by the tightly regulated
transcription factors in lower layers.

Translocation of Rtg1–Rtg3 requires the Rtg2 protein (Sekito
et al., 2000), which has no known homologs in higher organ-
isms (Figure 1). Rtg2 promotes the dephosphorylation of Rtg3 by
binding Mks1 and preventing Mks1 from forming a complex with
the 14-3-3 protein Bmh1 or Bmh2, a complex which maintains

FIGURE 1 | Dysfunctional mitochondria trigger a retrograde

response in yeast and in round worms. In yeast, a drop in
mitochondrial membrane potential (ΔΨm) initiates retrograde signaling
through Rtg2, by preventing the Mks1-Bmh1/2 complex from inhibiting
the partial dephosphorylation of Rtg3 in the Rtg1–Rtg3 retrograde
transcription factor which is stimulated by Rtg2. Rtg1–Rtg3 translocates
from the cytoplasm to the nucleus where it activates the expression of
retrograde response target genes. The nutrient-responsive, target of

rapamycin (TOR) complex 1 (TORC1) blocks the retrograde response
both upstream and downstream of Rtg2. TORC1 also suppresses the
stimulatory effect of Ras2 on retrograde signaling. In the worm, a
signal(s) elicited by dysfunctional mitochondria activate anyone of at least
three retrograde signaling pathways defined by the transcription factor
which is activated. The transcription factor can be HIF-1, activated by
reactive oxygen species (ROS), UBL-5 and DEV-1, or the putative
transcription factor CEH-23.
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Rtg3 in a hyperphosphorylated state (Sekito et al., 2000; Dilova
et al., 2002; Sekito et al., 2002; Liu et al., 2003; Dilova et al., 2004).
Partial phosphorylation of Rtg3 is necessary, however, to expose
its nuclear localization signal and thus to render the Rtg1–Rtg3
capable of activating retrograde target genes. Mks1 is removed by
ubiquitin-mediated degradation promoted by the ubiquitin lig-
ase component Grr1 (Liu et al., 2005). Thus, Grr1 is a positive
regulator of the retrograde response, while Mks1 is a negative
regulator.

Target of rapamycin complex 1 is also a negative regulator of
the retrograde response. TORC1 appears to act both upstream
and downstream of Rtg2 (Komeili et al., 2000; Giannattasio et al.,
2005; Breitkreutz et al., 2010). One of the components of TORC1
is the WD-protein Lst8, which in genetic studies was shown to act
upstream and downstream of Rtg2 depending on the identity of
the mutation in Lst8 which was examined (Liu et al., 2001; Chen
and Kaiser, 2003). This coincides well with the fact that TORC1
impinges upon the retrograde response at multiple points. The
regulation of the retrograde response by TORC1 ensures that it is
not active when nutrients, such as glutamate, are plentiful.

Target of rapamycin (TOR) complex 1 is subject to nega-
tive feedback from dysfunctional mitochondria, because TORC1-
mediated phosphorylation of Sch9, an AGC protein kinase, is
down-regulated in rho0 cells (Kawai et al., 2011). Phosphory-
lated Sch9 antagonizes stress responses under the control of the
Msn2–Msn4 transcription factor and promotes ribosome bio-
genesis (Urban et al., 2007). It also inhibits protein kinase A
activity, balancing cell growth and metabolism with stress resis-
tance (Zhang et al., 2011). This occurs because protein kinase A
negatively regulates Msn2–Msn4 mediated stress responses and
because it feedback inhibits its own activation, which likely pre-
vents an exaggerated response to the feedback inhibition of TORC1
by dysfunctional mitochondria. Osmotic stress also reduces Sch9
phosphorylation by TORC1, but only transiently (Urban et al.,
2007). Osmotic stress is known to recruit the Rtg1–Rtg3 tran-
scription factor (Pastor et al., 2009). Thus, retrograde signaling
responds not only to metabolic stress but to other types of stress
as well.

Ras2 is a positive regulator of the retrograde response (Kirch-
man et al., 1999); however, it is not clear at which point in the
retrograde signaling pathway Ras2 exerts its effect. Interestingly,
MKS1 was originally identified as a negative regulator of the Ras2–
cAMP pathway (Matsuura and Anraku, 1993). This, together with
the effects of TORC1 on protein kinase A suggests that it is the
Ras2–cAMP pathway that contributes to the retrograde response.
However, this interpretation is complicated. Activation of the
retrograde response extends yeast replicative lifespan, which is
measured by the number of times an individual cell divides (Kirch-
man et al., 1999). Ras2 also extends replicative lifespan (Sun et al.,
1994). However, it does so via a cAMP-independent pathway. Thus,
it is not clear which of the Ras2 pathways impacts the retrograde
response, and indeed both the cAMP-dependent and independent
pathways may be involved.

Rtg2 plays multiple roles in the cell. As discussed above, it
is a positive regulator of the retrograde response, by promot-
ing dephosphorylation of Rtg3 in the cytoplasm. In addition, it
has at least two other roles in the nucleus. Rtg2 is an integral

component of the transcriptional co-activator SAGA-like (SLIK)
complex that contains the histone acetyltransferase Gcn5 (Pray-
Grant et al., 2002). SLIK is required for the induction of the
retrograde response target gene CIT2, and it has been shown to
bind to the CIT2 promoter. The other role Rtg2 plays in the
nucleus is promotion of genome stability (Bhattacharyya et al.,
2002; Borghouts et al., 2004). The mechanism by which it extends
this protection is not known, except that it does not involve the
participation of an intact SLIK complex (Kim et al., 2004).

The retrograde signal transducer proximal to the dysfunctional
mitochondrion is Rtg2 (Liu and Butow,2006). However, the nature
of the mitochondrial signal that triggers the retrograde response
has not been clear until recently. One of the candidates was
the drop in membrane potential (ΔΨm) in dysfunctional mito-
chondria. Manipulation of ΔΨm genetically, irrespective of the
presence or absence of mtDNA, has shown that loss of ΔΨm is
necessary and sufficient to activate the retrograde response. How-
ever, the loss of mtDNA can augment this effect (Miceli et al.,
2011). The question now becomes how this signal is read by Rtg2.
A ROS scavenger does not block the signal, and it does not appear
that a drop in cellular ATP levels is involved. Thus, the loss of
ΔΨm itself must be relayed to Rtg2. Even though they are not
part of retrograde regulation, mitochondrial ROS somehow sig-
nal increased chronological lifespan (survival in stationary phase)
in yeast cells in which TORC1 signaling is attenuated (Pan et al.,
2011). Thus, mitochondrial ROS can perform a signaling function
in some instances in yeast.

There is a gradual loss of ΔΨm as yeasts replicatively age, which
occurs without loss of mtDNA, and this is accompanied by a pro-
gressive activation of the retrograde response (Lai et al., 2002;
Borghouts et al., 2004). Thus, it appears it is loss of ΔΨm that trig-
gers the retrograde response during the yeast replicative lifespan.
In fact, the activation of the retrograde response may allow yeasts
to live as long as they do. Indeed, the greater the forced induction
of the retrograde response at the beginning of their lifespans is
the greater the lifespan extension (Jazwinski, 2000). This indicates
that the retrograde response is a compensatory mechanism for
mitochondrial dysfunction.

There are two other pathways that signal mitochondrial dys-
function and extend replicative lifespan that have recently been
described in yeast. Mitochondrial back-signaling is activated upon
deletion of the AFO1/MRPL25 gene, which encodes a protein
found in mitochondrial ribosomes, and this activation extends
replicative lifespan (Heeren et al., 2009). This requires an active
TORC1 and the transcription factor Sfp1, which activates expres-
sion of cytoplasmic ribosomal proteins. This pathway is activated
only in rho0 cells. However, this occurs during growth on glucose
which represses the retrograde response in the yeast strain stud-
ied. The deletion of nuclear genes that encode components of the
mitochondrial translation complex (MTC), which activates trans-
lation of mtDNA-encoded proteins, also extends yeast replicative
lifespan in a Sir2-dependent manner (Caballero et al., 2011). It had
been known for quite some time that interruption of mitochondr-
ial translation with erythromycin extends yeast replicative lifespan
(Holbrook and Menninger, 2002). The relationship of mitochon-
drial back-signaling and the MTC to the retrograde response is of
interest, but it is not known at present.
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RETROGRADE RESPONSE IN OTHER ORGANISMS
The glyoxylate cycle is upregulated in C. elegans as a function of
age and also in certain mutants that display an increased lifespan
(Vanfleteren and DeVreese,1995). This bears much resemblance to
the yeast retrograde response. It has been shown that knockdown
of respiratory chain components in this worm can extend lifespan
(Dillin et al., 2002; Lee et al., 2003). Furthermore, a systematic
search for lifespan extending genes has led to the conclusion that
there is a retrograde response that extends worm lifespan (Cristina
et al., 2009).

Recent studies have addressed the pathways that comprise the
worm retrograde response (Figure 1). Knockdown of cco-1, among
several respiratory chain components, extends life span, and acti-
vates the hypoxia-inducible transcription factor HIF-1 (Lee et al.,
2010a). Parenthetically, activation of HIF-1 involves ceramide sig-
naling and the hyl-2 encoded ceramide synthase, a homolog of the
yeast longevity assurance gene LAG1 (Mehta et al., 2009; Menuz
et al., 2009), which will have significance below. The mitochondrial
signal in this cco-1 knockdown appears to be the ROS gener-
ated during mitochondrial stress, but it is not known whether
this follows changes in ΔΨm. In another study, down-regulation
of COX4 (cco-1) by RNAi extended lifespan and concomitantly
activated the mitochondrial unfolded protein response, which
recruited the transcription factors UBL-5 and DVE-1 (Durieux
et al., 2011). This response was cell-non-autonomous implying
the secretion of a “mitokine” by certain cells, to which other cells
respond. In yet another study, an RNAi screen for reduced mito-
chondrial electron transport chain function identified CEH-23,
a predicted transcription factor, in the longevity increase (Walter
et al., 2011). In each of the above studies, the respective tran-
scription factors were shown to be necessary and sufficient for
life span extension. Thus, the mutual relationships of the “ret-
rograde responses” uncovered in these studies is not clear at
present.

This discussion of the worm retrograde response suggests a
marked heterogeneity of the responsible signaling pathways, as
compared to the yeast retrograde response. However, recent stud-
ies in yeast also point to more than a single, comprehensive
response to mitochondrial dysfunction. The worm signaling path-
ways appear more disparate, and they may reflect the increased
complexity of this metazoan. C. elegans does not possess an NFκB
homolog, which may have evolved as a master regulator along
with the appearance of more complex immune systems (Srini-
vasan et al., 2010). Thus, NFκB may have gathered together the
capacity to respond to a variety of inputs with a variety of outputs,
including the equivalent of a retrograde response as we discuss
below.

There may in fact be more than one type of mitochondrial
“retrograde response” in the worm. Recent work has demonstrated
that the location of the respiratory chain disruption that extends C.
elegans longevity affects the associated phenotypic manifestations
(Yang and Hekimi, 2010b). Evidence has also been presented that
mitochondrial ROS serve a signaling function in lifespan exten-
sion, in a pathway distinct from any known lifespan extending
mechanism in the worm (Yang and Hekimi, 2010a). Curiously,
this novel ROS pathway may have bile acid-like mediators that
perform a hormonal function (Liu et al., 2012).

A retrograde response has been characterized in D.
melanogaster in a variety of RNAi strains in which anyone of sev-
eral respiratory chain components were knocked down (Copeland
et al., 2009). Many of these strains displayed an increase in life span.
A mutant in the sbo gene involved in coenzyme Q biosynthesis also
demonstrated extended lifespan (Liu et al., 2011). The identity of
the signaling pathway(s) involved here in lifespan extension is not
known.

In mice, reduced activity of MCLK1, involved in coenzyme Q
biosynthesis and resulting in a defective electron transport chain,
markedly extended life span, with no apparent tradeoff in growth
or fertility (Lapointe and Hekimi, 2008). These mouse studies fol-
lowed up on early work on the C. elegans clk-1 gene, mutants of
which extended worm longevity. In a SURF1 knockout mouse,
mitochondrial complex IV assembly is disrupted, and this also
results in substantially increased longevity (Dell’Agnello et al.,
2007). It is not clear which signal transduction proteins are utilized
in these mouse retrograde responses, but they are likely to differ
from the yeast RTG genes.

Mitochondrial respiratory defects elicit expression of nuclear
genes in mammalian cells (Heddi et al., 1993). Calcium-signaling
and NFκB signaling are among the potential signaling pathways
that have been implicated in these “retrograde responses” (Butow
and Avadhani, 2004). NFκB is a conserved master regulator that
responds to a wide range of stress signals including ROS (Srini-
vasan et al., 2010). It is also associated with mitochondrial bio-
genesis. A mitochondrial stress response to aggregated ornithine
decarboxylase in mammalian cells may be similar to the mitochon-
drial unfolded protein response in C. elegans, described above;
however, it specifically involves the CHOP transcription factor and
not UBL-5 and DVE-1 homologues (Zhao et al., 2002). CHOP is a
target for activation by ceramide generated by the LASS6-encoded
ceramide synthase in human cells, which protects the cells from
endoplasmic reticulum stress-induced apoptosis (Senkal et al.,
2010). This connection to ceramide signaling will become more
significant in the discussion below.

Gene expression differences in rho+/rho0 pairs of three dif-
ferent human cell types are heterogeneous between cell types
and may reflect cellular pathology (Miceli and Jazwinski, 2005).
However, the gene expression changes consistent across cell types
reflected an adaptation to loss of respiratory function by stim-
ulation of glycolysis, enhanced protection from ROS, and com-
pensation for genome instability. These gene expression changes
reflect the physiologic events in yeast cells in which the retro-
grade response is activated. One of the genes commonly activated
was c-Myc, a basic helix-loop-helix/leucine zipper transcription
factor. The Myc–Max heterodimer is homologous to Rtg1–Rtg3
(Srinivasan et al., 2010). Significantly, NFκB has two binding sites
in the Myc promoter, suggesting that the mammalian retrograde
response may involve both NFκB and Myc (Duyao et al., 1990).
NFκB would be upstream of Myc in this scenario. This is further
consistent with the observation of both increased NFκB activity
and elevated levels of Myc activity with age, which is suppressed
by Cdk2 in a cell senescence model (Semsei et al., 1989; Cam-
paner et al., 2010). Acute mitochondrial respiratory stress activates
NFκB through a novel calcineurin-dependent pathway (Biswas
et al., 2008). Stress-activated calcineurin participates in TORC2
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regulation of ceramide synthase, as discussed below. This protein
phosphatase also responds to the rise in cytoplasmic calcium found
in mammalian rho0 cells and to which NFκB is known to respond
(Butow and Avadhani, 2004). Despite these similarities between
the yeast and mammalian retrograde responses, homologues of
Rtg2 have not yet been found in mammals. Thus, this particu-
lar link to mitochondrial dysfunction in mammalian retrograde
signaling is still missing.

There also appears to be a link between mitochondrial dys-
function in mammalian cells and cell lifespan (Passos et al., 2007).
Mild mitochondrial uncoupling with dinitrophenol delays the
replicative senescence of normal human diploid fibroblasts, while
lowering ROS production, reducing telomere shortening, prevent-
ing the appearance of DNA repair foci in the nucleus, and inducing
a variety of gene expression changes. Thus, mammalian cells show
many of the molecular features of yeast retrograde signaling, and
they also display the extended life span characteristic of the ret-
rograde response. It will be important to identify the relevant
signaling pathways.

CELLULAR QUALITY CONTROL AND THE RETROGRADE
RESPONSE
General autophagy is a gene regulated process that is non-selective
for removal of proteins and organelles through their degradation
in the lysosome (Nakatogawa et al., 2009). This process can become
selective, however. In the case of mitochondria, the Atg32 pro-
tein tags yeast mitochondria for selective removal by autophagy,
in a process termed mitophagy (Kim et al., 2007; Kissova et al.,
2007). This can serve to channel nutrients to starving cells. It can
also allow remodeling of the cell to adapt to changing metabolic
needs, as well as to remove damaged and dysfunctional organelles.
The mitochondrial fission–fusion cycle plays a role in mitophagy,
since deletion of DNM1 which is required for fission attenuates
mitophagy without entirely eliminating it (Kanki et al., 2009).
Interestingly, deletion of this gene extends yeast replicative lifes-
pan, suggesting that some but perhaps not excessive mitophagy is
consistent with long life (Scheckhuber et al., 2007).

Stationary phase mitophagy requires the AUP1 gene in yeast
(Journo et al., 2009). The Aup1 protein is located in the mitochon-
drial intermembrane space, and it specifies a protein phosphatase.
During stationary phase mitophagy, the retrograde response is
activated, and this requires AUP1 (Journo et al., 2009). Further-
more, deletion of RTG3 prevents this activation of the retrograde
response and mitophagy, and Aup1 affects the phosphorylation
status of Rtg3. Thus, the signal generated by mitochondria appears
somehow to be relayed to Rtg3 during stationary phase to elicit ret-
rograde target gene expression and induce mitophagy. These activ-
ities are consistent with the extensive remodeling of metabolism
as yeast cells adapt to survival in stationary phase.

General autophagy is inhibited by TORC1, which phosphory-
lates Atg13 a component of the Atg1 kinase that is essential for
autophagy (Kamada et al., 2010). Deletion of the genes required
for the synthesis of complex sphingolipids in yeast (IPT1 and
SKN1) augments autophagy induced by nitrogen starvation (The-
vissen et al., 2010). Sphingosine and ceramide are the substrates for
complex sphingolipid biosynthesis, but sphingosine-1-phosphate
and ceramide stimulate autophagy in mammalian cells (Lavieu

et al., 2008). Together these observations suggest that a delicate
balance exists in the sphingolipid biosynthetic pathway that can
tip the scale from quality control through limited autophagy to
full blown degradation. Thus, sphingolipid signaling has a mod-
ulatory effect on autophagy, while TORC1 may play the primary
role in its regulation.

TORC2 also may regulate autophagy in yeast by stimulat-
ing ceramide synthase activity through the activation of Ypk2,
another AGC protein kinase (Aronova et al., 2008). It does this in
the presence of nutrients. The stimulation of ceramide synthesis
would provide the substrate for complex sphingolipid synthesis
and thus attenuation of autophagy. On the other hand, ceramide
synthase is inhibited by the stress responsive protein phosphatase
calcineurin, which is dependent on calcium/calmodulin (Aronova
et al., 2008). In this way, stress would enhance autophagy. It appears
that TORC2, through its effects on sphingolipid signaling is a
potential modulator of autophagy.

The response to mitochondrial dysfunction may be linked to
ceramide synthase activity. Ceramide synthase activity in yeast is
encoded by the longevity assurance gene LAG1 and its homolog
LAC1, and this enzyme is located in the endoplasmic reticu-
lum membrane (D’Mello et al., 1994; Jiang et al., 1998; Guillas
et al., 2001; Schorling et al., 2001). The LAG1/LAC1 orthologs
in human, LASS1–6, encode the six human ceramide synthases,
Lass1-6, which are also located in the endoplasmic reticulum
(Venkataraman et al., 2002; Guillas et al., 2003; Teufel et al., 2009).
A physical junction between the mitochondrion and the endo-
plasmic reticulum has been identified, and it has been proposed
to regulate mitochondrial biology (Kornmann and Walter, 2010).
This regulation could involve ceramide signaling, which plays an
important role in processes such as cell cycle control and stress
resistance (Dickson, 2010). Such a role would require exquisite
balance. Perhaps this explains why the expression of the LAG1
ceramide synthase gene in yeast, which determines yeast replica-
tive lifespan, is so finely tuned (Jiang et al., 2004). In mammalian
cells, mitofusin 2 plays a decisive role in bridging the endoplas-
mic reticulum and mitochondria (de Brito and Scorrano, 2008).
It thus impacts metabolism, apoptosis, and cell cycle progression.
Importantly, the tethering of mitochondria to the endoplasmic
reticulum is required for efficient mitochondrial calcium uptake
(de Brito and Scorrano, 2008), which may impact NFκB activa-
tion in cells in mitochondrial respiratory stress as discussed earlier
(Biswas et al., 2008). One of the hallmarks of mtDNA-less mam-
malian cells is an increase in cytoplasmic calcium levels, which
leads to activation of calcineurin (Biswas et al., 1999), which
would inhibit ceramide synthase and thus alter the balance of
autophagy.

In addition to the physical connection between the mitochon-
drion and the endoplasmic reticulum, there are other ways in
which the activities in these cell compartments may be coor-
dinated. The LAC1 gene is coordinately regulated with the
multi-drug resistance family of membrane transporters in yeast
(Kolaczkowski et al., 2004). These transporters are activated in
rho0 cells by retrograde signaling and by mechanisms independent
of the RTG genes in the presence of other mitochondrial defects
(Hallstrom and Moye-Rowley, 2000; Moye-Rowley, 2005). All in
all, it appears that the cellular response to mitochondrial damage
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in the form of the retrograde response and autophagy/mitophagy
is coordinated.

THE PINK1/PARKIN CONNECTION
The PINK1 protein kinase, together with the ubiquitin ligase
Parkin, plays a crucial role in the elimination of dysfunctional
mitochondria by mitophagy (Deas et al., 2011; Kawajiri et al.,
2011). The mitochondrial signal that triggers this process is the
loss of ΔΨm (Narendra et al., 2009). This process is defective in
Parkinson’s disease, which can be caused by mutations in PARKIN,
resulting in its aggregation, as well as by mutations in PINK1 (Deas
et al., 2011; Kawajiri et al., 2011). PINK1 is localized on the mito-
chondrial outer membrane. Mitochondrial depolarization results
in the translocation of Parkin to mitochondria, and this requires
PINK1. One of the targets of polyubiquitination by Parkin is the

voltage-dependent anion channel (VDAC1; Geisler et al., 2010).
The mitochondrial outer membrane protein Miro is a PINK1 sub-
strate, and it is degraded via Parkin-mediated polyubiquitination
(Wang et al., 2011). This detaches the dysfunctional mitochondria
from microtubules preventing their trafficking, and likely aiding
in their removal by mitophagy. There are no PINK1 or Parkin
homologues in yeast. However, Gem1, the yeast Miro homolog,
is found in mitochondria-endoplasmic reticulum contact sites
and regulates the association of the two organelles (Kornmann
et al., 2011), which suggests that Miro degradation would also
release mitochondria from the endoplasmic reticulum. It will be
of interest to determine whether ceramide signaling is engaged in
the processes described here, because of the potential effects of
the mitochondria-endoplasmic reticulum junctions on ceramide
synthase activity.

FIGURE 2 | Retrograde signaling in yeast and human. In yeast, respiring
mitochondria in non-dividing, stationary phase cells signal the retrograde
response that activates both retrograde response target genes, similar to
those in dividing cells, and mitophagy genes. This results in the metabolic
adaptation to stationary phase. Aup1, a protein phosphatase in the
intermembrane space in mitochondria, is essential for this gene induction.
Rtg1–Rtg3 is the retrograde transcription factor. On the other hand,
dysfunctional mitochondria in growing cells trigger the classical retrograde
response with activation of retrograde response target genes. Rtg2 plays an
essential role in this process. Gem1 is a Miro homolog in yeast which is
important for maintaining junctions between mitochondria and the
endoplasmic reticulum. By analogy with mammalian cells, it would also tether

the mitochondria to the cytoskeleton. In human cells, a drop in mitochondrial
membrane potential (ΔΨm) recruits Parkin by the PINK1 protein kinase to the
mitochondrial membrane. Parkin mediates ubiquitylation of Miro, which
releases the mitochondria from the cytoskeleton and also, presumably, from
the endoplasmic reticulum. This facilitates the removal of dysfunctional
mitochondria by mitophagy. Sequestosome 1 (p62) aggregates proteins
polyubiquitinated by Parkin on the surface of mitochondria. p62 is known to
stimulate NFκB, which among its many target genes has Myc. The Myc–Max
dimer is homologous to Rtg1–Rtg3. Transcription of Myc is activated in human
cells devoid of mtDNA, and Myc itself activates the transcription of metabolic
genes, typical for the retrograde response. The production of reactive oxygen
species (ROS) by the mitochondria may elicit responses as well.
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Sequestosome 1 (p62) can aggregate ubiquitylated proteins
and accumulates on mitochondria that have undergone Parkin-
mediated polyubiquitination (Geisler et al., 2010). It is not clear
whether or not p62 is required for mitophagy. However, its role in
the response to mitochondrial damage may be related to its acti-
vation of the NFκB pathway, as discussed below. The similarities
and differences between yeast and human cells in the activation of
some of the responses to changes in mitochondrial metabolism are
highlighted in Figure 2. We have discussed those aspects related to
mitophagy. We turn our attention below to the master regulator
NFκB, which incorporates the roles of the retrograde transcription
factor Rtg1–Rtg3 into its repertoire.

NFκB
The components of NFκB heterodimers are diverse, with roles
in innate immunity, inflammation, and anti-apoptosis, and they
respond to a wide diversity of stressors. NFκB forms a class of
transcription factor with several members including RelA and
p50, and their activation relies on IKK kinases phosphorylating
inhibitory IκB proteins. Phosphorylated subunits of IκB are short-
lived and are degraded by the proteasome, through the ubiquitin
proteasome system (UPS) pathway. In mammalian cells, NFκB is

localized at the mitochondrial membrane (Cogswell et al., 2003),
and it participates with mitochondria in innate immune responses
(West et al., 2011). The cluster formed by IKK, IκB, and NFκB
resembles pathway connections and mediators known for the RTG
genes (Figure 3). One of the constitutive mechanisms of NFκB
activation is oncogenic RAS, utilizing Raf-dependent and indepen-
dent MAPK signaling pathways (Norris and Baldwin, 1999). NFκB
can be activated by a number of atypical mechanisms including
the endoplasmic overdose response (Pahl and Baeuerle, 1997) and
aging (Kriete and Mayo, 2009), making NFκB a universal stress
response sensor.

We have discussed above the similarities of the RTG genes and
NFκB in metabolic regulation. One modulator of the NFκB path-
way is mTOR. Inhibition of mTOR, involving separation of TOR
from LST8, activates autophagy (Diaz-Troya et al., 2008). While
activation of NFκB in some cases may depend on the degrada-
tion of IκB inhibitory proteins by autophagy independent of the
proteasome (Jia et al., 2012), the role of mTOR and autophagy
in NFκB activity is complex and involves other pathways includ-
ing protein kinase B (Akt; Dan et al., 2008) and HSP90 (Qing
et al., 2007). A related conundrum is the finding that IKK com-
plexes can activate autophagy (Criollo et al., 2010, 2012). In a

FIGURE 3 | Side-by-side comparison of the retrograde response

controlled by the heterodimeric transcription factors Rtg1–Rtg3 in yeast

and NFκB in mammalian cells. In contrast to the three Rtg proteins in yeast,
NFκB activators, inhibitors and transcription factors have evolved into a wide
spectrum of subunits to elicit specific response patterns to a variety of
stressors. Common to both pathways is their activation by mitochondrial
dysfunction involving reactive oxygen species (ROS) and changes in

mitochondrial membrane potential (ΔΨm). Another common activator that
responds to external stressors is RAS (Ras2 in yeast). Furthermore, both
pathways are modulated by TOR through LST8. LST8 dissociates from mTOR
under stress, although it is not known whether this is true of TOR in yeast.
Regulation of autophagy by TOR impinges on both pathways, as well. The
adaptive response of both pathways to mitochondrial dysfunction includes
upregulation of glycolysis to compensate for energy deficiency.

www.frontiersin.org May 2012 | Volume 3 | Article 139 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Jazwinski and Kriete Retrograde response to mitochondrial dysfunction

study involving treatment of B-cell lymphoma cells, bortezomib
led to proteasome down-regulation and accumulation of polyu-
biquitinated proteins (Jia et al., 2012). Hereby, the autophagy
adapter protein Sequestosome 1 (p62) recruits LC3-II and ubiq-
uitinated proteins including IκBα for subsequent transport and
degradation to autophagosomes. p62 can promote tumorigenesis
by activating ROS scavenging via the NFκB pathway (Moscat and
Diaz-Meco, 2009). It also associates with TRAF6, and in this way
regulates NFκB signaling in bone homeostasis (Moscat and Diaz-
Meco, 2009). p62 interacts with atypical protein kinase C proteins,
such as PKCζ (Moscat and Diaz-Meco, 2009), which control NFκB
(Duran et al., 2003) as well as inflammatory cytokine production
in adipocytes (Lee et al., 2010b). This can lead to insulin resis-
tance even in the absence of obesity, which has implications for
aging. p62 also could be relevant for TNF-α activation of NFκB.
Recent studies show that p62 interacts with Raptor and is required
for TORC1 activation by amino acids, in turn downregulating
autophagy (Duran et al., 2011). Thus, the regulation of autophagy
and NFκB-mediated inflammation are related.

NFκB activity is controlled by ceramide signaling in some con-
texts. LPS-stimulated prostaglandin E2 synthesis in macrophages is
mediated by the upregulation of COX2 transcription by ceramide
(Wu et al., 2003). The transcription factor responsible is NFκB,

whose activation is greater in old mice than in young ones.
This effect is due to greater degradation of IκB in macrophages
from old animals. Constitutively activating NFκB in p65 knock-in
mice results in aberrant systemic inflammation involving TNFα

signaling and signs of premature aging (Dong et al., 2010).

MAMMALIAN EQUIVALENT OF THE GLYOXYLATE CYCLE
A key feature of the yeast retrograde response is activation of the
glyoxylate cycle, which allows the truncated TCA cycle to serve
as a source of biosynthetic intermediates (Figure 4). Tumor cells
often possess mutations in mitochondrial components, which dis-
able the electron transport chain (Mullen et al., 2012). Such cells
can grow readily by generating ATP through glycolysis. However,
they need a source of biosynthetic intermediates. It has recently
been shown that this source is the reductive carboxylation of
α-ketoglutarate derived from glutamine, which yields both acetyl-
coenzyme A and the four-carbon TCA cycle intermediates that
are used in various biosyntheses (Mullen et al., 2012). The key
reductive carboxylation is catalyzed by isocitrate dehydrogenase-1
(IDH1) in the cytoplasm (Figure 4), although some synthesis may
occur in mitochondria. The same situation occurs in normal cells
under hypoxic conditions, and HIF-1α and HIF-2α both appear
to play a role in the metabolic switch (Metallo et al., 2012). It is

FIGURE 4 | Metabolic adaptations to loss of biosynthetic intermediate

production by a truncated tricarboxylic acid (TCA) cycle. The loss of the
electron transport chain interrupts the TCA cycle at the succinate
dehydrogenase reaction. This prevents the utilization of the TCA cycle for
production of biosynthetic intermediates. In yeast, the glyoxylate cycle is
induced. This allows acetyl-coenzyme A (acetyl-CoA) to be used for the
synthesis of the TCA cycle metabolites citrate and malate, in reactions that
conserve the two carbons of acetate. This, in turn, allows the first three
reactions of the TCA cycle to proceed with the synthesis of α-ketoglutarate,

which can be converted to glutamate, the ultimate source of nitrogen in
biosynthesis (not shown here). In human cells, a related metabolic adaptation
occurs. This adaptation is the reductive carboxylation of α-ketoglutarate to
yield isocitrate, which in turn is a source of TCA cycle intermediates citrate
and malate at the same time generating acetyl-CoA for lipid biosynthesis. The
ultimate source of α-ketoglutarate in these reactions is glutamine, which
allows the use of glucose for production of energy in glycolysis as well as for
biosynthetic reactions. In both yeast and human, TCA cycle metabolites are
used as macromolecular precursors.

Frontiers in Physiology | Integrative Physiology May 2012 | Volume 3 | Article 139 | 8

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


Jazwinski and Kriete Retrograde response to mitochondrial dysfunction

not known whether ceramide regulates these transcription factors
as it does HIF-1 in C. elegans (Mehta et al., 2009; Menuz et al.,
2009). If it does, the parallel between the effects of mitochondr-
ial dysfunction on metabolism in human and in yeast and worms
would be striking.

There are additional hypoxia-driven changes that lead to reduc-
tive glutamine metabolism. HIF-2α promotes Myc transcription
(Gordan et al., 2007). This enhances glutamine catabolism, among
others by activating glutaminase expression (Gao et al., 2009).
Furthermore, Myc upregulates genes involved in glycolysis, pro-
moting the generation of lactate and ATP by substrate level phos-
phorylation (Collier et al., 2003), a response important in rho0

mammalian cells (Miceli and Jazwinski, 2005).

CONCLUSION
The retrograde response in yeast and related pathways in higher
organisms share the common adaptive function of supporting
cellular survival. Activated by external perturbations like heat and
osmotic shock, bacterial pathogens, UV radiation, starvation, and
related mitochondrial dysfunction, they protect the cell transiently.
Environmental challenges that perturb mitochondrial function are

equally likely to be encountered across species, from yeast to mam-
malian cells. It comes therefore as no surprise that many responses
exhibit similar features as shown here for RTG and NFκB stress
responses. The decisive difference between the aging process and
acute environmental perturbations, regardless of the biological
system, is a rather slow accumulation of damage and dysfunction
in the former. Although mechanisms like the retrograde response
compensate for mitochondrial deficiencies and extend lifespan,
they cannot escape aging in the long term. The retrograde response
was not likely selected as an anti-aging mechanism, as it operates as
a double-edged sword. In yeast, its activation extends lifespan, but
it also reduces genome stability which can ultimately contribute
to cell demise. In mammalian cells, NFκB, optimized under evo-
lutionary pressure to respond to acute challenges like infections,
promotes inflammatory disease states when chronically activated
in aging.
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