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Myocardial dysfunction and coronary macro/microvascular alterations are the hallmarks of
diabetic cardiomyopathy and are ascribed to increased oxidative stress and altered nitric
oxide synthase (NOS) activity. We hypothesize that pre-treatment by cobalt-protoporphyrin
IX (CoPP) ameliorates both myocardial function and coronary circulation in streptozotocin
(STZ)-induced diabetic rats. Isolated hearts from diabetic rats in Langendorff configuration
displayed lower left ventricular function and higher coronary resistance (CR) compared to
hearts from control animals. CoPP treatment of diabetic animals (0.3 mg/100 g body weight
i.p., once a week for 3 weeks) significantly increased all the contractile/relaxation indexes
(p < 0.01), while decreasing CR (p < 0.01). CoPP enhanced HO-1 protein levels and reduced
oxidative stress in diabetic animals, as indicated by the significant (p < 0.05) decrease in
heart % GSSG, O−

2 , and malondialdehyde (MDA) levels. CoPP increased adiponectin levels
and phosphorylation of AKT and AMPK and reversed the eNOS/iNOS expression imbal-
ance observed in the untreated diabetic heart. Furthermore, after CoPP treatment, a rise
in malonyl-CoA as well as a decrease in acetyl-CoA was observed in diabetic hearts. In this
experimental model of diabetic cardiomyopathy, CoPP treatment improved both cardiac
function and coronary flow by blunting oxidative stress, restoring eNOS/iNOS expres-
sion balance and increasing HO-1 levels, thereby favoring improvement in both endothelial
function and insulin sensitivity.
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INTRODUCTION
According to World Health Organization, diabetes mellitus is a
global pandemic. It is associated with an increasing incidence of
heart failure, coronary artery disease, and cardiovascular mortal-
ity (LeWinter, 1996; Adeghate, 2004). The mechanisms responsible
for the effects of hyperglycemia and diabetes on myocardial func-
tion and on coronary macro- and micro-vasculature are the object
of intensive investigation. Among several putative mechanisms,
the role of the reactive oxygen (ROS) and reactive nitrogen species
(RNS) has been studied in a number of experimental models of
diabetes (Stevens, 2005). Oxidative stress associated with deficient
antioxidant systems has been reported to play a critical role in
subcellular remodeling, calcium handling, and subsequent dia-
betic cardiomyopathy (Haidara et al., 2006). Nitric oxide (NO)
signaling is also involved in the genesis of diabetic myocardial and
vascular damage and an altered expression of nitric oxide synthase

(NOS) isoforms occurs in diabetes as well as in the hyperglycemic
state (Ceriello et al., 2002; Nagareddy et al., 2005).

The levels of adiponectin, an adipocytokine secreted from the
adipose tissue (Chandran et al., 2003), are reduced in diabetes
(Hotta et al., 2000), insulin resistance (Weyer et al., 2001), and
obesity (Yamauchi et al., 2001). Decreased levels of adiponectin
have been proposed to mediate some of the deleterious effects
of diabetes on myocardial function at rest as well as in response
to ischemia (L’Abbate et al., 2007). Accordingly, administration
of adiponectin to adiponectin-deficient knockout mice improved
recovery of cardiac function after myocardial ischemia (Tao et al.,
2007). Adiponectin has different cardiac effects including the
increase in myocardial insulin sensitivity, stimulation of glu-
cose uptake and lipid oxidation, increase in eNOS activity (Tao
et al., 2007), and anti-inflammatory action (Antoniades et al.,
2009).

www.frontiersin.org June 2012 | Volume 3 | Article 160 | 1

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CeciliaVecoli&UID=51936
http://www.frontiersin.org/people/BarbaraTavazzi/53963
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GiuseppeLazzarino&UID=31735
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NazarenoPaolocci_1&UID=18515
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AntonioL'Abbate&UID=38900
mailto:nader.abraham@utoledo.edu
http://www.frontiersin.org
http://www.frontiersin.org/Fatty_Acid_and_Lipid_Physiology/archive
http://www.frontiersin.org/Fatty_Acid_and_Lipid_Physiology/10.3389/fphys.2012.00160/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NaderAbraham&UID=44518
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=NaderAbraham&UID=44518


Cao et al. Adiponectin-HO-1 protective effects in the diabetic heart

In severe diabetes, myocardial function may be depressed as
a result of multiple pathogenic mechanisms (Boudina and Abel,
2007). Impairment of myocardial function is seen in strepto-
zotocin (STZ) treated rats, a model of severe diabetes which
reproduces the clinical features of diabetic cardiomyopathy (An
and Rodrigues, 2006). However, in this model the interaction
between microvascular abnormalities and myocardial function
has never been explored. In a previous study performed in
mildly diabetic rats obtained by STZ-nicotinamide treatment,
we observed a significant increase in microvascular resistance
during ischemia/reperfusion, associated with myocardial iNOS
overexpression, eNOS downregulation, and increased oxidative
stress (L’Abbate et al., 2007). In these diabetic rats, the cobalt-
protoporphyrin IX pre-treatment (CoPP) improved the coronary
vascular response to ischemia-reperfusion, restoring the balance
of cardiac eNOS and iNOS isoforms and the redox state. It is
also documented that CoPP treatment increases EC-SOD as well
as mitochondrial function in animal models of diabetes (Turk-
seven et al., 2005; Di Noia et al., 2006). Recently, Kusmic et al.
demonstrated that CoPP enhances the crosstalk between pAKT-
pAMPK, thus increasing NO production and bioavailability in a
mouse model of diabetes. This effect of CoPP resulted in both
local and systemic effects eventually leading to the restoration of
microvascular function in the heart of diabetic mice (Kusmic et al.,
2010).

The present study was designed to determine, in a rat model of
severe diabetes and cardiomyopathy, whether in vivo CoPP treat-
ment could improve myocardial as well as coronary function. We
examined the interaction between cardiac physiological parame-
ters and oxidative stress, focusing in particular on eNOS and iNOS
expression and adiponectin signaling modulation.

MATERIALS AND METHODS
All experiments were approved by the Institutional Animal Care
and Use Committee of Johns Hopkins University and conducted
under the guidelines for the Care and Use of Laboratory Animals
published by the Office of Science and Health Reports, NIH.

INDUCTION OF DIABETES
Male Wistar rats, 2 months of age, received an injection of
50 mg/kg streptozotocin (STZ, Sigma, St. Louis, MO, USA), i.p.,
dissolved in citrate buffer (pH 4.5), to obtain a stable diabetes
with severely reduced beta-cell mass. STZ-treated animals were
matched by a group of controls of the same age receiving the
vehicle of STZ.

ADMINISTRATION OF CoPP
CoPP was purchased from Frontier Scientific, Inc. (Logan, UT,
USA). Four weeks after induction of diabetes, CoPP (0.3 mg/100 g
body weight), or the corresponding volume of vehicle (0.1 M
sodium citrate buffer, pH 7.8) was administered subcutaneously
once a week for 3 weeks. Glucose levels of diabetic rats were
checked before starting of CoPP treatment, so that animals could
be homogenously and randomly distributed between the two
groups receiving or not CoPP. In total, three groups of animals
were studied: control rats (C, n = 20), diabetic rats (D, n = 16),
and diabetic rats treated with CoPP (D + CoPP, n = 16). At the
end of the experimental period, before excision of the heart,

blood samples were taken for glucose, insulin, and adiponectin
measurements.

ISOLATED HEART PREPARATION
Three days after the last CoPP or vehicle injections, rats were anes-
thetized with i.p. pentobarbital (250 units/kg) and heparinized
via the left femoral vein. The heart was rapidly excised, placed
in cold perfusion medium and weighed. The isolated heart was
attached to the Langendorff apparatus and retrogradely perfused
(at 37˚C) using constant perfusion pressure of 80 cm H2O. The
perfusion medium consisted of oxygenated Krebs-Henseleit buffer
(L’Abbate et al., 2007). After 20 min of stabilization, cardiac and
coronary functions were monitored. For measurement of left ven-
tricular systolic (LVP) and diastolic (EDP) pressure, a latex balloon
was inserted into the left ventricle through the mitral valve and
connected to a Harvard pressure transducer. In each experiment,
balloon volume, and thus left ventricular volume, was adjusted
according to an EDP value of 10 mmHg and maintained con-
stant for the entire duration of the experiment. For a constant
left ventricular volume and in absence of any ejection (isometric
contraction), changes in systolic pressure and dP/dt max are pos-
itively correlated to myocardial contractility (inotropism), while
changes in dP/dt min are positively correlated to ventricular relax-
ation. Coronary perfusion pressure (CPP) was monitored by a
second pressure transducer connected to the aortic cannula. Data
were acquired using a BIOPAC 100 System and analyzed with
AcqKnowledge software (BIOPAC system). Left ventricular devel-
oped pressure (LVDevP = LVP − EDP), heart rate (HR), dP/dt max,
dP/dt min, and CPP were all derived or calculated from the con-
tinuous monitoring of the LV pressure signal while LVP × HR
defined the rate-pressure product (RPP), an index of cardiac
oxygen consumption and energy production.

In all the experiments, coronary flow (ml/min) was contin-
uously monitored by collecting the cardiac effluent. Coronary
resistance (CR) was defined as CPP divided by coronary flow/g
of myocardial tissue (mmHg min g/ml).

BLOOD MEASUREMENTS OF GLUCOSE, INSULIN, AND ADIPONECTIN
Tail vein blood samples were collected from animals fasting for at
least 6 h. Glucose levels were measured with a commercial Glu-
cose Monitor Kit (Ascensia Contour Monitoring System, Bayer)
and plasma insulin content with Rat Insulin Enzyme Immunoas-
say kit (Cayman). Plasma adiponectin was determined using an
ELISA assay (Pierce Biotechnology, Woburn, MA, USA).

TISSUE PREPARATION AND MEASUREMENT OF MALONDIALDEHYDE
(MDA), REDUCED AND OXIDIZED GLUTATHIONE, MALONYL-CoA, AND
ACETYL-CoA
Each left ventricular tissue sample was processed according to an
organic deproteinization procedure suitable for the determination
of water-soluble low-molecular weight compounds representative
of both tissue oxido-reductive and energy status. Malondialde-
hyde (MDA), reduced and oxidized glutathione (GSH and GSSG
respectively) malonyl-CoA, and acetyl-CoA were measured by
ion-pairing HPLC (Lazzarino et al., 2003). Data acquisition and
analysis were performed using the ChromQuest software package
(Thermo Electron Corporation, Waltham, MA, USA).
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WESTERN BLOT ANALYSIS OF CARDIAC SIGNALING MOLECULES AND
HO ACTIVITY LEVEL
Frozen hearts were pulverized under liquid nitrogen and placed
in a homogenization buffer (10 mM phosphate buffer, 250 mM
sucrose, 1 mM EDTA, 0.1 mM PMSF, and 0.1% tergitol, pH
7.5) and used for measuring signaling molecules as previously
described (L’Abbate et al., 2007). Protein levels were visualized
by immunoblotting with antibodies against HO-1, HO-2 (Stress-
gen Biotechnologies Corp., Victoria, BC, Canada). Antibodies
against Akt, pAkt,AMPK, pAMPK, and adiponectin were obtained
from Cell Signaling Technology, Inc. (Beverly, MA, USA). eNOS,
iNOS, and p-eNOS from Santa Cruz Biotechnology (Santa Cruz,
CA, USA). Briefly, 20 mg of heart tissue lysate supernatant was
separated by 12% SDS/polyacrylamide gel electrophoresis and
transferred to a nitrocellulose membrane. Chemiluminescence
detection was performed with the Amersham ECL detection kit
(Amersham, Piscataway, NJ, USA), according to the manufac-
turer’s instructions. The image was analyzed by densitometry.
Protein bands were quantified and values were normalized to those
of actin. One out of three separate experiments with consistent
results is shown.

HO-1 activity was assess using a scanning double beam spec-
trophotometer (Lambda 17 UV/Vis; Perkin Elmer Cetus Instru-
ments, Norfolk, CT, USA) and expressed as nmol bilirubin/mg
protein/h (L’Abbate et al., 2007).

SUPEROXIDE CARDIAC TISSUE LEVELS
Superoxide (O−

2 ) was determined placing hearts in plastic scintilla-
tion minivials, containing 5 μM lucigenin for the detection of O−

2
as previously described (L’Abbate et al., 2007). Briefly, cardiac tis-
sues were placed in plastic scintillation minivials containing 5 μM
lucigenin in 1 ml of Krebs solution buffered with 10 mM HEPES-
NaOH (pH 7.4). The chemiluminescence from superoxide was
measured by a liquid scintillation counter (LS6000IC; Beckman
Instruments, San Diego, CA, USA) with a single active photomul-
tiplier tube in a dark room. Background chemiluminescence in the
absence of tissue was subtracted from subsequent measurements
made in the presence of BPA. The tissue was weighed at the end of
the experiment, and the counts were divided by weight to give the
readings in counts/min/mg of tissue (L’Abbate et al., 2007).

STATISTICAL ANALYSIS
Results are presented as mean ± standard error of the mean (SEM)
of the number (n) of replicate determinations. Statistical sig-
nificance between experimental groups and between different
study conditions was determined by using a two-way ANOVA,
followed by the Fisher’s exact test to evaluate two-by-two differ-
ences. Comparison of the three groups was determined first doing
an ANOVA followed by a post hoc test. p < 0.05 was considered
significant.

RESULTS
CoPP TREATMENT IMPROVES INSULIN SENSITIVITY AND INCREASES
PLASMA ADIPONECTIN LEVELS
At the end of the experimental period, plasma glucose lev-
els in diabetic (D) rats were 463.4 ± 19.1 mg/dl compared to
119 ± 2.6 mg/dl in control (C) group (p < 0.01) and the corre-
sponding plasma insulin levels were 0.87 ± 0.22 ng/ml compared

to 1.9 ± 0.35 ng/ml (p < 0.01) respectively. CoPP treatment low-
ered glucose levels in diabetic rats to 386.7 ± 18 mg/dl (p < 0.05
vs. D) without changes in insulin levels (0.86 ± 0.35 ng/ml),
thus increasing insulin sensitivity. Plasma adiponectin levels
were significantly lower in diabetic rats compared to controls
(3.06 ± 1.08 vs. 8.05 ± 0.9 μg/ml; p < 0.05). The administration
of CoPP to diabetic rats resulted in a marked increase in plasma
adiponectin concentration (11 ± 1.9 μg/ml, p < 0.01 vs. D).

CoPP TREATMENT IMPROVES CARDIAC AND MICROVASCULAR
FUNCTION
After 20 min of stabilization, hearts isolated from diabetic ani-
mals exhibited increased CR and depressed cardiac function as
compared with hearts isolated from control animals (Figure 1;
Table 1). CoPP treatment increased RPP in diabetic hearts
(p < 0.005). The improvement of RPP in diabetic hearts was
the result of a combined effect of CoPP on the inotropic and
chronotropic features of the heart. Indeed, systolic LVP, LVDevP,
and dP/dt max (all related to inotropism) were increased in
D + CoPP compared to D (p < 0.005). Likewise, heart rate was
higher in D + CoPP hearts as compared to D (Table 1). More-
over, CoPP improved cardiac relaxation in D hearts (p < 0.005) at
values similar to that found in control animals. When coronary
microcirculation was examined, it was found that CR was higher
in D as compared to C hearts (p < 0.01) and returned back to
control values after CoPP pre-treatment (Figure 1).

EFFECT OF CoPP TREATMENT ON HO-1 AND HO-2 EXPRESSION AND HO
ACTIVITY
Diabetic hearts displayed lower HO-1 protein levels and lower HO
activity (p < 0.05 vs. C) compared to those found in control ani-
mals (Figures 2A,B). CoPP treatment caused an increase in both
HO-1 protein levels and HO activity in diabetic animals (p < 0.01
vs. D; Figure 2). Both the diabetic condition and pre-treatment
with CoPP did not influence the levels of HO-2 protein (upper
left panel).

EFFECT OF CoPP TREATMENT ON GLUTATHIONE, MDA, O−
2 AND 3-NT

When compared to control, heart tissue in D rats showed a higher
value of % GSSG [GSSG/GSH+GSSG) × 100], most likely depen-
dent on a shift of redox balance towards an oxidative state. This
value went back to a value close to that of controls after CoPP
administration (p < 0.01; Figure 3). Moreover, a similar trend in
the GSH balance was also found by considering the GSH/GSSG
ratio (C rats = 16.98; D rats = 8.17; CoPP rats = 11.21). In addi-
tion to altered glutathione balance, diabetic hearts exhibited a
five-fold increase in O−

2 levels compared to controls (p < 0.05 vs.
C), that was completely reversed upon CoPP treatment (p < 0.01
D + CoPP vs. D; Figure 3). Compared to controls, diabetic hearts
showed remarkably higher levels of MDA, an index of lipid perox-
idation (p < 0.01 vs. C). In D + CoPP rats, both MDA and 3-NT
levels found returned toward normal values of control animals,
probably as a consequence of HO-1 induction (Figure 3).

CoPP TREATMENT INCREASES CARDIAC LEVELS OF eNOS, p-eNOS,
AND iNOS
Consistent with previous observations, we found a lower value of
p-eNOS/eNOS ratio in hearts isolated from diabetic animals than
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FIGURE 1 | After 30 min of stabilization, dP/dt max, and dP/dt min,

rate-pressure product (RPP), and levels of coronary resistance (CR) in

control rats (C, n = 20), diabetic rats (D, n = 15), and diabetic rats treated

for 3 weeks with CoPP (D + CoPP, both n = 16). Data are expressed as

means ± SEM. *p < 0.05 vs. other groups; #p < 0.05 vs. CoPP-treated
animals.

Table 1 | Hemodynamic parameters in control rats (C, n = 20), diabetic

rats (D, n = 16), and diabetic rats treated for 3 weeks with CoPP

(D + CoPP, n = 16).

HR (beats/min) LVP (mmHg) LVDP (mmHg)

C (n = 20) 213 ± 3 120 ± 6 110 ± 4

D (n = 16) 178 ± 3* 93 ± 9# 81 ± 5#

D + CoPP (n = 16) 207 ± 4 105 ± 5* 94 ± 3*

Data are expressed as means ± SEM. HR, heart rate; LVP, left ventricular sys-

tolic pressure; LVDP, left ventricular developed pressure calculated as described

in Section “Materials and Methods,” *p < 0.05 vs. other groups, #p < 0.05 vs.

controls.

from controls (p < 0.05; Figure 4). CoPP treatment increasing the
levels of p-eNOS augmented the p-eNOS/eNOS ratio (p < 0.05
D vs. D + CoPP and C; Figure 4). Hearts from diabetic animals
showed an increased expression of iNOS, that was significantly
attenuated upon CoPP treatment (Figure 4).

CoPP TREATMENT INCREASES CARDIAC LEVELS OF AKT, AMPK, AND
ADIPONECTIN
In the hearts from diabetic animals, a significant (p < 0.005)
decrease of pAKT and pAMPK levels was observed, as compared to
controls, without any change in Akt and AMPK (Figure 5). CoPP
fully reversed these changes, normalizing pAKT, and even increas-
ing pAMPK levels in diabetic hearts. As shown in Figure 5 (lower
panel), adiponectin levels were significantly decreased in diabetic

cardiac tissue, but were restored by CoPP treatment (p < 0.05 D
vs. D + CoPP).

CoPP TREATMENT INCREASES CARDIAC LEVELS OF MALONYL-CoA
AND DECREASES LEVELS OF ACETYL-CoA
Diabetes resulted in a significant decrease in the myocardial lev-
els of malonyl-CoA (p < 0.01) associated to a significant increase
(p < 0.05) of acetyl-CoA (Figure 6). Both these changes were
normalized after CoPP treatment.

DISCUSSION
In the present study we demonstrate that CoPP administration
increased expression of HO-1 and reversed both myocardial and
coronary dysfunction in the STZ rat model of diabetes. In this
model of severe diabetes, myocardial function is reduced and CR
is increased (Koch et al., 2003; Boudina and Abel, 2007), thus
mimicking the clinical nature of diabetic cardiomyopathy with
increased coronary microvascular resistance. We demonstrate for
the first time in this report a complete reversal of LV systolic and
diastolic dysfunction by treatment with the HO-1 protein inducer
CoPP.

Following CoPP treatment, the normalization of myocardial
function and the reduction of CR in diabetic hearts were asso-
ciated with a decrease in oxidative stress and improved cardiac
markers of endothelial function. In particular, CoPP treatment
resulted in the reversion of overexpression of iNOS found in
the diabetic heart and the restoration of eNOS expression. This
contrasting effect of CoPP on cardiac eNOS and iNOS, lead-
ing to the normalization of the expression balance of the two
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FIGURE 2 | HO-1/HO-2 expression and HO activity in C, D, and

D + CoPP rat hearts. Heart samples were subjected to Western
blotting for the determination of HO-1/HO-2 protein.
A representative blot is shown. Densitometric analysis of HO-1 vs.

actin is shown and expressed as means ± SEM of three
independent experiments. HO activity was determined by bilirubin
formation (see Materials and Methods). *p < 0.05 vs. other
groups.

FIGURE 3 | Cardiac tissue levels of (A) % GSSG

[GSSG/(GSH+GSSG) ×100], (B) O
−
2

, and (C) malonyldialdehyde (MDA)

measured in hearts from C, D, and D + CoPP rats. (D) Representative

Western blot and densitometric analysis of 3-nitrotyrosine (3-NT) expression in
cardiac tissue of C, D, and D+CoPP rats. Data are expressed as means ± SEM
of three independent determinations *p < 0.05 vs. other groups.

isoforms, could have synergistically contributed to the improve-
ment of both myocardial and vascular functions of the diabetic
heart.

It is well known that the beneficial effects of CoPP are medi-
ated by HO-1 induction (Di Noia et al., 2006; Li et al., 2008). In
particular, the effect on NOS balance can be ascribed to HO-1,
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vs. C.

since Turkeseven et al. demonstrated that the effect of CoPP was
associated with an increase in EC-SOD and NO bioavailability. In
contrast, a decrease in HO-1 and inhibition of HO activity resulted
in an increase in superoxide levels in healthy animals (Turkseven
et al., 2005).

The improvement of coronary and myocardial function in dia-
betic animals described here mirror the systemic humoral effects
of CoPP that were manifest by the activation of the HO-1/
adiponectin pathway. Previously, we showed the active role of
HO-1 in the stimulation of adiponectin secretion. In fact, the

inhibition of HO activity by administration of tin mesopor-
phyrin (SnMP) after CoPP treatment resulted in decreased levels
of plasma adiponectin (L’Abbate et al., 2007). Accordingly, Li et al.
(2008) showed that the co-administration of CoPP and SnMP
resulted in the loss of the beneficial effects associated with the
increased expression of HO-1. The effects of CoPP on increas-
ing the levels of adiponectin were associated with the systemic
enhancement of insulin sensitivity, cardiac modulation of glucose
uptake, and fatty acid oxidation resulting in improvement in
myocardial function.
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Reactive oxygen species have been identified as a primary cause
for both the development and progression of diabetic cardiomy-
opathy (Boudina and Abel, 2007). Indeed, in the present study, the
beneficial effects of CoPP on CR and myocardial function in dia-
betes were associated with a marked reduction of oxidative stress
markers in cardiac tissue. CoPP treatment reduced the cardiac lev-
els of superoxide, oxidized glutathione, and MDA. This beneficial
effect on redox balance is likely driven by bilirubin, produced from
degradation of heme by HO-1, which has strong antioxidant prop-
erties as well as cytoprotective effects on the cardiovascular system
(Abraham and Kappas, 2008).

The diabetic heart exhibits a progressive decrease in eNOS
expression which is accompanied by a concomitant rise in iNOS
expression (Bardell and MacLeod, 2001; Boudina and Abel, 2007;
L’Abbate et al., 2007). We also found downregulation of eNOS and
overexpression of iNOS in the diabetic rat heart, both reversible
upon CoPP treatment. Inducible NOS produces a higher amount
of NO than other isoforms. In conditions of oxidative stress, such
as in the diabetic heart, the overproduction of NO results in NO
interacting with superoxide and contributing to the formation
of RNS including peroxynitrite. Besides reducing NO availability,
peroxynitrite is a strong oxidant and can oxidize various bio-
molecules and exert cytotoxic actions in both myocardial and
vascular tissue resulting in cardiovascular derangement. Perox-
ynitrite formation is associated with several pathophysiological
conditions including acute myocardial infarction and chronic
ischemic heart failure (Weinstein et al., 2000; Pacher et al., 2003). It
contributes to the pathogenesis of diabetic cardiovascular compli-
cations while its pharmacological decomposition improves both
diastolic and systolic function in diabetic heart (Szabo et al.,
2002). Peroxynitrite depresses cardiac function through differ-
ent mechanisms including cellular necrosis or α-actinin nitration
and its effective neutralization can have a significant therapeutic
benefit.

In addition to decreased iNOS levels and NO production,
thus blunting the formation and deleterious effects of abnor-
mal amounts of peroxynitrite, increased levels of p-eNOS were
observed following CoPP treatment. This may be due to the CoPP-
mediated increases in plasma and cardiac tissue adiponectin.
Adiponectin differentially regulates NO production from eNOS
and iNOS: through crosstalk between AMPK and AKT, it promotes
eNOS phosphorylation pathways, increasing eNOS activity (Tao

et al., 2007). Recently, it was reported that ventricular cardiomy-
ocytes also express adiponectin receptors leading to increased
glucose uptake and fatty acid oxidation in normal rats (Ding et al.,
2007) thus improving their metabolic profile (Kim et al., 2007).
Human studies demonstrate that plasma adiponectin regulates
insulin receptor phosphorylation contributing to increased insulin
sensitivity (Yamauchi et al., 2001; Stefan et al., 2004). In brief,
adiponectin has both metabolic and vascular actions stimulating
the endothelial production of NO and reduction in its levels may
contribute to insulin resistance and endothelial/myocardial dys-
function (Dimmeler et al., 1999). Our results are also in keeping
with the report that adiponectin is critical for endothelial cell sur-
vival and function (Ouchi et al., 2004) via the activation of eNOS
and pAKT and pAMPK signaling.

In the normal heart, both fatty acid oxidation and glucose
metabolism contribute to energy production. Conversely, the dia-
betic heart relies almost completely on fatty acids, as glucose
uptake and subsequent utilization is impaired (Lopaschuk, 1996).
There are several explanations for this switch in substrate uti-
lization in diabetic heart. First, insulin-dependent glucose uptake,
via the glucose transporter (GLUT) 4, is decreased, thus glucose
metabolism (both glycolysis and glucose oxidation) is depressed.
Second, the release of FFA from adipose tissue is increased.
Despite an increase in FFA utilization in diabetic heart, it is
likely that FFA uptake exceeds oxidation rate resulting in lipid
accumulation in the myocytes and lipotoxicity (Sharma et al.,
2004). Furthermore, lipid intermediates might promote apoptosis
of cardiomyocytes, thus representing an additional mechanism
leading to cardiac dysfunction. In order to explore the effect
of adiponectin and HO-1 elevation on diabetic cardiac metab-
olism, we measured cardiac malonyl-CoA, a key mediator in
the β-oxidation, due to its inhibitory effect on carnitine palmi-
toyltransferase 1. With normal insulin sensitivity, malonyl-CoA
increases when the muscle feeds on glucose (plasma insulin levels
increased), while it decreases when the muscle is glucose deprived
(plasma insulin levels decreased; Ruderman et al., 1999; Park
et al., 2002). Insulin exerts its lipogenic effect increasing cellular
malonyl-CoA via dephosphorylation and activation of acetyl-
CoA carboxylase, thus supporting fatty acid synthesis instead of
degradation. Hence, a decrease in insulin availability reduces intra-
cellular malonyl-CoA levels and fatty acid oxidation increases.
The present study confirms that the decreased insulin secretion
(due to STZ injection) reduces malonyl-CoA formation. Follow-
ing CoPP administration, HO-1 induction reverses the decrease
of malonyl-CoA observed in diabetic heart. The normalization
of malonyl-CoA suggests a favorable effect on diabetic car-
diac metabolism toward glucose utilization and prevention of
cellular lipotoxicity (Figure 7). Since insulin sensitizing prop-
erties have been ascribed, to adiponectin, we speculate that
malonyl-CoA-dependent decrease in β-oxidation might be due to
adiponectin release or HO-1 induction. Anyway, further studies
using adiponectin or HO-1 knockout mice are needed to explain
the degree of involvement of these molecules in the control of
β-oxidation rate in the heart.

Recently, it was reported that the effect of adiponectin on glu-
cose uptake is mediated by p38MAPK-increasing GLUT4 translo-
cation. However, adiponectin can also stimulate the translocation
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of GLUT4 via PI-3-kinase, the same signaling cascade activated
by insulin (Figure 7). Human studies demonstrate that plasma
adiponectin and HO-1 expression regulate insulin sensitivity and
insulin receptor phosphorylation (Yamauchi et al., 2001; Stefan
et al., 2004) contributing to increased insulin sensitivity. As a
consequence, enhanced glucose utilization in CoPP-treated dia-
betic hearts could contribute toward a glucose-dependent energy
repletion which in turn has the potential to enhance cellular
malonyl-CoA. Together with improved myocardial perfusion and
increased malonyl-CoA, reduced β-oxidation of FFA in myocar-
dial cells could attenuate lipid peroxidation, oxidative stress, and
improve myocytes function.

Taken together, the results of the present study promote the
use of compounds that increase HO-1 expression, HO activ-
ity, and adiponectin levels as a therapeutic means of both
preventing and reversing the cardiomyopathy associated with
diabetes.
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