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Fractal structures are found in biomedical time series from a wide range of physiological
phenomena. The multifractal spectrum identifies the deviations in fractal structure within
time periods with large and small fluctuations. The present tutorial is an introduction to
multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spec-
trum of biomedical time series.The tutorial presents MFDFA step-by-step in an interactive
Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the
website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes
where the reader can employ pieces of, or the entire MFDFA to example time series. After
introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal
processing.The main aim of the tutorial is to give the reader a simple self-sustained guide
to the implementation of MFDFA and interpretation of the resulting multifractal spectra.
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INTRODUCTION
The structural characteristics of biomedical signals are often visu-
ally apparent, but not captured by conventional measures like the
average amplitude of the signal. Biomedical signals from a wide
range of physiological phenomena posses a scale invariant struc-
ture. A biomedical signal has a scale invariant structure when the
structure repeats itself on subintervals of the signal. Formally, the
biomedical signal X(t ) are scale invariant when X(ct ) = cHX(t ).
Fractal analyses estimates the power law exponent, H, that defines
the particular kind of scale invariant structure of the biomed-
ical signal. Fractal analyses are frequently employed in biomedical
signal processing to define the scale invariant structure in ECG,
EEG, MR, and X-ray pictures (cf. Lopes and Betrouni, 2009). The
scale invariant structures of inter-spike-interval of neuron firing,
inter-stride-interval of human walking, inter-breath-interval of
human respiration, and inter-beat intervals of the human heart
has differentiated between healthy and pathological conditions
(e.g., Ivanov et al., 1999; Peng et al., 2002; Zheng et al., 2005;
Hausdorff, 2007), and between different types of pathological con-
ditions (e.g., Wang et al., 2007). Scale invariant structures are also
found in spatial phenomena like the branching of the nervous sys-
tem and lungs (e.g., Bassingthwaighte et al., 1990; Abbound et al.,
1991; Weibel, 1991; Krenz et al., 1992), bone structure (Parkin-
son and Fazzalari, 1994), and are able to differentiate between
healthy and cancer tissues (Atupelage et al., 2012). Several reports
during the last decade suggest that changes in the scale invariant
structure of biomedical signals reflect changes in the adaptability
of physiological processes and successful treatment of pathologi-
cal conditions might change fractal structure and improve health
(Goldberger, 1996; Goldberger et al., 2002). Fractal analyses are
therefore promising prognostic and diagnostic tools in biomedical
signal processing.

Monofractal and multifractal structures of the biomedical sig-
nal are particular kind of scale invariant structures. Most com-
monly, the monofractal structure of biomedical signals are defined
by a single power law exponent and assumes that the scale invari-
ance is independent on time and space. However, spatial and
temporal variation in scale invariant structure of the biomedical
signal often appears. These spatial and temporal variations indi-
cate a multifractal structure of the biomedical signal that is defined
by a multifractal spectrum of power law exponents. As an exam-
ple, age related changes in the scale invariant structure of heart rate
variability are indicated by changes of the multifractal spectrum
rather than a single power law exponent (e.g., Makowiec et al.,
2011). The width and shape of the multifractal spectrum can also
differentiate between the heart rate variability from patients with
heart diseases like ventricular tachycardia, ventricular fibrillation
and congestive heart failure (e.g., Ivanov et al., 1999; Wang et al.,
2007). The multifractal structure of heart rate variability is there-
fore suggested to reflect important properties of the autonomic
regulation of the heart rate (Goldberger et al., 2002). Further-
more, the multifractal spectrum of endogenous brain dynamics
and response times is more sensitive to the influence of age and
cognitive performance compared to a single power law exponent
alone (Suckling et al., 2008; Ihlen and Vereijken, 2010). Further-
more, the multifractal structure of EEG and series of inter-spike
intervals have been able to differentiate between the neural activi-
ties of brain areas (Zheng et al., 2005). Multifractal analyses might
therefore be important as a computer aided tool to increase the
precision of neurosurgeries. The main aim of the present tutorial
is to introduce a robust analysis called the multifractal detrended
fluctuation analysis (MFDFA) that can estimate the multifractal
spectrum of power law exponents from a biomedical time series
(Kantelhardt et al., 2002). Those readers not familiar with analysis
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of monofractal fluctuations in biomedical signals are referred to
Eke et al. (2000).

The tutorial is intended to be a self-sustained guide to the
implementation of MFDFA to time series and interpretation of
the resulting multifractal spectra to the readers that are unfa-
miliar to fractal analysis. In order to be a self-sustained guide,
the tutorial decomposes MFDFA into a series of simple Matlab
codes that are introduced in a step-wise manner to the reader.
The tutorial is meant to be interactive where the reader can
employ the Matlab codes while reading the text to enhance the
understanding of MFDFA. The reader is therefore advised to
download the folder “Introduction to MFDFA” at the web site
www.ntnu.edu/inm/geri/software where all Matlab codes used in
the tutorial are available. The reader should set the folder as
the current directory folder in Matlab before reading the fol-
lowing sections of the tutorial. The folder can be set as current
directory folder by pasting it into the current directory window
after opening Matlab. Matlab variables, parameters,
and commands are written in the Matlab command font and a
red color to separate them from the rest of the text. The reader
can type the red commands in the Matlab command window
wherever they appear in the text to access variables and
parameters or plot them with Matlab’s plot function. A
translation of the Matlab codes of MFDFA to the mathemati-
cal notations used by Kantelhardt et al. (2002) are given for the
readers interested in the mathematical details of the MFDFA.
The rest of the tutorial is divided into two sections: the imple-
mentation of MFDFA in Matlab is introduced step-by-step in
Section “Multifractal Detrended Fluctuation Analysis in Matlab”
where the interpretation of the resulting multifractal spectrum is
emphasized. Important issues for the best practice of MFDFA are
discussed in Section “The Best Practice of Multifractal Detrended
Fluctuation Analysis.”

MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS IN
MATLAB
The construction of MFDFA is divided into eight steps: Section
“Noise and Random Walk Like Variation in a Time Series” intro-
duces a method to convert a noise like time series into a random
walk like time series that is a preliminary step for MFDFA. Section
“Computing the Root-Mean-Square Variation of a Time Series”
introduces root-mean-square (RMS) that is the basic computa-
tion within MFDFA and a typical way to compute the average
variation of biomedical time series. Section “Local Root-Mean-
Square Variation in the Time Series” introduces the computation
of local fluctuation in the time series as RMS of the time series
within non-overlapping segments. In Section “Local Detrending of
the Time Series,” the same local RMS is computed around trends
that are often encountered in biomedical time series. In Section
“Monofractal Detrended Fluctuation Analysis,” the amplitudes of
the local RMS are summarized into an overall RMS. The over-
all RMS of the segments with small sample sizes is dominated
by the fast fluctuations in the time series. In contrast, the over-
all RMS for segments with large sample sizes is dominated by
slow fluctuations. The power law relation between the overall
RMS for multiple segment sample sizes (i.e., scales) is defined
by a monofractal detrended fluctuation analysis (DFA) and is

called the Hurst exponent. In Section “Multifractal Detrended
Fluctuation Analysis of Time Series,” MFDFA is obtained by the
q-order extension of the overall RMS. The q-order RMS can
distinguish between segments with small and large fluctuations.
The power law relation between the q-order RMS is numeri-
cal identified as the q-order Hurst exponent. In Section “The
Multifractal Spectrum of Time Series,” several multifractal spec-
tra are computed from the q-order Hurst exponent. In Section
“A Direct Estimation of the Multifractal Spectrum,” an alternative
version of MFDFA is introduced that compute the multifractal
spectrum directly from the local fluctuations without the q-order
overall RMS.

Before starting the introduction of MFDFA, the reader can type
load fractaldata.mat in the Matlab command window
to access the time series, whitenoise, monofractal, and
multifractal. These time series will be used as test series in
the rest of Section “Multifractal Detrended Fluctuation Analysis
in Matlab” while constructing MFDFA piece-by-piece. The con-
struction of the Matlab code for MFDFA is represented as Matlab
code boxes within the text. The main intention of these Matlab
code boxes is that the reader should paste the Matlab code into the
Matlab command window while reading the tutorial. Figures are
accessed by typing the plot command at the end of the Matlab code
boxes. The reader can access all Matlab code boxes by opening the
m-file Matlabcodes contained in the “Introduction to MFDFA”
folder.

NOISE AND RANDOM WALK LIKE VARIATION IN A TIME SERIES
The red traces in Figure 1 show an ordinary random walk
(lower panel), a monofractal random walk (middle panel) and
a multifractal random walk (upper panel). The fractal property
of these random walks is reflected by their picture-in-picture
similarity as illustrated in the upper panel of Figure 1. Small
“hills” and “valleys” with similar structure appear when you
zoom on the large “hills” and “valleys” of the random walk.
The DFA is employed to time series with a random walk like
structure (Peng et al., 1995). However, most biomedical time
series have fluctuations that are more similar to the increments
of the random walks (see the blue traces in Figure 1). If the
biomedical time series has the noise like structure of the blue
traces in Figure 1, it should be converted to a random walk
like time series before employing DFA. Noises can be converted
to random walks by subtracting the mean value and integrate
the time series. Time series whitenoise, monofractal,
and multifractal are all noise like time series and are
converted to random walk like time series by Matlab code 1
below:

Matlab code 1:

RW1=cumsum(whitenoise-mean(whitenoise));
RW2=cumsum(monofractal-mean(monofractal));
RW3=cumsum(multifractal-mean(multifractal));

Type plot1 in the command window to access Figure 1.

COMPUTING THE ROOT-MEAN-SQUARE VARIATION OF A TIME SERIES
A conventional analysis of variation in biomedical time series is to
compute the average variation as a RMS. The reader can use Matlab
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FIGURE 1 |The time series multifractal (upper panel),

monofractal (middle panel), and whitenoise (lower panel) are

shown as blue traces. They are examples of noise like time series
used in the present tutorial. All time series contain 8000 data samples
each where the sample numbers are indicated by the horizontal axis.
Matlab code 1 converts the noises (blue traces) to random walks (red

traces) that have a picture-in-picture similarity (subplot in the upper
panel). Notice that the time series multifractal has distinct periods
with small and large fluctuations in contrast to time series
monofractal and whitenoise. The aim of this section is to
introduce MFDFA that quantify the structure of fluctuations within the
periods with small and large fluctuations.

code 2 below to compute RMS for the time series whitenoise,
monofractal, and multifractal:

Matlab code 2:

RMS_ordinary=sqrt(mean(whitenoise.^2));
RMS_monofractal=sqrt(mean(monofractal.^2));
RMS_multifractal=sqrt(mean(multifractal.^2));

Type plot2 in the Matlab command window to access Figure 2.

Figure 2 illustrates that the average amplitude of variation
(i.e., RMS) is equal for all three time series, whitenoise,
monofractal, and multifractal, even though they
have quite different structures. MFDFA will be able to distin-
guish between these structures as we will see in the sections
below.

LOCAL ROOT-MEAN-SQUARE VARIATION IN THE TIME SERIES
The multifractal time series in the upper panel have local fluctua-
tions with both large and small magnitudes. RMS in Matlab code
2 can be computed for segments of the time series to differentiate
between the magnitudes of the local fluctuations. A simple pro-
cedure is to cut the time series into equal-sized non-overlapping
segments and compute a local RMS for each segment. This can
be done by Matlab code 3 below and is the core procedure of
MFDFA:

Matlab code 3:

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=1000;
m=1;
segments=floor(length(X)/scale);
for v=1:segments

Idx_start=((v-1)*scale)+1;
Idx_stop=v*scale;
Index{v}=Idx_start:Idx_stop;
X_Idx=X(Index{v});
C=polyfit(Index{v},X(Index{v}),m);
fit{v}=polyval(C,Index{v});
RMS{1}(v)=sqrt(mean((X_Idx-fit{v}).^2));

end

Type plot3 in Matlab command window to access Figure 3.

The first line of Matlab code 3 converts the noise like time
series, multifractal, to a random walk like time series X (i.e.,
Matlab code 1). The third line of Matlab code 3 set the parame-
ter scale that defines the sample size of the non-overlapping
segments in which the local RMS, RMS{1}, are computed. The
fifth line is the number of segments that the time series X can
be divided into where length(X) is the sample size of time
series X. Thus, segments= 8 when length(X)= 8000 and
scale= 1000. The sixth to fourteenth line is a loop that com-
putes the local RMS around a trend fit{v} for each segment by
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FIGURE 2 |The time series multifractal (upper panel ), monofractal

(middle panel ), and whitenoise (lower panel ) with zero average (red

dashed lines) and ±1 RMS (red solid lines). All time series have equal

RMS = 1, but quite different structure. RMS is only sensitive to differences in
the amplitude of variation and not differences in the structure of variation.
Notice the different scaling for the vertical axis of the multifractal time series.

updating the time Index (see red v arguments in Matlab code
3). In the first loop v= 1, the Index{1} goes from sample 1
to sample 1000. In the second loop v= 2, the Index{2} goes
from sample 1001 to sample 2000. In the final loop v= 8, the
Index{8} goes from sample 7001 to 8000.

LOCAL DETRENDING OF THE TIME SERIES
Slow varying trends are present in biomedical time series and
detrending of the signal is therefore necessary to quantify the
scale invariant structure of the variation around these trends.
In Matlab code 3, a polynomial trend fit{v} is fitted to X
within each segment v (see blue command lines in Matlab code
3). The first blue command line is the parameter m that defines
the order of the polynomial. The polynomial trend are linear
when m= 1, quadratic when m= 2, and cubic when m= 3 (see
Figures 3A–C). The first blue command line within the loop
defines the polynomial coefficients C used to create the poly-
nomial trend fit{v} of each segment (see dashed red lines in
Figure 3). The local fluctuation, RMS{1}(v), is then computed
for the residual variation,X(Index{v})-fit{v}, within each
segment v. The local fluctuation, RMS{1}(v), is illustrated in
Figure 3 as the distance between the red dashed trends and the red
solid lines.

MONOFRACTAL DETRENDED FLUCTUATION ANALYSIS
In the DFA the variation of the local RMS{1} are quantified by an
overall RMS (F) in Matlab code 4 below:

Matlab code 4:

F=sqrt(mean(RMS{1}.^2));

The fast changing fluctuations in the time series X will influ-
ence the overall RMS,F, for segments with small sample sizes (i.e.,
small scale) whereas slow changing fluctuations will influence
F for segments with large sample sizes (i.e., large scale). The
scaling function, F, should therefore be computed for multiple
segments sizes (i.e., multiple scales) to emphasize both fast and
slow evolving fluctuations that influence the structure of the time
series. The scaling function, F(ns), can be computed for multi-
ple scales by including Matlab code 3 and 4 within a new loop
marked as red command lines and arguments ns below:

Matlab code 5 Part 1 of DFA

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=[16,32,64,128,256,512,1024];
m=1;
for ns=1:length(scale),

segments(ns)=floor(length(X)/scale(ns));
for v=1:segments(ns),

Idx_start=((v-1)*scale(ns))+1;
Idx_stop=v*scale(ns);
Index{v,ns}=Idx_start:Idx_stop;
X_Idx=X(Index{v,ns});
C=polyfit(Index{v,ns},X(Index{v,ns}),m);
fit{v,ns}=polyval(C,Index{v,ns});
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FIGURE 3 |The computation of local fluctuations, RMS{1},

around linear (A), quadratic (B), and cubic trends (C) by Matlab

code 3 (m= 1, m= 2, and m= 3, respectively). The red dashed line
is the fitted trend, fit{v}, within eight segments of sample size

1000. The distance between the red dashed trend and the solid red
lines represents ±1 RMS{1}. The local fluctuation, RMS{1}, around
trends is the basic “building block” of the detrended fluctuation
analysis.

RMS{ns}(v)=sqrt(mean((X_Idx-fit{v,ns}).^2));
end
F(ns)=sqrt(mean(RMS{ns}.^2));

end

Type plot4 in the Matlab command window to access Figure 4.

In the first red command line, a vector with multiple seg-
ment sizes (i.e., scales) is set by the reader. In the second
red command line, a loop is initiated where Matlab code 3 is
computed from the smallest to the largest scale. The segment
sample size, scale(ns), are updated by the red index ns.
The local fluctuation, RMS{ns}, is a set of vectors where each
vector have a length equal to the number of segments [i.e.,
segments(ns)]. In the first loop for ns= 1, the local fluc-
tuation RMS{1} is a vector of local RMS values computed for
500 segments [i.e., segments(1)] each containing 16 samples
[i.e.,scale(1)]. In the last loop forns= 7, the local fluctuation
RMS{7} is a vector with local RMS values computed for seven seg-
ments [i.e., segments(7)] each containing 1024 samples [i.e.,
scale(7)]. In the last command line, the scaling function (i.e.,
overall RMS),F(ns), are computed for multiple scales by Matlab
code 4. Figure 4 illustrates the local fluctuations, RMS{ns}, and
the overall RMS, F(ns), for multiple scales.

DFA indentifies the monofractal structure of a time series as
the power law relation between the overall RMS (i.e., F in Matlab
code 4) computed for multiple scales (i.e., scale in Matlab code

5). The power law relation between the overall RMS is indicated
by the slope (H) of the regression line (RegLine) computed by
Matlab code 6 below:

Matlab code 6: Part 2 of DFA

C=polyfit(log2(scale),log2(F),1);
H=C(1);
RegLine=polyval(C,log2(scale));

Type plot5 in Matlab command window to access Figure 5.

The slope, H, of the regression line, RegLine, is called the
Hurst exponent (Hurst, 1951). The Hurst exponent defines the
monofractal structure of the time series by how fast the overall
RMS,F, of local fluctuations,RMS, grows with increasing segment
sample size (i.e., scale). Figure 5 shows that the overall RMS, F,
of local fluctuations,RMS, is growing faster with the segment sam-
ple size for the monofractal and multifractal time series
compared with whitenoise time series. The larger Hurst expo-
nent,H, is visually seen as more slow evolving variations (i.e., more
persistent structure) inmonfractal andmultifractal time
series compared with whitenoise. Figure 6 illustrates that the
Hurst exponents defines a continuum between a noise like time
series and a random walk like time series. The Hurst exponent
will be in the interval between 0 and 1 for noise like time series
whereas above 1 for a random walk like time series. A time series
has a long-range dependent (i.e., correlated) structure when the
Hurst exponent is in the interval 0.5–1 and an anti-correlated
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FIGURE 4 |The local fluctuations, RMS{ns} (blue lines), computed by

Matlab code 5 for segments with multiple segment sizes (i.e., scale). The
scaling function F{ns} is the overall RMS (red line) of the local fluctuation
RMS{ns}. Notice that F{ns} decreases on smaller scales.

FIGURE 5 |The plot of overall RMS (i.e., F in Matlab code 5) versus

the segment sample size (i.e., scale in Matlab code 5) where both F

and scale are represented in log-coordinates. The scale invariant
relation is indicated by the slope, H, of the regression lines, RegLine,
computed by Matlab code 6. The slope, H, is a power law exponent

called the Hurst exponent because F and scale are represented in
log-coordinates. Notice that both the monofractal and
multifractal time series have more apparent slow fluctuations
compared to whitenoise indicated by larger amplitudes of the overall
RMS on the larger scales.
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FIGURE 6 |The range of Hurst exponents defines a continuum of fractal

structures between white noise (H = 0.5) and Brown noise (H = 1.5). The
pink noise H = 1 separates between the noises H < 1 that have more
apparent fast evolving fluctuations and random walks H > 1 that have more

apparent slow evolving fluctuations. The examples monofractal (red trace)
and whitenoise (turquoise trace) used in the present tutorial are both noise
like time series. The long-range dependent structure of most biomedical
signals is located within the illustrated continuum of fractal structures.

structure when the Hurst exponent is in the interval 0–0.5. The
time series has an independent or short-range dependent struc-
ture in the special case when the Hurst exponent is equal to
0.5. According to Figure 5, time series whitenoise has a time
independent structure with Hurst exponent close to 0.5 whereas
monofractal, and multifractal has a long-range depen-
dent structure with Hurst exponent between 0.7 and 0.8. The
reader should notice that short-range dependent processes can
mimic the scale invariance in Figure 5 for certain scaling ranges
(cf. Gao et al., 2006).

MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS OF TIME SERIES
The structure of the monofractal and multifractal time
series are different even though they have similar overall RMS
and slopes H in Figure 5. The multifractal time series have
local fluctuations with both extreme small and large magnitudes
that is absent in the monofractal time series. The absence of
fluctuations with extreme large and small magnitudes results in
a normal distribution for the monofractal time series where the
variation is described by the second order statistical moment (i.e.,
variance) alone. The monofractal DFA are therefore based on
the second order statistics of the overall RMS (i.e., F in Matlab
code 4). In the multifractal time series, local fluctuation,
RMS{ns}(v), will be extreme large magnitude for segments v
within the time periods of large fluctuations and extreme small
magnitude for segments v within the time periods of small
fluctuations. Consequently, the multifractal time series are not
normal distributed and all q-order statistical moments should to

be considered. Thus, it’s necessary to extend the overall RMS in
the monofractal DFA (i.e., F in Matlab code 4) to the follow-
ing q-order RMS of the multifractal DFA (Fq in Matlab code 7
below):

Matlab code 7:

q=[-5,-3,-1,0,1,3,5];
for nq=1:length(q),

qRMS{1}=RMS{1}.^q(nq);
Fq(nq)=mean(qRMS{1}).^(1/q(nq));

end
Fq(q==0)=exp(0.5*mean(log(RMS{1}.^2)));

Type plot7 in the Matlab command window to access Figure 7.

The first command line in Matlab code 7 defines a set of
q-orders from −5 to 5. The second line initiates a loop that com-
putes the overall q-order RMS,Fq(nq), from negative to positive
q’s (see the red arguments nq). The q-order weights the influ-
ence of segments with large and small fluctuations, RMS{1}, as
illustrated in Figure 7. Fq(nq) for negative q’s (i.e., nq= 1–
3) are influenced by segments v with small RMS{1}(v). In
contrast, Fq(nq) for positive q’s (i.e., nq= 4–6) are influ-
enced by segments v with large RMS{1}(v). The local fluctu-
ations RMS{1} with large and small magnitudes is graded by
the magnitude of the negative or positive q-order, respectively.
Fq for q= −3 and 3 is more influenced by the segments v
with the smallest and largest RMS{1}(v), respectively, com-
pared to Fq for q= -1 and 1 (see Figure 7). The midpoint
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FIGURE 7 | An illustration of qRMS{1} computed by Matlab code 7.

qRMS{1} is the q-order of the local fluctuateons (i.e., RMS{1}) and are the
building block of the overall q-order RMS (i.e., Fq in Matlab code 7).
qRMS{1} is represented for the monofractal (green traces) and
multifractal (blue traces) time series. The negative q-order (q = −3
and −1) amplifies the segments in the multifractal time series with
extreme small RMS{1} whereas positive q-order (q = 3 and 1) amplifies

the segments with extreme large RMS{1}. Notice that q = −3 and q = 3
amplify the small and large variation, respectively, more than q = −1 and
q = 1. Notice also that the monofractal time series has no segments
with extreme large or small fluctuations and, thus, no peaks in qRMS{1}.
The overall q-order RMS is able to distinguish between the structure of
small and large fluctuations and, consequently, between the
monofractal and multifractal time series.

q= 0 are neutral to influence of segments with small and large
RMS{1}. Notice that the last line of Matlab code 7 redefines
the special case q(nq)= 0 because 1/0 goes to infinity [i.e.,
1/q(q= = 0)= inf in Matlab]. The reader should also notice
that Fq(q= = 2) are equal to second order statistics F in Matlab
code 4 because sqrt(x)= x∧(1/2) in Matlab. The monofrac-
tal DFA in Matlab code 5 can now be extended to a MFDFA by
simply changing Matlab code 4 to Matlab code 7 in the last line
of Matlab code 5. This change is highlighted with red command
lines in Matlab code 8 below:

Matlab code 8 Part 1 of MFDFA1

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale=[16,32,64,128,256,512,1024];
q=[-5,-3,-1,0,1,3,5];
m=1;
for ns=1:length(scale),

segments(ns)=floor(length(X)/scale(ns));
for v=1:segments(ns),

Index=((((v-1)*scale(ns))+1):(v*scale(ns)));
C=polyfit(Index,X(Index),m);

fit=polyval(C,Index);
RMS{ns}(v)=sqrt(mean((X(Index)-fit).^2));

end
for nq=1:length(q),

qRMS{nq,ns}=RMS{ns}.^q(nq);
Fq(nq,ns)=mean(qRMS{nq,ns}).^(1/q(nq));

end
Fq(q==0,ns)=exp(0.5*mean(log(RMS{ns}.^2)));

end

The relationship between Matlab code 8 and the mathematical equations used to

introduce the MFDFA in Kantelhardt et al. (2002) are given below:

Eq. 1 in Kantelhardt et al. (2002):

X: Y (i) ≡
i∑

k=1

[xk − 〈x〉]
multifractal: x

mean(multifractal): 〈x〉
The number Ns of non-overlapping segments:

segments(ns): Ns ≡ int(N/s)

length(X): N

scale(ns): s
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Eq. 2 in Kantelhardt et al. (2002):
RMS{ns}(v): F(s,v)

mean((X(Index)-fit).∧2):
1

s

s∑
i=1

{Y [(v − 1)s + i] −yv (i)}2

Index: (v − 1)s + i for i = 1, 2, ..., s

fit: yv (i) =
m∑

k=0

Ck im−k

C: Ck

Eq. 4 in Kantelhardt et al. (2002):

Fq(nq,ns): Fq(s) ≡
{

1

Ns

Ns∑
v=1

[F 2(s, v)]
q/2

}1/q

qRMS{nq,ns}: [F 2(s, v)]
q/2

mean(qRMS{nq,ns}):
1

Ns

Ns∑
v=1

[F 2(s, v)]
q/2

The q-order Hurst exponent can now be defined as the slopes
(Hq) of regression lines (qRegLine) for each q-order RMS (Fq).
Both Hq(nq) and qRegLine{nq} is computed by looping
Matlab code 6 for each q-order (see red command lines and
arguments nq in Matlab code 9 below):

Matlab code 9 Part 2 of MFDFA1

for nq=1:length(q),
C=polyfit(log2(scale),log2(Fq(nq,:)),1);
Hq(nq)=C(1);
qRegLine{nq}=polyval(C,log2(scale));

end

Type plot8 in Matlab command window to access Figure 8.

The relationship between Matlab code 9 are given below in the mathematical notation

used in Kantelhardt et al. (2002):

Hq(nq): h(q)

qRegLine{nq}: log2

(
Fq(s)

) = h(q) log 2(s) + C

Figure 8 shows that the slopes Hq of the regression lines are q-
dependent for the multifractal time series (see Figure 8A).
The difference between the q-order RMS for positive and negative
q’s are more visual apparent at the small segment sizes compared
to the large segment sizes (see Figure 8A). The small segments are
able to distinguish between the local periods with large and small
fluctuations (i.e., positive and negative q’s, respectively) because
the small segments are embedded within these periods. In con-
trast, the large segments cross several local periods with both small
and large fluctuations and will therefore average out their differ-
ences in magnitude. Thus, the relationship between the q-order
RMS of the multifractal time series becomes similar to the
monofractal time series at the largest segment sizes (com-
pare Figures 8A,B). Both the monofractal and whitenoise
time series have no periods with small and large fluctuations
and, consequently, the same difference between the q-order RMS
irrespective of the segment sample sizes (see Figures 8B,C). The
growing similarity between the q-order RMS of multifractal
and monofractal time series with increasing segment sam-
ple size leads to a decreasing Hq for multifractal time
series (see Figure 8D). The decreasing Hq indicates that the seg-
ments with small fluctuations have a random walk like structure
whereas segments with large fluctuations have a noise like struc-
ture (see the continuum of Hurst exponents in Figure 6). The
similarity between the scaling function F of monofractal and
multifractal time series in Figure 5 is indicated by the
intercept of Hq around q = 2 (compare blue and red traces in

Figure 8D). Thus, the monofractal DFA in Matlab code 5 and 6
will not distinguish between the structure of the monofractal
and multifractal time series.

THE MULTIFRACTAL SPECTRUM OF TIME SERIES
The q-order Hurst exponent Hq is only one of several types of
scaling exponents used to parameterize the multifractal structure
of time series. The typical procedure in the literature of MFDFA is
to first convert Hq to the q-order mass exponent (tq) and there-
after convert tq to the q-order singularity exponent (hq) and
q-order singularity dimension (Dq; Kantelhardt et al., 2002). The
plot of hq versus Dq is referred to as the multifractal spectrum
(see Figure 9C). The q-order mass exponent tq can be computed
from Hq by the Matlab code 10 below (see Figure 9B):

Matlab code 10 Part 3 of MFDFA1

tq=Hq.*q-1;

Eq. 13 in Kantelhardt et al. (2002)

The mass exponent tq is used to compute the q-order singu-
larity exponent (hq) and the q-order singularity dimension (Dq)
by Matlab code 11 below (see upper right Figure 9):

Matlab code 11 Part 4 of MFDFA1

hq=diff(tq)./(q(2)-q(1));

Dq=(q(1:end-1).*hq)-tq(1:end-1);

Equation 15 in Kantelhardt et al. (2002)

Type plot9 in the Matlab command window to access Figure 9.

Themonofractal andwhitenoise time series has a mass
exponenttqwith a linear q-dependency. The linear q-dependency
of tq leads to a constant hq of these time series because hq is the
tangent slope of tq (see the first command line in Matlab code
11). The constant hq reduces the multifractal spectrum to a small
arc for the monofractal and whitenoise time series (see
Figure 9C). In contrast, themultifractal time series has mass
exponents tq with a curved q-dependency and, consequently,
a decreasing singularity exponent hq. The resulting multifractal
spectrum is a large arc where the difference between the maximum
and minimum hq are called the multifractal spectrum width (see
arrow in Figure 9C).

The reader should notice that the q-order singularity expo-
nent hq and corresponding dimension Dq computed by Matlab
code 11 are referred to as α and f(α) in Kantelhardt et al. (2002),
but as h and D(h) in other literature (e.g. Ihlen and Vereijken,
2010). Furthermore, the singularity dimension can be confused
with the generalized dimension and the box counting dimension
that is other ways to parameterize the multifractal structure of
time series (see Equation 14 in Kantelhardt et al., 2002).

The Hurst exponent defined by the monofractal DFA repre-
sents the average fractal structure of the time series as illustrated
in Figure 6 and is closely related to the central tendency of mul-
tifractal spectrum. The deviation from average fractal structure
for segments with large and small fluctuations is represented by
the multifractal spectrum width. Thus, each average fractal struc-
ture in the continuum of Hurst exponents (see Figure 6) has a
new continuum of multifractal spectrum widths that represents
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FIGURE 8 | q-order RMS Fq(nq,:) and corresponding regression

line qRegLine{nq} computed by MFDFA (i.e., Matlab code 8 and 9)

for time series multifractal (A), monofractal (B), and

whitenoise (C). (A) The scaling functions Fq (blue dots) and
corresponding regression slopes Hq (blue dashed lines) are
q-dependent. (B,C) The scaling functions Fq (red and turqouish dots) and
regression slope Hq (red and turqouish dashed lines) are q-independent.

(D) The q-order Hurst exponent Hq for the time series multifractal
(blue trace), monofractal (red trace) and whitenoise (turqouish
trace) where the colored dots represents the slopes Hq for q = −3, −1,
1, and 3 illustrated in (A–C). Notice that the intercept of Hq for
multifractal and monofractal time series [intercept between blue
and red trace in (D)] are close to q = 2. This intercept reflects the
similarity between their overall RMS, F, in Figure 5.

the deviations from the average fractal structure (see Figure 10).
Furthermore, the shape of the multifractal spectrum in Figure 10
does not have to be symmetric. The multifractal spectrum can
also have either a left or a right truncation that originate from a
leveling of the q-order Hurst exponent for negative or positive q’s,
respectively (see Figure 11). The leveling of q-order Hurst expo-
nent reflects that the q-order RMS is insensitive to the magnitude
of the local fluctuations. The multifractal spectrum will have a
long left tail when the time series have a multifractal structure that
is insensitive to the local fluctuations with small magnitudes (see
upper Figure 11). In contrast, the multifractal spectrum will have
a long right tail when the time series have a multifractal structure
that is insensitive to the local fluctuations with large magnitudes
(see lower Figure 11). Another continuum of right and left trunca-
tions exists for each multifractal spectrum width in the continuum
illustrated in Figure 10. Thus, the width and shape of the multi-
fractal spectrum is able to classify a wide range of different scale
invariant structures of biomedical time series.

A DIRECT ESTIMATION OF THE MULTIFRACTAL SPECTRUM
The transformation of the q-order Hurst exponent Hq to the
mass exponent tq and, finally, to the multifractal spectrum Dq

and hq is stated as a “just-the-way-it-is” argument in the above
section without mathematical details. The reader might ask at
this point why one should define and interpret the multifrac-
tal spectrum Dq and hq and not only Hq that are directly
estimated by Matlab code 8 and 9. Estimating the multifractal
spectrum directly from the local fluctuation, will answer this
question and give a less abstract definition of the multifractal
spectrum. A local Hurst exponent can be defined directly from,
RMS{ns}(v), for each time instant v. The local Hurst expo-
nent estimated for a multifractal time series will fluctuate
in time in contrast to the time independent Hurst exponent
estimated by the monofractal DFA (see Matlab code 5 and 6;
Figure 5). The temporal variation of the local Hurst exponent
can be summarized in a probability distribution and the multi-
fractal spectrum is just the normalized probability distribution
in log-coordinates. Thus, the width and shape of the multifractal
spectrum reflect the temporal variation of the local Hurst expo-
nent or, in other words, the temporal variation in the local scale
invariant structure of the time series. In order to estimate the
local Hurst exponent, the local fluctuation, RMS{ns}(v), has
to be defined within a translating segment centered at sample v
instead of within non-overlapping segments. Thus, Matlab code
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FIGURE 9 | Multiple representations of multifractal spectrum for

multifractal (blue traces), monofractal (red traces), and

whitenoise (turquoise trace) time series. (A) q-order Hurst exponent Hq
computed in Matlab code 9. (B) Mass exponent tq computed in Matlab code
10. (C) Multifractal spectrum of Dq and hq (upper right panels) computed in

Matlab code 11 and plotted against each other. The arrow indicates the
difference between the maximum and minimum hq that are called the
multifractal spectrum width. Notice that the constant Hq for monofractal
and whitenoise times series leads to a linear tq that further leads to a
constant hq and Dq that, finally, are joined to become only tiny arcs in (C).

8 has to be modified to Matlab code 12 below (see red command
lines):

Matlab code 12 Part 1 of MFDFA2

X=cumsum(multifractal-mean(multifractal));
X=transpose(X);
scale_small=[7,9,11,13,15,17];
halfmax=floor(max(scale_small)/2);
Time_index=halfmax+1:length(X)-halfmax;
m=1;
for ns=1:length(scale_small),

halfseg=floor(scale_small(ns)/2);
for v=halfmax+1:length(X)-halfmax;

T_index=v-halfseg:v+halfseg;
C=polyfit(T_index,X(T_index),m);
fit=polyval(C,T_index);
RMS{ns}(v)=sqrt(mean((X(T_index)-fit).^2));

end
end

(The reader must be patient because this code might take a couple of minutes)

The first red command line defines a vector of small seg-
ment sizes (i.e., scale_small) where the segment sizes
increases with two samples. This increase of two samples is
necessary to align the center of segments according to the
Time_index. The third red line set the Time_index for the
local fluctuation, RMS{ns}, that exclude the halfmax num-
ber of samples at the start and the end of the time series

(see second red command line). Then a loop are initiated for
each segment size where the local fluctuations, RMS{ns}(v),
are computed for a translating segment centered at sample
v= Time_index. The translating segment includes the local
samples that are updated by T_index (see last red command
line). The local Hurst exponent (Ht) can now be computed
from the local fluctuation, RMS{ns}, by the Matlab code 13
below:

Matlab code 13 Part 2 of MFDFA2

C=polyfit(log2(scale),log2(Fq(q==0,:)),1);
Regfit=polyval(C,log2(scale_small));
maxL=length(X);
for ns=1:length(scale_small);

RMSt=RMS{ns}(Time_index);
resRMS{ns}=Regfit(ns)-log2(RMSt);
logscale(ns)=log2(maxL)-log2(scale_small(ns));
Ht(ns,:)=resRMS{ns}./logscale(ns)+Hq(q==0);

end

Type plot12 in the Matlab command window to access Figure 12.

The first two command line defines the regression lineRegfit
equal to the regression line qRegLine{q= = 0} computed
by Matlab code 8. Regfit represents the center of the spread
of local RMS and are the regression line of the overall q-order
RMS, Fq(q= = 0,:). A loop for each scale ns computes
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FIGURE 10 | Illustration of a continuum of multifractal time series

with the same q-order Hurst exponent for q = 2 but with different

multifractal spectrum width [compare vertical axis of the (A) and the

arrow in the (B)]. Notice the growth of structural differences between the
periods with small and large fluctuations as the multifractal spectrum
width become larger.

FIGURE 11 | Illustration of multifractal spectra with a right truncation (upper right panel ) and a left truncation (upper left panel ). These truncations
originate from the leveling of the q-order Hurst exponents for negative q’s (upper right panel ) and positive q’s (upper left panel ), respectively.
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FIGURE 12 | (A) A summary of how the local Hurst exponent Ht is estimated
in Matlab code 13. The regression line Regfit (red center line) is the center
of the spread of local RMS in log-coordinates and is equal to the regression
line qRegLine{q= = 0} in Matlab code 8 and 9 [see (B)]. The minimum and
maximum local Hurst exponent Ht(5,:) is the slope of the upper and lower
red lines, respectively, that converge from the maximum and minimum of
RMS{5} onto the regression line Regfit at the maximum scale maxL.
Consequently, the local Hurst exponent Ht(ns,:) estimated by dividing the
residual resRMS{ns}(v) for each time instant v by logscale(ns) (i.e., the
difference between the maximal scale maxL and scale(ns) in
log-coordinates) and adding the slope Hqq=0 of the regression line Regfit.

(B) The scaling function Fq (blue dots) and the regression lines
qRegLine{nq} (blue lines) computed by Matlab code 8 and 9. All Fq lies
within the envelope between the red lines for the maximum and minimum
Ht(5,:), but does not cover the entire range in the same way as the local
RMS{5} in (A). (C) The smallest scales used to compute the local Hurst
exponents and the multifractal spectrum illustrated in Figure 13. The red dots
represent the maximum RMS{ns}(1080) and minimum RMS{ns}(1199)

for multiple segment sample sizes [i.e., scale(ns)] at time instant v= 1080

and v=1199, respectively [see Figure 13A] whereas blue dots represent the
local fluctuations for 30 other time instants. Notice that both the horizontal
and vertical axes in all panels are in log-coordinates.

the residual fluctuation resRMS{ns} of log2(RMS{ns})
around the regression line Regfit for each sample v of the
time series. In Figure 12B, the differences between the overall
q-order RMS, Fq, converge toward each other with increasing
scale. This convergence is inevitable for multifractal variation
by the linear relationship between Fq for all q-order and the
assumption of monotonical decreasing q-order Hurst exponent,
Hq (see Figure 8D). The same convergence is seen for the local
RMS in Figure 12A and is used to estimate the local Hurst
exponents, Ht(ns,:). Ht(ns,:) is estimated as the slope
of the line from local RMS in log-coordinates to the endpoint
of the regression line, Regfit, at the largest scale, maxL (see
Figure 12). Consequently, Ht(ns,:) are obtained by divid-
ing the residuals resRMS{ns} by logscale (i.e., the dif-
ference between maximal scale maxL and the scale(ns) in
log-coordinates) and adding the slopeHq(q= = 0) of regression
line, Regfit (see Figure 12A). Figure 13A illustrates the local
Hurst exponent Ht(ns,:) for ns= 5 (i.e.,scale(ns)= 15)
for the multifractal, monofractal, and whitenoise
time series. The local Hurst exponent Ht(ns,:) has larger
variation for the multifractal time series compared to

the monofractal and whitenoise time series. The small
Ht(ns,:) in the periods of the multifractal time series
with local fluctuations of large magnitudes (i.e., large RMS{ns})
reflects the noise like structure of the local fluctuations (see red
dashed lines in Figure 13A). In contrast, the larger Ht(ns,:)
in the periods with local fluctuations of small magnitudes (i.e.,
small RMS{ns}) reflects the random walk like structure of the
local fluctuations (see black dashed lines in Figure 13A). The
local Hurst exponent Ht in periods with fluctuations of small
and large magnitudes is therefore consistent with the q-order
Hurst exponent Hq for negative and positive q’s, respectively.
The advantage of local Hurst exponent Ht compared with q-
order Hurst exponent Hq is the ability of Ht to identify the
time instant of structural changes within the time series. In
studies where the physiological phenomenon is perturbed at
some time instant v, the local Hurst exponent Ht(ns,v) can
identify how this perturbation affects the local scale invariant
structure of the biomedical time series. The temporal varia-
tion of local Hurst exponent Ht can be summarized in a his-
togram representing the probability distribution (Ph) of Ht (see
Figure 13B). The multifractal spectrum (Dh) is defined simply
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FIGURE 13 | (A) The multifractal, monofractal, and whitenoise

time series (upper panel) and their local Hurst exponents Ht(:,5) computed
by Matlab code 13 (lower panel). The multifractal time series have a
larger variation in the local Hurst exponents Ht(5,:) compared with the
monofractal and whitenoise time series. The period with the local
fluctuation of the smallest magnitude in multifractal time series contains
the maximum Ht(5,:) (see Htmax in period between the black dashed lines)
whereas the period with the local fluctuation of the largest magnitudes

contains the smallest Ht(5,:) (see Htmin in the period between red dashed
lines). (B) The probability distribution Ph of the local Hurst exponents Ht
estimated as histograms by Matlab code 14 for the multifractal,
monofractal, and whitenoise time series. (C) The multifractal spectrum
Dh estimated from distribution Ph by Matlab code 14 for the same time
series. The distribution Ph and spectrum Dh have a larger width for the
multifractal time series compared to the monofractal and
whitenoise time series.

by the log-transformation of the normalized probability dis-
tribution (Ph_norm). The probability distribution (Ph) and
multifractal spectrum (Dh) are computed by Matlab code 14
below:

Matlab code 14 Part 3 of MFDFA2

Ht_row=Ht(:);
BinNumb=round(sqrt(length(Ht_row)));
[freq,Htbin]=hist(Ht_row,BinNumb);
Ph=freq./sum(freq);
Ph_norm=Ph./max(Ph);
Dh=1-(log(Ph_norm)./-log(mean(scale)));

Type plot13 in Matlab command window to access Figure 13.

The first line in Matlab code 14 convert the matrix Ht to the
vector Ht_row that are the input argument in hist function
used to compute the histogram for Ht_row. The second input
argument in hist function are BinNumb that set the num-
ber of bins in the histogram. A sufficient choice for BinNumb
is the square root of the sample size of Ht_row (see the sec-
ond command line). The output variables of hist function are
the center of each bin Htbin and the number freq of local
Hurst exponents that fall into each bin. The probability distrib-
ution Ph are computed by dividing the number freq of local

Hurst exponents in each bin by the total number of local Hurst
exponents, sum(freq) (see Figure 13B). The multifractal spec-
trum Dh are computed by first define Ph_norm by normaliz-
ing Ph to the maximum probability max(Ph) and then divide
log(Ph_norm) by –log(mean(scale)) (cf. Struzik, 2000;
Scafetta et al., 2003). The multifractal spectrum Dh are there-
fore directly related to the distribution Ph of the local fractal
structure of the time series. The distribution Ph is the same for
the local scale invariant structure of the time series as the con-
ventional probability distribution are for the local amplitudes of
the time series. The present state of the physiological system is
connected to both past and future states that influence the local
scale invariant structure of time series. Thus, distribution Ph and
the multifractal spectrum Dh of biomedical time series might
reflect important properties of the self-regulation of physiological
processes.

THE BEST PRACTICE OF MULTIFRACTAL DETRENDED
FLUCTUATION ANALYSIS
The MFDFA introduced piece-by-piece in Section “Multifractal
Detrended Fluctuation Analysis in Matlab” can be combined into
two Matlab function MFDFA1 and MFDFA2, respectively:
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Matlab functions for MFDFA

Matlab code 8 to 11:

[Hq,tq,hq,Dq,Fq]=MFDFA1(signal,scale,q,m,Fig);

Matlab code 12 to 14:

[Ht,Htbin,Ph,Dh]=MFDFA2(signal,scale,m,Fig);

Type help MDFA1 or help MFDFA2 in the Matlab command window to access

the definition of the input and output variables. The help functions provide examples

for the employment of MFDFA1 and MFDFA2 to time series.

The main aim of Section “The Best Practice of Multifrac-
tal Detrended Fluctuation Analysis” is to guide the application
of MFDFA1 and MFDFA2 to biomedical time series. In Section
“Multifractal Detrended Fluctuation Analysis in Matlab” the read-
ers has gained insight into the construction of MFDFA1 and
MFDFA2 and this insight will help them to avoid potential pitfalls
in the application of MFDFA1 and MFDFA2. The best practice
of MFDFA1 and MFDFA2 has several steps. First, the structure of
biomedical time series must be similar to noise before employ-
ing MFDFA1 and MFDFA2 (see blue traces in Figure 1). Section
“Random Walk or Noise Like Time Series?” introduces conversions
to make the biomedical time series similar to a noise like time
series. Secondly, the local fluctuations within the biomedical time
series cannot be close to zero. Section “Local Fluctuations Close
to Zero?” discusses possible origins for local fluctuations close
to zero and possible solutions to this problem. Thirdly, the bio-
medical time series must be scale invariant within the predefined
range of scales. Section “Is the Time Series Scale Invariant?”3 dis-
cusses the general assumption of a scale invariant time series as
input in MFDFA1 and MFDFA2. Fourth, the input parameters
scale, q, and m in MFDFA1 and MFDFA2 must be sufficiently
defined for each biomedical time series. Section “How to Set
the Input Parameters Scale, q, and m in MFDFA1 and MFDFA2”
introduces guidelines for the optimal parameter setting. Finally,
Section “Other Multifractal Analysis” lists other multifractal analy-
ses where results can be compared to results from MFDFA1 and
MFDFA2.

RANDOM WALK OR NOISE LIKE TIME SERIES?
MFDFA1 and MFDFA2 have the best performance when signal
are a noise like time series. However, it can be difficult according to
Figure 6 to visually differentiate between random walk and noise
like time series. A possible solution suggested by Eke et al. (2002)
is to run a monofractal DFA (i.e., Matlab code 5 and 6) before
running MFDFA1 and MFDFA2. The time series are noise like if
Hurst exponentH is between 0.2 and 0.8. In this case,MFDFA1 and
MFDFA2 can be employed directly without transformation of the
time series. However, the time series are random walk like when H
is between 1.2 and 1.8. In these cases, the time series should either
be differentiated before entering the MFDFA1 or MFDFA2 or the
conversion to random walk in the first line of Matlab code 8 and 12
should be eliminated. If the time series are random walk like + 1
should be added to the output variables Hq, hq, and tq from
MFDFA1 and Ht and Htbin from MFDFA2. Table 1 summarize
the categories of the Hurst exponent estimated by a monofractal
DFA with corresponding conversion of the biomedical time series
that should be performed before entering it into MFDFA1 and
MFDFA2.

Table 1 | Conversions of the biomedical time series X and adjustment

of Hq and Ht.

Hurst

exponent (H)

Conversion Adjustment of

Hq and Ht

<0.2 signal=cumsum(X-mean(X)) −1

0.2–0.8 No conversion 0

0.8–1.2 No conversion 0

1.2–1.8 signal=diff(X) +1

>1.8 signal=diff(diff(X)) +2

LOCAL FLUCTUATIONS CLOSE TO ZERO?
The local fluctuation in the time series is defined as a local RMS
within both MFDFA1 and MFDFA2. Large error appears in the
multifractal spectrum when RMS is close to zero because both
log2(Fq) for negative q’s in Matlab code 8 and log2(RMSt)
in Matlab code 12 becomes infinitely small (i.e., -inf in Mat-
lab). Extreme large Hq will be present for negative q’s as output
from MFDFA1. Equivalently, extreme large outliers in Ht will be
present as output from MFDFA2. Consequently, local RMS close
to zero will lead to large right tails for the multifractal spectrum.
The problem of segments with RMS close to zero can be solved by
eliminating RMS below a certain threshold (eps). The threshold
eps can be set to the precision of the measurement device that is
recording the biomedical time series. As an example, the measure-
ment of the inter-beat intervals of the human heart is measured
as the time interval between R-peaks in ECG and has a typical
precision of 1 millisecond. Thus, RMS below 1 millisecond can
be eliminated from further analysis when MFDFA1 and MFDFA2
are employed to series of inter-beat intervals. Elimination of local
fluctuations below the measurement error is possible in MFDFA1
by setting eps= 1 and RMS{ns}(RMS< eps)= [] in Matlab
code 8.

There are two main reasons why the local fluctuation RMS
becomes zero in segments with small sample sizes. First, the poly-
nomial trend fit of the time series can be overfitted in segments
with small sample sizes (i.e., small scale). An overfitted trend will
be similar to the time series and cause the residual fluctuations,
RMS, to be close to zero. The sample size of the smallest segment
(i.e., scale) should therefore be much larger than the polynomial
order m to prevent an overfitted trend. Secondly, the biomedical
time series might be smooth with little apparent variation and
therefore similar to the polynomial trend even for low order m. In
these cases, the value of the smallest scales should be raised and
the scale invariance checked carefully (see “Is the Time Series Scale
Invariant?” below).

IS THE TIME SERIES SCALE INVARIANT?
The application of both Matlab function MFDFA1 and MFDFA2
assumes that the biomedical time series are scale invariant.
This means that plot(log2(scale),log2(Fq)) yield a
linear relationship between log2(scale) and log2(Fq)
(see Figure 8)., The q-order Hurst exponent Hq should not
be estimated by a linear regression if the relationship between
log2(scale) and log2(Fq) is curved or S-shaped. Con-
sequently, the first output from MFDFA1 to be visually checked
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should be plot(log2(scale),log2(Fq)). Non-linear
relation in this plot might arise from several reasons. First, an
insufficient orderm for the polynomial detrending will yield a non-
linear relationship between log2(scale) and log2(Fq) for
scale invariant time series with a trend. The solution is to run
MFDFA1 or MFDFA2 multiple times with different m and com-
pare their plot(log2(scale),log2(Fq). Secondly, local
fluctuations RMS close to zero for small scales would yield a non-
linear dip in lower end of plot(log2(scale),log2(Fq)).
This dip can be prevented by elimination of RMS below
the measurement error suggested in Section “Local Fluctua-
tions Close to Zero?” or by choosing a larger minimum input
scale. Finally and most importantly, a non-linear relationship
in plot(log2(scale),log2(Fq)) might originate from
the phenomenon recorded in the biomedical time series. As an
example, respiratory frequency creates distinct oscillations in the
fast fluctuations of the heart rate variability (Stein and Kleiger,
1999) and cause the scale invariance to break down at the small-
est scales. Another example is postural sway in humans where
the variation of the center of pressure has two distinct scaling
regions thought to represent two distinct modes for human bal-
ance control (Collins and De Luca, 1993). One way to detect
the sub-regions with scale invariance is to look for periods with
approximately constant log2(Fq(q= = 1,:)./scale) in
plot(log2(scale),log2(Fq(q= = 1,:)./scale))
within the entire scaling range (cf. Gao et al., 2006). The scales
where log2(Fq(q= = 1,:)./scale) are no longer con-
stant indicates the segment sizes above and below which the
local fluctuations (i.e., RMS) are no longer scale invariant. These
points will in many cases have phenomenological explanations
and should not be ignored.

HOW TO SET THE INPUT PARAMETERS scale, q, AND m IN MFDFA1
AND MFDFA2
The Matlab functions MFDFA1 and MFDFA2 have input parame-
ters scale, q and m. The estimation of the multifractal spec-
tra is dependent on these parameter settings. The rest of this
section gives guidelines to the parameter settings in MFDFA1 and
MFDFA2:

Scale
The input parameters scale is the multiple segment sizes for
the computation of local fluctuation RMS in Matlab code 8 and
12. A minimum and maximum sample size of the segments [i.e.,
min(scale) and max(scale) in Matlab] has to be chosen
to construct the set of scales used in MFDFA1 and MFDFA2.
Both statistical and phenomenological arguments exist on how
to choose the minimum and maximum segment size. The sta-
tistical argument is to choose minimum and maximum segment
sizes that provide a numerical stable estimation of RMS and Fq
in Matlab code 8 and 12. The minimum segment sample size
should be large enough to prevent error in the computation of
local fluctuation RMS. The minimum segment size larger than 10
samples is a “rule of tumb” for the computation of RMS. Fur-
thermore, the minimum sample size must be considerably larger
than the polynomial order m to prevent overfitting of polyno-
mial trend (see “Local Fluctuations Close to Zero?” above). Thus,

minimum segment size of 10 samples might be too small for
large trend order m (Kantelhardt et al., 2002). In MFDFA1, the
maximum segment size should be small enough to provide a suf-
ficient number of segments in the computation of Fq in Matlab
code 8. A maximum segment size below 1/10 of the sample size
of the time series will provide at least 10 segments in the com-
putation of Fq in Matlab code 8. Furthermore, it’s favorable to
have a equal spacing between scales when they are represented in
plot(log2(scale),log2(Fq)) to obtain a optimal per-
formance of the linear regression that estimates q-order Hurst
exponent Hq. Equal spacing between log2(scale) is provided
by Matlab code 15 below:

Matlab code 15:

scmin=16;
scmax=1024;
scres=19;
exponents=linspace(log2(scmin),log2(scmax),scres);
scale=round(2.^exponents);

Matlab code 15 is employed before runningMFDFA1where the
minimum segment size,scmin, maximum segment size,scmax,
and the total number of segment sizes, scres, are predefined.
The segment sizes (i.e., scale) in MFDFA2 should be small in
order to provide a stable estimation of the probability distribu-
tion Ph and, consequently, the multifractal spectrum Dh (Scafetta
et al., 2003). The local Hurst exponent Ht for large scale will have
a smooth and slow varying dynamics that are not well described
by a probability distribution Ph. Thus, a small scaling range like
scale= [7,9,11,13,15,17] used in Matlab code 12 are
preferable in MFDFA2. However, the reader should notice that the
small segment sizes (i.e.,scale) in MFDFA2 come at the expense
of a less precise estimation of the local fluctuation RMS. The
imprecise estimation of RMS can be seen as measurement noise
of the local Hurst exponent Ht present for the monofractal
and whitenoise time series in Figure 13A. The measurement
noise in Ht is represented as a distribution Ph and multifractal
spectrum Dh for monofractal and whitenoise time series
with a non-zero width (see Figures 13B,C).

Phenomenological argumentations are important for the
choice of minimum and maximum segment sizes within the
boundaries that provide numerical stable computations. For
example, it is unlikely that the movement of the center of mass
is faster than 10 Hz during postural sway. If ground reaction force
is sampled at 200 Hz by a force plate then the minimum segment
size should be larger than 200/10 Hz = 20 samples. Another exam-
ple is to exclude the smallest segment sizes in heart rate variability
known to be dominated by oscillations due to the respiratory fre-
quency. Furthermore, heart rate variability operates with several
ranges of scales (i.e., fluctuations with high frequency, low fre-
quency, very low frequency, ultra low frequency) that are suggested
to be influenced by different mechanisms (e.g., respiratory fre-
quency, baroceptive responses, circadian rhythm; e.g., Stein and
Kleiger, 1999). Three scale invariant sub-bands are also found in
EEG signal where the Hurst exponent are able to separate between
healthy subjects and epileptic subjects (Gao et al., 2011). Thus,
MFDFA1 can be employed to sub-bands of the scaling range in
these phenomena (e.g., Makowiec et al., 2011).
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q-order
The input parameter q in MFDFA1 decides the q-order weighing
of the local fluctuationRMS in Matlab code 8. The q-orders should
consist of both positive and negative q’s in order to weight the peri-
ods with large and small variation in a time series. The precision
of the computation of the q-order Hurst exponent Hq decreases
with increasing negative and positive q-orders. This imprecision
are explained by the result in Figure 7. The single segment with
the smallest and largest variationRMSwill tower up as a single sky-
scraper by increasing negative and positive q-orders, respectively,
and completely dominate the scaling function Fq (i.e., overall
q-order RMS in Matlab code 7). The domination of the single seg-
ments with the smallest and largest variation destabilizes Fq and
leads to an increasing spread around the regression lines of Fq (see
q = 3 and -3 in Figure 8A). The choice of q-orders should therefore
avoid large negative and positive values because they inflict larger
numerical errors in the tails of the multifractal spectrum. The
stability of the computation of the multifractal spectrum is also
dependent on the differences between the segments of largest and
smallest variation. Time series that have large multifractal spec-
trum width will have large differences between the segments with
the smallest and largest variation and, consequently, destabilize the
computation of Fq at smaller negative and positive q-orders (com-
pare multifractal scaling in Figure 8A with the monofractal scaling
in Figure 8B). A sufficient choice of q-orders will be between – 5
and 5 for most biomedical time series (Lashermes et al., 2004). The
destabilization of the Fq at large negative and positive q-orders is
also dependent on the sample size of the time series. Time series
with large sample size will have multiple segments with extremely
large and small variation whereas time series with moderate sam-
ple size will only have a single segment. Multiple segments of large
and small variation would stabilize the computation of Fq for
large negative and positive q-orders. There exists no consensus for
the definition of a “too small” sample sizes for multifractal analy-
ses, but the reader should interpret the result with caution when
MFDFA1 and MFDFA2 are employed to time series with less than
1000 samples.

Trend order m
In both MFDFA1 and MFDFA2, the local fluctuation RMS is com-
puted around a polynomial trend where its shape is defined by
the order m. A higher order m yield a more complex shape of the
trend, but might lead to overfitting for time series within small
segment sizes as discussed in Section “Local Fluctuations Close
to Zero?” above. Thus, m= 1–3 are probably a sufficient choice
when the smallest segment sizes contains 10–20 samples. Most
studies that employ DFA to biomedical time series do not report
the details of the polynomial detrending. Still, the multifractal
spectrum for multiple orders m should be compare to ensure that
the multifractal spectrum are not influenced by non-stationary
trends in the time series. The trends present in biomedical sig-
nals do not have to be of a polynomial shape but might have
oscillatory or ramp-like shapes. Both MFDFA1 and MFDFA2 can
be extended to include more adaptive detrending procedures like
wavelet decomposition (Manimaran et al., 2009), moving aver-
age (Carbone et al., 2004), and empirical mode decomposition
(Qian et al., 2009). Furthermore, an adaptive fractal analysis is

shown to perform better than the DFA with polynomial detrend-
ing when employed to biomedical time series with strong trends
(Gao et al., 2011). Extensions and modification of the detrend-
ing procedure in MFDFA1 and MFDFA2 is preferable if MFDFA
are employed to biomedical time series with strong trends. Mat-
lab functions for MFDFA with other detrending procedures are
available at www.ntnu.edu/inm/geri/software.

OTHER MULTIFRACTAL ANALYSIS
The basic component of both MFDFA1 and MFDFA2 are the local
fluctuation, RMS. Statistical parameters other than RMS can be
used to define the local fluctuation in a time series. In multifractal
analyses based on wavelet transformations, the local fluctuation is
defined as the convolution product between the time series and
a waveform fitted within local segments of the time series (cf.
Daubechies, 1992; Mallat, 1999). The results from analyses called
wavelet transformation modulus maxima (Muzy et al., 1991), mul-
tifractal analysis with wavelet leaders (Jaffard et al., 2006; Wendt,
2008), and gradient modulus wavelet projection (Turiel et al.,
2006) can therefore be directly compared with the results from
MFDFA1 and MFDFA2. In an entropy-based estimation of the
multifractal spectrum, the local fluctuation is defined as the sum
of the time series within the local segment relative to the total
sum of the entire time series (Chhabra and Jensen, 1989). This
method uses a q-order entropy function instead of a q-order RMS
and estimates hq and Dq, directly, as the regression slope of the q-
order entropy functions. The MFDFA has been shown to perform
as well as or better than these multifractal analyses (Kantelhardt
et al., 2002; Oświęcimka et al., 2006; Serrano and Figliola, 2009;
Huang et al., 2011). However, extensions of detrending procedure
in MFDFA1 and MFDFA2 should be considered when the biomed-
ical time series contains strong oscillatory or ramp-like trends (Hu
et al., 2009; Huang et al., 2011).

SUMMARY
The multifractal spectrum reflects the variation in the fractal struc-
ture of the biomedical time series. The multifractal structure of
the inter-beat intervals can identify pathological conditions of the
human heart (e.g., Ivanov et al., 1999; Wang et al., 2007). The
multifractal structure in neural activity can separate the activity
of different brain areas and thereby guide more precise neuro-
surgery (Zheng et al., 2005). The present tutorial has introduced a
multifractal time series analysis called MFDFA (Kantelhardt et al.,
2002). MFDFA is simply based on the computation of local RMS
for multiple segment sizes as illustrated in Section “Multifractal
Detrended Fluctuation Analysis in Matlab.” However, special issues
in Section “The Best Practice of Multifractal Detrended Fluctuation
Analysis” for the best practice of MFDFA are of paramount impor-
tance when MFDFA are employed to biomedical time series. First,
a monofractal DFA should be employed to ensure that the biomed-
ical time series has a noise like structure. A conversion according
to Table 1 should be made if the time series has not a noise like
structure. Secondly, local fluctuation close to zero should be elim-
inated within MFDFA. Thirdly, the presence of scale invariance
should be checked by first running MFDFA1 over a large scaling
range [e.g.,scmin= 10 andscmax= length(signal)/10
in Matlab] and then plot log2(scale) against log2(Fq). If
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scale invariance is not present for the entire range, then MFDFA1
can be rerun with modified input parameter scale for scale
invariant sub-bands within the original scaling range. MFDFA1
should be employed with a q-orders between -5 and 5 and for

multiple trend orders m. MFDFA2 should be employed instead of
MFDFA1 when the time instant for structural change in the bio-
medical time series is of importance or when the biomedical time
series contain less than 5000 samples.
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