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Microvesicles (MVs) are released from almost all cell brain types into the microenvironment
and are emerging as a novel way of cell-to-cell communication.This review focuses on MVs
discharged by microglial cells, the brain resident myeloid cells, which comprise ∼10–12%
of brain population. We summarize first evidence indicating that MV shedding is a process
activated by the ATP receptor P2X7 and that shed MVs represent a secretory pathway for
the inflammatory cytokine IL-β. We then discuss subsequent findings which clarify how IL-1
β can be locally processed and released from MVs into the extracellular environment. In
addition, we describe the current understanding about the mechanism of P2X7-dependent
MV formation and membrane abscission, which, by involving sphingomyelinase activity and
ceramide formation, may share similarities with exosome biogenesis. Finally we report our
recent results which show that microglia-derived MVs can stimulate neuronal activity and
participate to the propagation of inflammatory signals, and suggest new areas for future
investigation.

Keywords: microvesicles, microglial cells, IL-beta, neuronal activity, brain inflammation

SUBCELLULAR ORIGIN AND COMPOSITION OF MVs SHED
FROM THE CELL SURFACE
Microvesicles (MVs), also referred to as shed vesicles or ectosomes
(Sadallah et al., 2011), are small (0.1–1 μm) vesicles which bud
directly from the plasma membrane and are released into the
extracellular environment upon cell activation. Shedding of MVs
typically involves a budding process, in which surface blebs selec-
tively accumulate cellular constituents that are packaged into MVs.
MVs contain a variety of cell surface receptors, intracellular signal-
ing proteins and genetic materials derived from the cell of origin.
In terms of composition, MVs originating from distinct cell types
are molecularly different from each other, reflecting the differen-
tial expression of proteins of various donor cells. Composition and
biological activity of MVs also vary depending on the state (e.g.,
resting, stimulated) of donor cells and on the agent employed for
stimulation (Bernimoulin et al., 2009). The mechanisms involved
in MV budding and discharge are beginning to emerge and sug-
gest the involvement of ESCRT and/or ARF6 (Cocucci et al., 2009;
Muralidharan-Chari et al., 2009; Gan and Gould, 2011).

Besides MVs, most cells secrete into the environment a
markedly distinct type of small extracellular vesicles by an alter-
native two-step process. This mechanism includes the bud of
intraluminal vesicles at endosomes during multivesicular bod-
ies (MVBs) maturation and subsequent vesicle secretion upon
fusion of MVBs with the plasma membrane (Cocucci et al., 2009;

Abbreviations: A-SMase, acid sphingomyelinase; CNS, central nervous system;
ESCRT, endosomal sorting complex required for transport; MVs, microvesicles;
MVBs, multi vesicular bodies; PS, phosphatidylserine; SM, sphingomyelin.

Simons and Raposo, 2009). Small (40–80 nm) extracellular vesicles
released by this process are called exosomes and represent a more
homogeneous type of vesicles, enriched in specific components
(tetraspanning proteins, CD63 and CD9, and alix).

BIOLOGICAL ACTIVITY AND MECHANISM OF MV
INTERACTION WITH TARGET CELLS
Until a decade ago, MVs were considered as in vitro artifact, or
alternatively regarded as a way of eliminating unwanted material
from cells. MVs were also often confused with apoptotic bod-
ies generating during cell death or with exosomes, discharged
upon fusion of MVBs with the plasma membrane. Several rea-
sons may explain why for many years MVs have been largely
overlooked. First, discriminating between different types of extra-
cellular vesicles is difficult and requires a combination of electron
microscopy and biochemical techniques. In addition, while the
presence of markers of endosomal origin (alix, Tg110, CD63, and
CD9) is an accepted criterion to identify exosomes, no univer-
sal markers have been identified yet for MVs discharged outside
the cells from the cell surface, which are highly heterogeneous
in composition. Also, studies of MVs have been constrained by
the limitations of current methodology employed for their iso-
lation and quantification. MVs are usually isolated from culture
medium or body fluids by differential centrifugation or affinity
capture. However, immunosorbent or bead capture assays do not
allow isolating all the vesicles present in the samples and dif-
ferences in centrifuge speeds used to eliminate whole cells may
discard materials which in different laboratories are measured as
MVs (Horstman et al., 2007). Furthermore the most widely used
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methods to quantify MVs, i.e., flow cytometry and dynamic light
scattering, are biased toward the detection or larger MVs (Dragovic
et al., 2011). Although interesting advances in MV quantification
and isolation have been recently achieved with introduction of
new methodology such as a nanoparticle tracking or micro- and
nano fluidics (Chen et al., 2010), these new technologies for siz-
ing and quantifying MVs still need to be standardized in order
to provide reliable and reproducible methods. Despite these tech-
nical limitations, now-a-days MVs attract great interest as their
shedding is recognized as a widespread mode of intercellular com-
munication in different body compartments. Indeed shed MVs,
similarly to exosomes, may serve as information packets to guide
the phenotype of surrounding cells by transferring lipids, pro-
teins, and genetic material from donor to target cells (Thery et al.,
2009). Furthermore shed MVs, being enriched in various bioactive
molecules, play pleiotropic roles in many physiological processes,
including development (Liegeois et al., 2006; Kolotuev et al., 2009),
coagulation, and immune reaction (Thery et al., 2009), as well as
in diseases, such as cancer progression (Yu et al., 2006, 2009; Keller
et al., 2009; Gan and Gould, 2011), viral infection (Dukers et al.,
2000; Gould et al., 2003; Fang et al., 2007; Logozzi et al., 2009;
Nazarenko et al., 2010), and amyloidopathies (Fevrier et al., 2004;
Leblanc et al., 2006; Alais et al., 2008). Released MVs may remain
in the extracellular space in close proximity to the place of origin
or move by diffusion and enter biological fluids, such as blood,
urine, and synovial fluid, where they are emerging as clinically
valuable markers of disease states (Doeuvre et al., 2009). MVs
have the same topology as the cell of origin but loose membrane
asymmetry and are characterized by the presence of the phospho-
lipid phosphatidylserine (PS) externalized at their surface (Zwaal
and Schroit, 1997; Sims and Wiedmer, 2001). PS exposed on shed
MVs represents a determinant for recognition on recipient cells,
through binding to the corresponding cellular PS receptors (Al-
Nedawi et al., 2009). The interaction of MVs with recipient cells
can be followed by fusion or endocytosis. Alternatively, MVs can
undergo rupture and release their luminal active components, thus
modulating, by protein secretion, the activity of target cells.

BLEBBING AND MV FORMATION INDUCED BY P2X7
RECEPTOR ACTIVATION
A specialized type of MV release exists for cells that express the
ATP receptor P2X7, and which shed MVs from the cell surface
when this receptor is activated by ATP. P2X7 receptor is an ATP-
gated ion channel highly expressed in immune cells, particularly
macrophages (Steinberg et al., 1987) mast cells (Cockcroft and
Gomperts, 1979), and microglia (Visentin and Levi, 1997) where it
controls the release of inflammatory cytokines, such as IL-1β and
IL-18 (Ferrari et al., 2006). Activation of P2X7 receptor induces
efficient assembly of inflammosome, the protein complex which
activates the IL-1β processing enzyme caspase-1. This process is
followed by rapid cytokine secretion (Qu et al., 2007). P2X7 recep-
tor differs from other members of the P2X family in its relatively
low affinity for ATP and the presence of a long cytoplasmic C-
terminus that contains several protein–protein interaction motifs.
Depending on the ATP concentration and time of exposure, P2X7

receptor functions as either an ion channel or a non-selective
pore, the latter generally leading to cytotoxicity and apoptotic

cell death. Many studies have shown that dramatic morphological
changes occur in cells endogenously or heterologously express-
ing P2X7 receptors during and subsequent to receptor activation
(Hogquist et al., 1991; Ferrari et al., 1997). These changes consist
in rapid formation of cell membrane blebs and are associated to
cell death upon sustained P2X7 receptor activation. Membrane
blebbing results from several intracellular signaling events, which
are induced by occupancy of the receptor, such as the activation
of protein kinases and other effector enzymes (Duan and Neary,
2006). In particular, several lines of evidence indicate that P2X7 –
induced blebbing is dependent upon P38 and requires ROCK
activation, which causes local disassembly of the cytoskeletal ele-
ments, associated to the P2X7 C-terminus (Budagian et al., 2003;
Morelli et al., 2003; Verhoef et al., 2003). Notably, surface blebbing
is preceded by loss of plasma membrane asymmetry and expo-
sure of phosphatidylserine (PS) at the outer leaflet of the plasma
membrane, a process controlled by specific enzymes, named flip-
pase, floppase, and lipid scramblase, which control PS segregation
in the inner leaflet of the plasma membrane (Hugel et al., 2005).
Externalized PS is a commonly accepted marker for cell apoptosis.
However, a pioneer study by Surprenant and colleagues (MacKen-
zie et al., 2001) dissociated the P2X7-induced bleb formation from
cell apoptosis, by showing in monocytes that P2X7-induced PS
externalization and bleb formation occur within the first few min-
utes of receptor activation and is reversible after brief stimulation.
MacKenzye and colleagues also showed that, during blebbing, MVs
with externalized PS can be formed and released into the extra-
cellular space as a result of bleb detachment from the cell surface.
Notably the pro-inflammatory cytokine IL-1β is packaged into
plasma membrane blebs, which are subsequently shed, as MVs,
into the extracellular space from reactive monocytes (Figure 1A).
Almost ten years ago these results provided the first evidence
that P2X7-induced MV shedding acts as a secretory pathway for
rapid release of IL-1β and may represent a general mechanism for
secretion of leaderless secretory proteins from P2X7-expressing
myeloid cells.

EMERGING ROLE OF MVs DERIVED FROM BRAIN CELLS:
P2X7-DEPENDENT MV SHEDDING AND IL-1β RELEASE IN
MICROGLIA
In the recent years, a series of studies has indicated relevant
physiological and pathological functions for extracellular vesicles
within the brain. These functions include fundamental processes
occurring in brain, such as axonal growth and regeneration,
axon-glia communication, inter-neuronal transfer of information
across synapses, modulation of neuro-immune interactions, as
well as disease-associated events, including tumor progression,
and spreading of pathogenic agents or misfolded proteins. The
majority of these studies focused, however, on exosomes rather
than MVs shed from the cell surface of brain cells (Table 1).
Indeed only one report indicates the existence of MVs of neu-
ronal origin (Schiera et al., 2007) and there is no evidence for
shedding of MVs from oligodendrocytes. Nevertheless, a mixed
population of MVs and exosomes has been detected in vivo in
the cerebrospinal fluid isolated from sheep (Vella et al., 2008), and
our recent evidence indicate that a fraction of large MVs (mean
size = 420 nm) pelleted from rat CSF by differential centrifugation
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displays neuronal or oligodendroglial markers (Verderio et al.,
2012), suggesting that even neurons, and oligodendrocytes pro-
duce MVs in vivo. Larger interest has been raised so far by MVs
shed from the cell surface of microglia, the immune cells of the ner-
vous system, which play key role in inflammatory and degenerative
brain pathologies. Microglial cells are brain resident myeloid cells,
which migrate into the CNS during early embryogenesis and com-
prise ∼10–12% of total brain population (Ransohoff and Cardona,
2010). Although they are traditionally distinguished from infiltrat-
ing peripheral macrophages, which can migrate to the brain from
blood upon CNS damage or inflammation and do not differentiate
into microglia, in the injured CNS, activated microglia and infil-
trating macrophages cannot be distinguished by their morphology
or by specific antigenic markers.

As immune cells, the primary function of microglia is to main-
tain brain tissue homeostasis, to provide the first line of defense

FIGURE 1 | P2X7 receptor-induced MV shedding from monocytes and

microglial cells. (A) Fluorescent images of two THP-1 monocytes labeled
with NBD membrane, NBD-labeled particle shedding, and membrane bleb
during exposure to BzATP. From MacKenzie et al. (2001). (B) Fluorescent
image of a cultured microglial cell exposed for 48 h to a cocktail of
inflammatory cytokines, stained for Iba-1 (green), CD11b (red), and DAPI
(blue). Note the presence of many blebs at the cell surface double positive
for Iba-1 and Cd11b. From Verderio et al. (2012).

during infection or brain injury and to promote tissue repair. In
normal brain “surveillant” microglia display a ramified morphol-
ogy, characterized by long and thin processes, which communicate
with surrounding neurons and other glial cells and continuously
scan the microenvironment to exert a guard function for incom-
ing pathogens and brain alterations. In response to many types
of alarm signals (cytokines, material from apoptotic cells, and
exogenous viral factors) “surveillant” microglia undergo several
levels of activation and migrate to the site of infection or injury to
eliminate pathogens or to phagocyte dead cells and protein aggre-
gates. Depending upon the nature and duration of environmental
signals, microglia can undergo a“classical”pro-inflammatory acti-
vation, transforming into fully activated inflammatory effector
cells (cytokines-secreting cells), or an “alternative” activation, gen-
erally associated with tuning of inflammatory response, protection
from disease, and tissue repair. These two extremes along multi-
ple states of microglia activation are commonly indicated as M1
(pro-inflammatory) and M2 (pro-regenerative) phenotypes, in
analogy to the distinction originally made between M1 and M2
macrophages (Mantovani and Locati, 2009; David and Kroner,
2011; Saijo and Glass, 2011). Experimentally, these states are com-
monly achieved by treating cells in vitro with polarizing agents,
such as anti inflammatory cytokines (Saijo and Glass, 2011).

A few years ago we reported that a MV-mediated mechanism
for IL-1β release occurs in microglial cells (Bianco et al., 2005),
very similar to that first described in monocytes (MacKenzie et al.,
2001). By video microscopy experiments, we showed that cul-
tured microglia form membrane blebs (Figure 1B) and shed MVs
from the cell surface upon P2X7 receptor activation. Isolation of
MVs produced from reactive microglia, followed by IL-1β evalu-
ation by ELISA or western blotting revealed that MVs produced
by LPS-treated microglia store and subsequently release IL-1β into
the environment in an ATP- and P2X7-dependent manner. IL-1β

efflux from shed MVs is enhanced by ATP stimulation and inhib-
ited by pretreatment with the P2X7 receptor antagonist oxidized
ATP, thus indicating a crucial involvement of the pore-forming
P2X7 receptor in the release of the cytokine. Notably, we found
that shedding of MVs from microglial cells is not only promoted

Table 1 | Microvesicles of different brain cell origin.

Cell of origin Exosomes Ectosomes/shed MVs Mixed population

Astrocytes Taylor et al. (2007), Bianco et al. (2009),

Guescini et al. (2010), Sbai et al. (2010),

Wang et al. (2011)

Bianco et al. (2005) Proia et al. (2008), Ceruti et al. (2011),

Verderio et al., 2012; in vivo)

Microglia Potolicchio et al. (2005), Bianco et al.

(2009), Tamboli et al. (2010)

Bianco et al. (2005, 2009), Chahed

et al. (2010), Tamboli et al. (2010),

Antonucci et al. (2012), Verderio

et al. (2012)

Verderio et al., 2012; in vivo)

Oligodendrocytes Kramer-Albers et al. (2007), Trajkovic et al.

(2008), Strauss et al. (2010), Fitzner et al.

(2011), Bakhti et al. (2011)

Scolding et al., 1989; in vivo), Verderio

et al., 2012; in vivo)

Neurons Faure et al. (2006), Korkut et al. (2009),

Lachenal et al. (2011), Ghidoni et al. (2011),

Yuyama et al. (2012)

Schiera et al. (2007), Verderio et al., 2012;

(in vivo)
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by P2X7 receptor activation through exogenous ATP, but also by
ATP endogenously released from healthy astrocytes in astrocyte-
microglia co-cultures. Although ATP is typically considered a
danger signal, this observation represented a first indication that
MVs can be released from microglia even in the absence of cellular
damage.

HOW DOES IL-1β GET THROUGH THE MEMBRANE OF MVs?
The MV-mediated mechanism for IL-1β release originally pro-
posed by Surprenant’s laboratory left a question unsolved: how
does mature IL-1β get through the membrane of MVs and reach
the extracellular space? Later observations from our laboratory
(Bianco et al., 2005) and from Di Virgilio’s group (Ferrari et al.,
2006; Pizzirani et al., 2007) provided a possible answer: MVs shed
from microglia and dendritic cells, bear P2X7 receptors in their
membranes and are loaded with caspase-1. This enzyme becomes
activated upon P2X7 receptor stimulation and is responsible for
intravesicular processing of the biological inactive precursor of
IL-1β (pro-IL-1β) into the active form of the cytokine. Recent
evidence obtained in macrophages confirmed these findings by
showing that extracellular vesicles, both exosomes and shed MVs,
carry components of the inflammosome, in addition to the IL-1β

converting enzyme (Qu et al., 2009; Sarkar et al., 2009).
Notably, activation of P2X7 receptors, followed by opening of

large pores and MV lysis may represent the mechanism by which
IL-1β gets through membrane of MVs. P2X7-dependent disrup-
tion of MVs was indeed reported to mediate the efflux of IL-1β

from dendritic cells (Ferrari et al., 2006). However, differently from
what described in dendritic cells, we found that IL-1β release from
microglia is not the consequence of MV lysis. This was indicated
by the observation that IL-1β release is not paralleled by GFP
efflux from GFP-labeled MVs, produced by N9 microglial cells
(Balcaitis et al., 2005), which stably express the fluorescent protein
(Bianco et al., 2005). GFP is a 40-kDa cytosolic protein, that can
be released extracellularly upon MV disruption but not through
the P2X7 pore, which is permeable to molecules up to 1 kDa.

Although further studies are necessary to better define how IL-
1β gets through membrane of MVs, it can be hypothesized that,
once microglia-derived MVs approach the plasma membrane of
target cells, where the ATP concentration is higher than in the
bulk solution, the P2X7 receptor is activated, IL-1β is processed by
caspase-1, and released from MVs.

BIOGENESIS OF MVs INDUCED BY P2X7 RECEPTOR
ACTIVATION
Microvesicles emanate from viable cells through the outward bleb-
bing of their plasma membrane. Budding of MVs shares many
features with budding of viral particles and intraluminal vesi-
cle budding inside endosomes, during MVBs biogenesis. The
latter process occurs through the invagination of small intra-
luminal vesicles of about 50 nm in diameter which then pinch
off from the endosomal membrane and are released extracel-
lularly as exosomes, upon fusion of MVBs with the plasma
membrane. Exosome formation, as well as the egress of a few
enveloped viruses, is generally dependent on the ESCRT (endo-
somal sorting complex required for transport) machinery, which
regulates membrane scission. Recent studies indicated that fission

of exosome membrane is catalyzed, in particular, by components
of the ESCRT-III complex, called charged multivesicular body pro-
teins (CHMPs; Hanson et al., 2009; Wollert et al., 2009; Wollert and
Hurley, 2010) and by the AAA-ATPase vacuolar protein sorting-
associated 4 (VPS4; Babst, 2005). Other pathways that promotes
exosome biogenesis are emerging, which depend on lipids raft
composition, the phospholipid LBPA (Matsuo et al., 2004), the
sphingolipid ceramide, and activity of neutral sphingomyelinase
(Trajkovic et al., 2008). However it is still unclear how these factors
combine to promote exosome secretion (Gan and Gould, 2011).
Trajkovic and coworker, for example, clearly showed that enrich-
ment in ceramide is sufficient to trigger spontaneous vesiculation
by an invagination mechanism which is independent of the ESCRT
machinery, thus suggesting that distinct mechanisms may control
the biogenesis of specific subsets of exosomes.

A few years ago we gained some insights into the molecular
mechanism which mediates bleb formations and (exo)vesiculation
upon activation of P2X7 receptor in glial cells, both microglia and
astrocytes (Bianco et al., 2009). It was known that P2X7-dependent
blebbing is preceded by alteration of the transbilayer lipid dis-
tribution and requires ROCK and P38 MAP kinase activation,
similarly to apoptotic blebbing (Piccin et al., 2007; Al-Nedawi et al.,
2009; Pap et al., 2009; Cocucci and Meldolesi, 2011). However an
unsolved question was how signaling by P2X7 receptor leads to
alterations of the biophysical properties of the plasma membrane,
which together with actin-cytoskeleton re-organization are a pre-
requisite for membrane blebbing and vesiculation at the surface
of healthy cells.

We found that biogenesis of MVs storing IL-1β is controlled by
acid sphingomyelinase (A-SMase), the enzyme which hydrolyzes
sphingomyelin (SM) to the sphingolipid ceramide. Following
P2X7 receptor activation, a src-protein tyrosine kinase interacts
with the C-terminus of the receptor (Denlinger et al., 2001) and
promptly phosphorylates P38 MAP kinase. P38 phosphorylation,
in turn, induces translocation of A-SMase to the plasma mem-
brane outer leaflet, where it generates ceramide, thereby inducing
budding of MVs (Bianco et al., 2009; Figure 2). Although A-
SMase has been historically associated to lysosomes, our data are
consistent with evidence indicating that the enzyme is activated
rapidly upon stimulation of various receptors, and is recruited to
the plasma membrane to mediate receptor-dependent signaling
(Grassme et al., 2001; Gulbins and Kolesnick, 2003; Marchesini
and Hannun, 2004; Perrotta et al., 2010). Formation of blebs
is likely caused by redistribution of extracellularly synthesized
ceramide within the bilayer and by local enrichment of the cone-
shape sphingolipid into the inner leaflet of the membrane. Indeed
due to its spontaneous negative curvature, ceramide may induce
membrane subdomains with curvature different from the adja-
cent planar membrane (Subra et al., 2007). In addition, hydrolysis
of SM, which has a high affinity for cholesterol, may result in
increased efflux of cholesterol. As this lipid is a major determinant
of membrane fluidity and structural integrity of the plasma mem-
brane (Simons and Ikonen, 1997) cholesterol efflux may cause an
increase in membrane fluidity (Slotte et al., 1989; Neufeld et al.,
1996) thus contributing to membrane destabilization and facili-
tating blebbing and MV shedding (Van Blitterswijk et al., 1982;
Chang et al., 1993; Tepper et al., 2000). Bleb formation probably
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FIGURE 2 | Model for P2X7 receptor-induced signaling pathway

involved in MV shedding. On stimulation with ATP or the selective agonist
BzATP, P2X7 receptor activates P38 cascade through src-kinase-mediated
phosphorylation. In turn, P38 triggers different pathways, among which PM
pore formation (a), and mobilization of A-SMase from luminal lysosomal
compartment to plasma membrane outer leaflet (b) where the enzyme
alters membrane structure/fluidity leading to plasma membrane blebbing
and shedding. Shed MVs carry IL-1β, present A-SMase and high levels of
PS on their membrane outer leaflet. From Bianco et al. (2009)

occurs from surface lipid rafts (Del Conde et al., 2005), where the
P2X7 receptor localizes. In such domains, cytoskeleton/membrane
proteins, directly interacting with the P2X7 receptor or P2X7

receptor-dependent signaling components, can be recruited. We
demonstrated the key role of A-SMase in MV formation using the
pharmacological inhibitor imipramine, and genetic inactivation
of the enzyme. Both approaches strongly abolished release of MVs
and of IL-1β from reactive glial cells (Bianco et al., 2009).

Other pathways besides shed MVs have been proposed to medi-
ate IL-1β release from myeloid cells, including exosomes and
exocytosis of secretory lysosomes (Andrei et al., 1999; Qu et al.,
2007). However, enrichment of IL-1β in larger MVs, derived from
the plasma membrane, and complete blockade of MV shedding
and IL-1β release from A-SMase KO cells indicates that MV shed-
ding represents the major mechanism mediating secretion of the
inflammatory cytokine from reactive microglial cells.

Our results are consistent with the involvement of neutral
sphingomyelinase and ceramide formation in the budding of
exosomes in oligodendrocytes (Trajkovic et al., 2008) and rep-
resent further evidence that MV budding may share features
with exosome biogenesis. The role of acid-rather than neutral-
sphigomyelinase in MV formation suggests that different members
of the SMase family may control the release of distinct types of
extracellular vesicles from brain cells, independently of the ESCRT
complex.

What remains to be clarified is whether acid SMase activity
may play a general role in shedding of MVs that occurs inde-
pendently of P2X7 activation, such as discharge of MVs from the
plasma membrane of highly proliferating cells, which is involved in
tumor growth and invasion. Similarly, it remains to be determined

if sphingomyelinase activity and ceramide production may be also
involved in nanotube formation, by promoting the protrusion
of filopodia – like structures which then extend as tubes toward
distant cells.

WHY DO MICROGLIA USE MVs TO RELEASE IL-1β?
Which is the main advantage for a cell to release IL-1β through
MVs rather than exporting the cytokine directly? Shed MVs,
containing packages of IL-1β, can deliver the cytokine at signif-
icant distance from the donor cell, in possible proximity to IL-1β

receptors present on target cells, thus preventing dispersal and
degradation and avoiding dilution of the cytokine in the extra-
cellular environment. Furthermore, TNFα (Hide et al., 2000) and
proteases, such as caspase-1 and cathepsin D (Qu et al., 2009;
Sarkar et al., 2009), which are synthesized and released upon P2X7

receptor activation, could be released via MVs together with IL-1β.
Biogenesis of MVs may indeed serve as a mechanism of regulated
assembly of multiple factors (Al-Nedawi et al., 2009) and reactive
microglial cells may use MVs as complex “units” of information to
mediate an integrated biological response. The presence of inflam-
matory cytokines and proteolytic agents might be important for
the onset of detrimental effects of MVs toward degenerating cells,
which are known to release large amounts of ATP, thereby pro-
moting MV shedding. In this regard, monocytes-derived MVs,
containing functional caspase-1, have been described to deliver a
cell death message to vascular smooth muscle cells (Sarkar et al.,
2009).

ROLE OF MICROGLIA-DERIVED MVs IN BRAIN
INFLAMMATION
Notably, besides inflammatory mediators and proteases, MVs
shed upon P2X7-activation from monocytes and dendritic cells
contains MHCII proteins (Qu et al., 2009). This suggests that
MVs produced from reactive myeloid cells may provide an effi-
cient route for rapid dissemination and presentation of anti-
gens, as part of an adaptive immune response. Indeed it has
been recently shown that MVs shed by macrophages upon P2X7

receptor activation propagate an inflammatory signal among
peripheral immune cells (Thomas and Salter, 2010). In the same
study, Thomas and Salter identified membrane phospholipids as
the active components of MVs, responsible for upregulation of
co-stimulatory receptors and cytokine secretion in non-primed
macrophages, through a TLR4-dependent process (Thomas and
Salter, 2010).

Consistent with a pro-inflammatory role of MVs shed upon
P2X7 receptor activation our recent data indicate that microglia-
derived MVs induce an immuno-stimulatory activity in recipient
microglia, which upregulate the co-stimulatory molecule CD86
and express inflammatory genes in a dose dependent manner upon
MV exposure (Verderio et al., 2012). The inflammatory reaction
occurring in recipient microglia is associated to MV internaliza-
tion and MVs-mediated transfer of mRNA codifying for IL-1β.
However, it still unclear whether transfer of genetic information
from MVs to target microglia contributes to the inflammatory
response induced by MVs and further studies are required to
identify the inflammatory component/s of MVs. Interestingly,
we validated in vivo these results by demonstrating that MVs
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of microglial origin are detectable in the cerebrospinal fluids of
rodents and that their concentration increases in the course of
Experimental Autoimmune Encephalomyelitis (EAE), a model
of the prototypic neuroinflammatory disease multiple sclerosis
(Verderio et al., 2012). We also found that injection of MVs into
the brain of mice with subclinical EAE induces recruitment of
inflammatory cells at the site of delivery, while A-SMase knock out
mice, genetically impaired in MV production, are largely protected
from EAE (Verderio et al., 2012). All together these data indicate
that microglia-derived MVs act as amplifying agents of inflamma-
tion and identify MVs as a marker and therapeutic target of brain
inflammation.

It should be noted, however, that MV shedding can also serve
functions other than antigen dissemination and propagation of
inflammation. Evidence from Di Virgilio’s group and our labora-
tory (Bianco et al., 2005; Pizzirani et al., 2007), by demonstrating
the presence of P2X7 receptors on isolated vesicles, suggested that
MV shedding could represent a defense strategy against apop-
totic insults, produced by excessive or repetitive ATP stimula-
tion. Removal of functional P2X7 receptors from the cell surface
could facilitate cell survival and avoid P2X7-mediated apoptosis
(Verderio and Matteoli, 2001).

MICROGLIA-DERIVED MVs ENHANCE EXCITATORY
NEUROTRANSMISSION
Microvesicles however may play a functional role also in differ-
ent scenarios. In a recent study we explored the potential of MVs
produced by microglia to interact with neurons and to modu-
late neurotransmission (Antonucci et al., 2012). We found that
MVs shed from the surface of microglia interact with the plasma
membrane of neurons and enhance spontaneous and evoked

excitatory transmission. Indeed analysis of miniature excitatory
postsynaptic currents (mEPSCs) in neurons acutely exposed to
MVs revealed an increase in mEPSC frequency without changes
in mEPSC amplitude and paired recording analysis showed an
increase the amplitude of EPSCs (Figure 3). MVs mainly act on the
presynaptic site of the excitatory synapse, by increasing the ready
releasable pool of synaptic vesicles and enhancing release proba-
bility at hippocampal synapses. This was indicated by increased
sucrose-evoked exocytosis and reduction of paired pulse ratio
in synaptically connected neurons. Notably, we found that MVs
influence neurotransmission by inducing sphingolipid metabo-
lism in neurons (Figure 4). Direct measurements of sphingolipid
metabolism revealed an increase in ceramide and sphingosine
production from sphingomyelin in cultured neurons exposed to
MVs while pharmacological or genetic inhibition of sphingosine
synthesis strongly prevented the stimulatory activity of MVs. Inter-
estingly, the use of empty MVs, depleted of their luminal content,
indicated that the presynaptic effect of MVs depends on surface
components. Consistent with previous evidence by Thomas and
Salter (2010) which identified phospholipids of MV membrane
as the active pro-inflammatory agent of the MVs, we found that
the lipid fraction of MVs shed from microglia is responsible for
the enhancement of excitatory neurotransmission. However, addi-
tional studies are required to identify the active lipid/s of MVs
and to fully define the receptors involved in MV recognition and
coupled to sphingolipid metabolism in neurons.

Is MVs-DEPENDENT STIMULATION OF EXOCYTOSIS GOOD
OR BAD FOR NEURONS?
This question remains still largely unsolved and we can only make
some speculative considerations. Previous evidence indicated that

FIGURE 3 | Effect of microglia-derived MVs on neurotransmission in

hippocampal cultures. (A) Representative traces of mEPSCs from control
neurons and neurons exposed to MVs. (B) Changes of mEPSC frequency
evoked by MVs in a microglia to neuron-ratio of 1:1 (MVs
concentration = 1.2 mg/ml), 2:1 (MVs concentration = 2.38 mg/ml), and 4:1
(MVs concentration = 4.76 mg/ml). (C) Cumulative distribution of mEPSC

amplitude from control and MVs-treated neurons. (D–E) Examples of
stimulus-evoked EPSCs in control and MVs-treated paired mouse neurons
(D) and corresponding mean amplitude (E). (F–G) Representative traces of
short-term plasticity in paired mouse neurons (F) (upper trace, control
neurons; lower trace, MVs-treated neurons) and quantitative analysis of
paired pulse ratio (G). From Antonucci et al. (2012).
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FIGURE 4 | Schematic representation of microglial MV-mediated

activity in neurons. MVs shed from the microglial surface have
externalized PS and bind via PS receptors to the surface of target
neurons. MV lipids stimulate A-SMase activity and promote
sphingomyelin metabolism to sphingosine in neurons. Sphingosine, in

turn, mediates relief of the cytoplasmic part of synaptobrevin from
inhibition by the vesicular membrane and facilitates further interaction
with syntaxin/SNAP-25 heterodimer. Ternary SNARE complex formation
leads to synaptic vesicle fusion with the plasma membrane modified by
Darios et al. (2009).

ATP, the stimulus which triggers MV shedding, is a physiological
gliotransmitter but also a typical danger signal, which accumu-
lates in the extracellular microenvironment upon cell damage. The
shedding process occurs more efficiently in reactive as compared to
resting microglia (Bianco et al., 2009; Qu et al., 2009; Sarkar et al.,
2009) and uncontrolled microglial activation is linked to neuro-
toxicity in a wide range of brain diseases. However there has been
considerable debate as to whether the microglia response is good
or bad for tissue protection and repair. Accumulating evidence
indicates that microglial reaction may indeed support neurons by
providing trophic factors, eliminating damaged cells (Olah et al.,
2012), controlling neurogenesis (Butovsky et al., 2006) and synap-
togenesis (Roumier et al., 2004), and monitoring the functional
state of synapses (Wake et al., 2009).

Facilitation of exocytosis induced by microglia-derived MVs
may represent a protective response of microglia, aimed at restor-
ing neuronal activity upon functional deficit of synaptic trans-
mission. Neurons constitutively release a number of “Off” sig-
nals capable of inhibiting microglia activation (Neumann et al.,
1998; Mott et al., 2004; Biber et al., 2007). Thus reduction in
secretion of “Off” signals at damaged synapses may favor the
acquisition of reactive phenotype in surrounding microglia, and
facilitate MV shedding to restore exocytosis. Alternatively, and
more probably, MVs may impact neurotransmission in case of
microglia overshooting. By causing overproduction of sphin-
golipids, MVs shed from reactive microglia may contribute to the
excessive potentiation of excitatory transmission, which indeed

occurs in neuroinflammatory and degenerative diseases (DeFe-
lice et al., 2007; Busche et al., 2008; Centonze et al., 2009).
Characterization of MV content in relation to the activation
state of donor microglia may help deciphering the complex
biological activity MVs may exert toward neurons either upon
acute or chronic delivery in both physiological and pathological
conditions.

CONCLUSION AND FUTURE PERSPECTIVE
Similar to membrane vesicles released by most cells, MVs shed
from the surface of microglia contain various bioactive mole-
cules which modulate neuron functionality and also influence
the activity of surrounding non-neuronal cells. MVs contain a
pro-inflammatory signals, i.e., IL-1β together with proteases and
MHCII protein, act as amplifiers of inflammatory signals between
glial cells and stimulate excitatory neurotransmission. This evi-
dence suggests that MVs may play a pathogenic role not only
in neuroinflammatory diseases, such as multiple sclerosis, but
also in degenerative brain diseases, like Alzheimer’s disease, where
microglia is activated and IL-1β is implicated (Giulian et al., 1996;
Lue et al., 2005). Hence, a better understanding of the molecular
mechanisms involved in MV shedding and in the transfer of the
inflammatory signals may help identifying a strategy to inhibit MV
activity, which may be of therapeutic relevance for the treatment of
inflammatory brain diseases. Few, important pieces of information
are already available: we know the stimulus (ATP), the receptor
(P2X7 receptor), and the key enzyme (acid sphingomyelinase)
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involved in regulated shedding of MVs from microglia. We can
inhibit production of MVs with pharmacological and genetic
tools and we can envisage a sorting mechanism for constituents
of MVs which interact directly with the P2X7 receptor or indi-
rectly through its signaling components. However, the molecular
composition of microglia-derived vesicles remains largely to be
defined and little information are available about possible changes
of MV cargo in relation to the activation state of donor microglia.
A detailed characterization of proteins, lipids, and genetic compo-
nents sorted inside MVs may greatly help deciphering the message
stored inside MVs and sent by resting or reactive microglia toward
surrounding cells, including non-neuronal cells such as astro-
cytes, oligodendrocytes, and other microglia. Also, the elucidation
of intercellular trafficking of MVs and identification of ligand-
receptor recognition events which mediate the specific interactions
between MVs and target cells might facilitate the comprehension
of the biological activity exerted by microglia-derived MVs toward
distinct brain cells.

In vivo studies will greatly benefit from the creation of a mouse
model, in which MV shedding can be inducible impaired, such
as conditional A-SMase knock out mice. A further improvement
would derive from selective and inducible inactivation of A-SMase
in microglia as this would avoid the complex phenotype of cur-
rently available models, in which constitutive inactivation of the
gene in all cells produces a phenotype similar to Niemann-Pick
type A human disorder (Horinouchi et al., 1995; Otterbach and
Stoffel, 1995). Furthermore the development of highly specific
A-SMase inhibitors could reveal a therapeutic potential of MV
shedding inhibitors in brain inflammation.
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