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Relatively recent work has reported that networks of neurons can produce avalanches of
activity whose sizes follow a power law distribution. This suggests that these networks
may be operating near a critical point, poised between a phase where activity rapidly dies
out and a phase where activity is amplified over time. The hypothesis that the electrical
activity of neural networks in the brain is critical is potentially important, as many simula-
tions suggest that information processing functions would be optimized at the critical point.
This hypothesis, however, is still controversial. Here we will explain the concept of criticality
and review the substantial objections to the criticality hypothesis raised by skeptics. Points
and counter points are presented in dialog form.
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INTRODUCTION
The scene: Two scientists, Critio and Mnemo, are attending a
neuroscience conference. They happen to sit at the same table
for lunch and strike up a conversation. This paper contains a
record of that conversation. In turn, the scientists discuss criti-
cality, evidence for criticality in neural data, various objections
to this evidence, and several responses to those objections.

Critio: Hello professor. I enjoyed your presentation this morning.
Your group is doing some fascinating work on synaptic plastic-
ity. I was particularly interested in your thoughts on how synaptic
changes underlie memory.

Mnemo: Thank you! I can see from your badge that you are
in a physics department. What brings you to a neuroscience
conference?

Critio: Well, I have been using ideas from statistical mechanics
to try to explain how groups of neurons collectively behave. One
of my primary research interests is determining whether or not
the brain is operating at a critical point.

Mnemo: I’ve seen several papers in that area and they seem to
show some interesting results. There also appears to be a great deal
of controversy about criticality in biology (Gisiger, 2001; Mitzen-
macher, 2004) and in neural systems (Bedard et al., 2006; Touboul
and Destexhe, 2010; Dehghani et al., 2012). However, I must admit
that I haven’t had the time to follow that research topic very closely.

Critio: It is definitely true that there is significant disagreement
in the research community about the role criticality plays in neural
dynamics (Stumpf and Porter, 2012). I happen to believe that
criticality plays an important role, but other researchers disagree.

Mnemo: Well, that’s to be expected. Many topics in science are
hotly debated and that’s part of the fun of being a scientist!

Critio: Oh, I agree! I just want to say that, even given my view
that criticality does play an important role in neural dynamics, I
recognize that it is completely possible that criticality, in fact, does

not play an important role in neural dynamics. Other method-
ologies, such as non-linear systems might better explain neural
dynamics (May, 1976; Nicolis and Prigogine, 1989).

Mnemo: Well, this certainly sounds like an interesting topic.
But since we have a few minutes here, why don’t you give me a
quick description of your research? I probably won’t read a review,
but I could learn a few things from you over lunch. Do you mind
if I pick your brain, so to speak?

Critio: Not at all! I guess I could give you an overview of criti-
cality and how it might apply to the brain. I am somewhat biased,
but I’ll do my best to present arguments from researchers who dis-
agree with my view of criticality in neural systems. You can help
me by being as skeptical of my arguments as possible.

TOPOLOGY AND CRITICALITY
Mnemo: That sounds great! But before we get started, I would
like to clear one thing up that has been bugging me. Several of
the other researchers at my institution study network topology. I
always hear them talking about scale-free networks, power laws,
and criticality. Are those all the same thing?

Critio: That is an excellent question and I think it gets at a
point that isn’t widely made in the literature. If we’re interested
in network topology, we’re interested in how the nodes of a net-
work are connected to each other. A scale-free network has nodes
that are connected in a certain way. If we’re interested in crit-
icality, we’re interested in how the network behaves. The two
topics are certainly related, but it is possible for non-scale-free net-
works to exhibit critical behavior and it is possible for scale-free
networks to not exhibit critical behavior. The network connectiv-
ity affects the critical behavior of that network (Haldeman and
Beggs, 2005; Beggs et al., 2007; Gray and Robinson, 2007; Hsu
et al., 2007; Teramae and Fukai, 2007; Larremore et al., 2011;
Rubinov et al., 2011), as we can discuss if you have the time,
but network connectivity and criticality are conceptually quite
different.
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FIGURE 1 | A simple diagram of spins in the Ising model. (Left) At low
temperature, nearest neighbor interactions dominate over thermal
fluctuations. As a result, almost all the spins align in the same direction,
producing a very ordered state. (Right) At high temperature, thermal
fluctuations dominate over nearest neighbor interactions. As a result, the
spins point in different directions, producing a very disordered state.
(Center) At some critical temperature, nearest neighbor interactions and
thermal fluctuations balance to produce a complex state.

EXPLAINING CRITICALITY
Mnemo: That sounds complicated! But, since I hear most people
discussing criticality, let’s discuss that first. So, what is criticality?

Critio: Criticality is a phenomenon that has been observed in
physical systems like magnets, water, and piles of sand. Many sys-
tems that are composed of large numbers of interacting, similar
units can reach the critical point. At that point, they behave in
some very unusual ways. Some people, including myself, suspect
that cortical networks within the brain may be operating near the
critical point.

Mnemo: This all sounds intriguing, but I have no idea what you
mean by the critical point. Can you give me a simple example?

Critio: Sure, let’s use a well explored model in this field: the
Ising model (Brush, 1967; Cipra, 1987). [Critio grabs a napkin
and sketches the left panel of Figure 1.]

This model will illustrate the critical point pretty well. See these
circles? They represent lattice sites in a piece of iron. At each site,
there is an electron whose “spin” is either up or down. You can
think of these arrows as little bar magnets, with the arrowhead
being the North pole of the magnet. In a piece of iron, these bar
magnets influence their nearest neighbors to align in the same
direction. I will represent their influence on each other by drawing
lines between the circles. So, when the temperature T is low, as
in the left panel of Figure 1, these nearest neighbor interactions
dominate and all the spins point in the same direction. This gives
the piece of iron a net magnetization, and makes it behave like
a magnet, sticking to your refrigerator. It is extremely ordered,
almost boringly so. I have a movie here on my laptop from a talk
I gave recently. [Critio opens up his laptop and plays Movie S1 in
Supplementary Material.]

This movie shows a simulated piece of iron as the temperature
is cooled. Each black square represents a spin pointed up, and each
white square is a spin pointed down. See how, over time, all of the
spins begin to point in the same direction? Pretty soon the whole
sample will be either all black or all white. That behavior is caused
by the nearest neighbor interactions.

Mnemo: So all iron is magnetic?

Critio: No, certainly not. Being ordered like that is just one
phase that the piece of iron can be in. And that happens only at
low T. If you heat it up, you can make it change into another phase.

Mnemo: Oh, I have heard some things about a “phase transi-
tion.” Is that where this is going?

Critio: Well, yes. If you heat up the iron quite a lot, then this
increased thermal energy will begin to “jostle around” the spins.
Even though they still have a tendency to align with each other,
this will be overwhelmed by the added heat. [Critio sketches the
right panel of Figure 1.] Now you have no order at all and things
look like random static on a TV screen when it is disconnected
from a cable. Here is the movie of the disordered phase. [Critio
plays Movie S2 in Supplementary Material from his laptop.]

Mnemo: So is this why a magnet loses its ability to stick when
it is heated up too much?

Critio: Exactly. All the spins are pointing in different directions
and they cancel each other. There is no net magnetic field produced
by the sample any more.

Mnemo: So now you have shown me the ordered and the disor-
dered phases. What happens between them, at the so called “phase
transition point?” Is this the same thing as the “critical point?”

Critio: Yes it is. If you add just the right amount of heat to
get to the critical temperature, then the tendency for the spins to
align is exactly counterbalanced by the jostling caused by the heat.
Now you no longer have global order. Instead, there will be local
domains where a group of spins are pointed up, and other domains
where the spins are pointed down (Stanley, 1971; Yeomans, 1992).
[Critio sketches the middle panel of Figure 1 above.] The sizes of
these domains vary widely at this temperature; many are small but
a few are quite large. So, this state is an interesting mix of order
and disorder, and constantly changing over time. You can see that
in this movie of a simulated piece of iron at the critical tempera-
ture. [Critio plays Movie S3 in Supplementary Material from his
laptop.]

Mnemo: Wow, that is really interesting – some of the domains
almost look like amoeba crawling across the screen, with bound-
aries that are extending and contracting. I can see that there are
many different sized domains too. OK, you have been telling me a
lot about this piece of iron, but how does this relate to the brain?

CRITICALITY AND COMMUNICATION
Critio: Good question, but before we get to neural data, we need to
understand a few more things about criticality. You certainly must
agree that communication between neurons is very important for
the brain. If we continue with the magnet analogy, we could ask
how two spins at different lattice sites might communicate with
each other.

Mnemo: Ok, go on. . .

Critio: A simple way to measure this would be to look at the
dynamic correlation between two lattice sites. This is not the corre-
lation that is usually used in statistics, but something that depends
on coordinated fluctuations. Here is the equation for the dynamic
correlation. Critio then writes down Eq. 1:

Cij = 〈(i − 〈i〉)(j − 〈j〉)〉 (1)

The angled brackets here indicate a time average, so 〈i〉 is the
average value of the spin at site i. If the spin is pointed up, we

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 163 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Beggs and Timme Being critical of criticality in the brain

could represent the state of the lattice site with a +1. Similarly, if
the spin is pointed down, it would be represented with a −1. The
average over a long time might be something like +0.2, say. So
the term in the left parenthesis, (i − 〈i〉), represents the amount by
which the spin at site i fluctuates from its average at a given time.
Likewise, the term (j − 〈j〉) represents the amount by which site j
fluctuates from its average at a given time. To make Cij large, both
i and j must fluctuate, and they must do so in a coordinated man-
ner, at the same time and in the same direction. So you need both
fluctuations and coordination to have a large dynamic correlation.

Mnemo: Ok, that seems to make sense. Now I see why it is called
the dynamic correlation – if both i and j are stuck pointing up,
the dynamic correlation would be 0, but a static correlation would
still give 1.

Critio: Great, you get it! Now let’s take a look at what happens
to the dynamic correlation for the three different cases we talked
about: low T, high T, and critical T. In the low T case, the piece of
iron is extremely ordered and all the spins are pointed in the same
direction. The dynamic correlation is low because there are no
fluctuations and the terms in parentheses are both nearly 0 all the
time. In contrast, for the high T case, there are plenty of fluctua-
tions, as the spins are constantly deviating from their averages, but
there is no coordination between sites i and j. One term in paren-
thesis might be positive, while the other might be negative. On
another occasion, they might both be positive. So on average the
dynamic correlation is again low. But at critical T, there is enough
heat to allow fluctuations, but not so much heat that it destroys
coordination between spin sites. The spins deviate from their aver-
ages, and they often do so together because the nearest neighbor
influence is not completely overwhelmed by the added heat. Here,
there is both fluctuation and coordination. When one of those
“amoeba-like” domains that you saw in Movie S3 in Supplemen-
tary Material crawls across the screen, it might cause nearby spins
to flip one after the other, setting up a dynamic correlation. I could
sketch the positions of the spins, either up or down or in between,
over time for the three different cases. [Critio now pulls out red
and green markers, grabs another napkin and sketches Figure 2.]

Mnemo: So there is dynamic correlation between spins only at
the critical temperature?

Critio: Well, there might be some dynamic correlation in all
three cases, but it is certainly strongest at the critical tempera-
ture. Another key difference is that the distance over which these
correlations extend is greatest at the critical temperature.

Mnemo: Can you show me what you mean by that?
Critio: Sure. If we were to measure the dynamic correlation

between two spin sites i and j as a function of distance, we would
find out that it decreases with distance in all cases. Remember that
in this model, we have only built in connections between nearest
neighbor spins. So you wouldn’t expect the correlation to extend
much beyond that, at least when the temperature is very high or
very low. But at the critical temperature, we find that the dynamic
correlation is above 0 well beyond the nearest neighbor distance.
[Critio sketches Figure 3.]

Critio: In this example from a simulation, the dynamic correla-
tion at the critical temperature extends about 15 lattice sites before
it drops down to near 0. We call the distance at which the dynamic
correlation first reaches 0 the “correlation length” and it is often

FIGURE 2 | Hypothetical positions of two spins as a function of time.

(Top) At high temperature, the spin orientations fluctuate greatly, but
independently of one another, producing a low dynamic correlation value.
(Middle) At the critical temperature, the spin orientations fluctuate
somewhat and the fluctuations are coordinated, producing a high dynamic
correlation value. (Bottom) At low temperature, the spin orientations do not
fluctuate very much, yielding a low dynamic correlation value.

FIGURE 3 | Average dynamic correlation as a function of distance. At
high and low temperatures, the average dynamic correlation between two
lattice sites decreases rapidly toward 0 as the distance between the lattice
sites is increased. At the critical temperature, the average dynamic
correlation also decreases toward 0 as the distance is increased, but much
more gradually.

given by the Greek capital letter gamma, Γ; in this case the correla-
tion length is 15 lattice sites long. We didn’t build this length into
the model – it merely emerged at the critical temperature. At this
temperature, when one spin flips from down to up, for example,
it might influence one of its nearest neighbors to also flip, which
might in turn influence one of its nearest neighbors and so on. In
this way, the movement at one lattice site can propagate beyond
the nearest neighbor length. You could draw the correlation length
as a function of temperature, and it would show a sharp peak at
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the critical point. [Critio asks another person sitting at the table
for a fresh napkin and draws Figure 4.]

Critio: Again, this shows the separation of phases nicely. On
the left you have the ordered phase, with low temperature. This is
sometimes called the subcritical regime. On the right you have the
disordered phase, with high temperature, and this is sometimes
called the supercritical regime. Between them you have the phase
transition region, which is very narrow and occurs at the critical
temperature.

Mnemo: I think I see what is going on. Only at the critical tem-
perature can you have communication that spans large distances.
So if I were to make an analogy with a neural network, it would
be that at the critical point, the neurons can communicate most
strongly and over the largest number of synapses, right?

Critio: Exactly!
Mnemo: But wait, what do you mean by “communication?”

When the model is at low temperatures, the state of one lattice site
strongly influences the state of lattice sites throughout the whole
network. So, it would seem to me that communication is maxi-
mized when the temperature is low, not when the system is at the
critical point.

Critio: Ah, that is a subtle point. Clearly, we haven’t been very
rigorous with our definition of “communication,” but let me see if
I can clarify my point. When the model is at low temperatures, the
coupling between the lattice sites is strong, so coordination is high.
However, the state of each lattice site doesn’t change very much
through time, so fluctuations are low. Communication requires
both coupling and variability, or in other words, both coordina-
tion and fluctuation. If communication is to take place, lattice
sites must be able to influence each other and that influence must
actually affect changes. Does that make more sense?

Mnemo: Yes, I see your point about the distinction between
communication and coupling.

Critio: Great! So, at the critical point these two qualities of
the system – coupling and variability – are balanced to produce
long distance communication. And it turns out that it is not

FIGURE 4 | Correlation length as a function of temperature for a

simulation of the Ising Model. Near the critical temperature the
correlation length rapidly approaches a maximum value. This sharp peak
separates the ordered phase from the disordered phase and occurs at the
phase transition point.

just communication that would be optimized at the critical point
(Beggs and Plenz, 2003; Bertschinger and Natschlager, 2004; Maass
et al., 2004; Ramo et al., 2007; Tanaka et al., 2009; Chialvo, 2010;
Shew et al., 2011). Many other researchers have pointed out, with
very general models, that information storage (Socolar and Kauff-
man, 2003; Kauffman et al., 2004; Haldeman and Beggs, 2005)
and computational power (Bertschinger and Natschlager, 2004)
are expected to be optimized there as well (Chialvo, 2004, 2010;
Plenz and Thiagarajan, 2007; Beggs, 2008). In addition, the ability
of the network to respond to inputs of many different sizes, called
its dynamic range, is expected to be optimal at the critical point
(Kinouchi and Copelli, 2006; Shew et al., 2009). Phase synchrony
also appears to be optimized at the critical point (Yang et al., 2012).

Mnemo: So this sounds pretty reasonable to me so far. But it
is only an analogy. You haven’t shown me any evidence to suggest
that the brain might be doing this. What evidence, if any, do you
have to make me think that this is connected to real neurons?

CRITICALITY AND POWER LAWS
Critio: Again, a very fair question. Before we can get to the neural
data, I first need to show you how I got interested in this topic. Let
me return for a moment to the plot of the average dynamic cor-
relation length. If I were to change the axes by making them both
logarithmic, then I would get something like this for the dynamic
correlation, plotted now only for the critical case. [Critio draws
Figure 5.]

Critio: When plotted this way, the dynamic correlation approx-
imates a straight line over part of its range. This suggests that it
could be described by a so-called “power law,” where the dynamic
correlation, C, is related to the distance, D, raised to some negative
power, say −α. Note that the slope of the power law line when
plotted logarithmically is given by −α. Well, the physics of criti-
cal phenomena tells us that near the critical point, a system will
have many variables that can be described by power law functions
(Stanley, 1971; Goldenfeld, 1992; Yeomans, 1992; Nishimori and
Ortiz, 2011). In addition to the dynamic correlation as a function

FIGURE 5 | Hypothetical relationship between the average dynamic

correlation between two lattice sites and the distance between those

lattice sites at the critical temperature in a small simulation of the

Ising model.
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of distance, the distribution of domain sizes that we talked about
earlier would also follow a power law at the critical point. The rea-
son the straight line does not extend to larger distances is because
the simulation had a limited size. The bigger the simulation, the
further the power law line would extend.

Mnemo: Ok, for the moment I will assume you are right that
this power law would extend to indefinitely large distances if the
system were large enough. What is so special about a power law,
besides the fact that it might suggest your system is critical?

Critio: An interesting feature of power laws is that they show
no characteristic scale. When plotted in log-log coordinates, they
produce a straight line that has the same slope everywhere. This
implies that the data will have a fractal structure. For example,
imagine what the distribution of correlation strength would look
like if you were only able to sample separation distances from
101 to 102 units. It would be a straight line with a slope of −α

when plotted logarithmically. Interestingly, this would look just
like the distribution that you would observe if you were only able
to sample separation distances from 102 to 103 units. Again, the
exponent would be −α. This has caused some people to use the
phrase “scale-free” when describing power law distributions (Stam
and de Bruin, 2004). If you zoom in or zoom out, things look very
similar (Teich et al., 1997). This self-similarity is a characteristic
of fractals.

Mnemo: So is where the name“scale-free”network comes from?
Critio: Yes! In scale-free networks, the degree distribution – the

distribution of the number of connections each node possesses –
follows a power law. But notice, in the Ising model, the nodes are
connected in a lattice and the Ising model exhibits critical behav-
ior. So, here we can see the distinction between criticality and
scale-free networks in action. The nodes are not connected as in a
scale-free network, yet the activity is scale-free.

Mnemo: That is certainly interesting, but I am still searching
for a strong argument, not nice pictures. So power laws are an indi-
cator of criticality? And you are going to tell me that you see some
power laws in your neural data? This is the argument? It must be
more substantial than that! After all, this is science, not just loose
associations!

Critio: A critical system will produce power laws, yes, but power
laws do not prove criticality! There are many ways to get power
laws, and I can tell you more about that in a minute. The key thing
to remember here is that exhibiting power laws is strongly sugges-
tive of criticality. However, power laws alone are not sufficient to
establish criticality.

Mnemo: Ok, I want to ask about these other ways to get power
laws in a minute. But to return to the issue I raised earlier, you are
going to tell me about some neural data that display power laws?

Critio: Yes, I can tell you about that first and then we can get to
all the potential objections.

Mnemo: That sounds fine. Proceed with the data.

POWER LAWS AND NEURAL DATA
Critio: Well, there were several early reports that the nervous
system could produce power law distributions (Chen et al.,
1997; Teich et al., 1997; Linkenkaer-Hansen et al., 2001; Wor-
rell et al., 2002). These data all came from “one-dimensional”
measurements, were a single variable, like spike count, temporal

correlation, or total energy, was found to follow a power law dis-
tribution. While these important findings were very suggestive,
they did not immediately provide insight as to what the underly-
ing network was doing to produce these distributions. The earliest
data to explore power law distributions at the network level came
from recordings from microelectrode arrays that had 60 electrodes.
There, the experimenters were able to observe bursts of sponta-
neous activity. They found that if they counted the number of
electrodes activated in each distinct burst, that the burst sizes were
distributed according to a power law (Beggs and Plenz, 2003).
Because the statistics of these bursts followed the same equations
used to describe avalanche sizes in critical systems, they called
these events “neuronal avalanches.” I have on my laptop here a
figure from one of their papers that shows the power law distri-
bution of avalanche sizes, measured either as the total number
of electrodes activated per avalanche, or as the total amplitude of
local field potential (LFP) signal measured at all the electrodes
involved in the avalanche. [Critio shows Figure 6 to Mnemo.]

Since these initial results, power law distributions of avalanche
sizes have been reported in awake monkeys (Petermann et al., 2006,
2009), anesthetized rats (Gireesh and Plenz, 2008), isolated leech
ganglion (Mazzoni et al., 2007), and dissociated cultures (Maz-
zoni et al., 2007; Pasquale et al., 2008), suggesting that this is a very
general and robust phenomenon. It is interesting to mention that
some of these reports have relied on spike data, and not just LFP
data (e.g., Beggs, 2007, 2008; Mazzoni et al., 2007; Pasquale et al.,
2008; Hahn et al., 2010; Friedman et al., 2011, 2012). Avalanche
dynamics also have been reported in human brain oscillations
(Poil et al., 2008) and there are several reports of power law scaling
(Miller et al., 2009) even though these are not necessarily attrib-
uted to avalanches. In addition, the size of phase locking intervals
in human fMRI has been reported to follow a power law, and the
authors have related this to criticality in the awake, healthy human
brain (Kitzbichler et al., 2009). This is intriguing, despite the fact
that the temporal resolution of fMRI is much lower than that of

FIGURE 6 | Probability distribution of neuronal avalanche size. (Black)
Size measured using the total number of activated electrodes. (Teal) Size
measured using total LFP amplitude measured at all electrodes
participating in the avalanche (Beggs and Plenz, 2003).
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electrophysiological signals from extra-cellular electrodes, so it is
not yet clear if these power laws are directly related to neuronal
avalanches at the local network scale.

MNEMO’s FIRST OBJECTION: DO THE NEURAL DATA REALLY
SHOW POWER LAWS?
Mnemo: That is an impressive list of neural systems in which power
laws have been observed. However, I seem to recall hearing that
other researchers have found that these power laws were actually
better fit by exponentials. Is that true?

Critio: That is true. Using sophisticated statistical tests, several
researchers have shown that some data sets, none of which were
from neuroscience, that were previously thought to be power law
distributed are actually better fit by an exponential distribution
(Clauset et al., 2009). Using analysis methods from that work,
some researchers in neuroscience have argued that the supposed
power laws associated with neural activity are not actually power
laws, or that the power laws that have been found are artifacts
(Bedard et al., 2006; Bedard and Destexhe, 2009; Touboul and
Destexhe, 2010; Dehghani et al., 2012).

Mnemo: How do you escape that objection? It seems like so
much of your argument is based on power laws. If those really
aren’t there or if they are artifacts, then your system certainly isn’t
operating at the critical point, is it?

Critio: You are right; this is a very important part of my argu-
ment. Let’s talk about each paper separately since they present
distinct arguments and evidence. First, let’s discuss the papers that
argue the observed power laws are artifacts. Some researchers have
produced strong theoretical models that indicate that the extra-
cellular medium may behave as a 1/f filter (Bedard and Destexhe,
2009). If the extra-cellular medium does, in fact, behave this way,
that only explains the observed power law distribution in the LFP
spectrum. But it does not necessarily explain the power law dis-
tribution in other neural phenomena, like the size distribution of
neuronal avalanches. Another paper has made a notable argument
that the power laws observed in avalanche size distributions are
actually artifacts (Touboul and Destexhe, 2010). In that work, the
authors analyzed avalanches using both positive and negative LFP
peaks and found that both were fit by power laws. However, posi-
tive LFP peaks are significantly less correlated with neuron spiking
activity than negative LFP peaks. So, those authors concluded that
the power law avalanche size distribution is not associated with
neuron spiking activity. In response, I think it is important to
point out that the form of this argument is fallacious. The power
law observed in the positive LFP peaks avalanche size distribu-
tion may be due to some other phenomenon and it could still be
the case that the power law observed in the negative LFP peaks
avalanche size distribution is related to spiking activity.

Mnemo: I see your point, what about the other papers?
Critio: Those papers argue that the power laws associated

with neural phenomena that have been observed are not actu-
ally present. Several of the investigators who claimed to show
that neural event size distributions were better fit by exponen-
tials did not use many electrodes in their recordings. In some
of their papers, they only had about eight electrodes (Bedard
et al., 2006; Touboul and Destexhe, 2010). To really assess whether
or not something follows a power law, you should have many

closely-spaced electrodes. A recent paper showed that if you under-
sample a critical process, you can get distributions that deviate
substantially from power laws (Priesemann et al., 2009). The basic
idea is that if your electrodes are too far apart, it will be extremely
rare for an avalanche to occur that will span the distance between
them. This will make it look like all the events are occurring inde-
pendently, and this leads to a distribution with a short tail that
is not a power law, even if the underlying process is indeed crit-
ical (Ribeiro et al., 2010). When people who do have data sets
from large numbers of electrodes tested their data, they found
contradictory results. A paper from 2011 showed that the data
were better fit by power laws than by exponential distributions
using the advanced statistical method I mentioned before (Clauset
et al., 2009; Klaus et al., 2011). They performed this analysis using
recordings taken from acute slices, in vivo recordings from rats,
and in vivo recordings from primates. A more recent work used
the same analysis method and found the opposite result using
in vivo data from cats, monkeys, and humans (Dehghani et al.,
2012). That study used a closely spaced 96 electrode array. So, at
least for that study, it is very unlikely that under-sampling pre-
vented the appearance of a power law. Therefore, it seems that this
point about power laws is still somewhat controversial, and may
take a few years to resolve. But remember, power laws are sugges-
tive of criticality. They are not proof, and there may be better ways
to establish criticality than by looking only at power laws. Hope-
fully we can talk later about these other ways of testing whether a
system is critical or not.

MNEMO’s SECOND OBJECTION: THE ISING MODEL IS AN
EQUILIBRIUM MODEL, BUT NEURAL NETWORKS ARE
DYNAMIC
Mnemo: Ok, but first let me understand this a bit more. You just
told me about a magnetic model – the Ising model – and how that
would settle into different equilibrium states at different tempera-
tures. Now you are jumping to a network of neurons, where things
do not settle at all. In fact, the Ising model seems like it would be
pretty poor at describing how one neuron excites another, leading
to cascades of activity spreading through the network.

Critio: As a neuroscientist, you have a very keen intuition for the
physics! You are absolutely right to point out the potential prob-
lem. The Ising model is an equilibrium model, appropriate for
describing how the system will settle at different temperatures, but
this model does not explicitly account for time. To try to extend
the Ising model into the range of dynamics, some people have
applied a perturbation to the model – a slowly changing magnetic
field for example – and watched how the system responds. Typ-
ically, when the model is at the critical temperature, applying a
local magnetic field will cause several nearby spins to flip, so as to
align with the applied field. These spins will in turn cause a change
in the orientation preference for other nearby spins, and so will
cause them to flip, leading to avalanches of spin flips. This is called
the Barkhausen effect. In both theoretical work (Sethna et al.,
2001) and in experiments (Papanikolaou et al., 2011), the sizes of
these avalanches are distributed according to a power law when the
system is at the critical temperature (Perkovic et al., 1995). Also,
the exponents found in neuronal avalanches, typically near −1.5,
are solidly in the range of exponents reported for the Barkhausen
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effect, which range from −1 to −2.8. These Barkhausen exponents
vary because they apply to many different metals under various
geometries and different models. It seems that there is a reason-
able connection, then, between the equilibrium Ising model and
dynamic avalanches (Liu and Dahmen, 2009).

Mnemo: So to follow your analogy, the neurons in the brain
could be thought of as spins in a magnet at the critical point.
When something comes along and delivers an input, this prop-
agates through the system with maximum distance, because the
correlation length is greatest at the critical point. The avalanches
of activity have sizes distributed as a power law, and you mentioned
that some experimenters have observed power law distributions of
avalanche sizes in neural tissue as well.

Critio: That is a good summary of what I have said so far. Even
though impressive progress has been made recently in applying
the Ising model to neuronal activity patterns found in actual data
(Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang et al., 2008;
Yu et al., 2008, 2011; Tkacik et al., 2009; Yeh et al., 2010) you are
entirely right to say that the Ising model is far too simple to com-
pletely capture all neural phenomena. One problem with the Ising
model is that, without applying an external magnetic field, all states
of an individual lattice site are equally likely. Real neurons are far
more likely to be in one state (quiescent) over another state (spik-
ing). Researchers have developed many models to attempt to more
fully incorporate neural behavior, and specifically to deal with tem-
poral dynamics (Maass et al., 2002). Also, models have been created
to better simulate damaged or malfunctioning neural behavior,
such as models to simulate Alzheimer’s disease (Horn et al., 1993)
and epilepsy (Netoff et al., 2004; Hsu et al., 2008)1. However, I
believe the Ising model serves as an excellent introductory system
for the topic of criticality.

Mnemo: I understand that no model is perfect and that it is
easier to start with a simplified system, but I’m still dissatisfied.

Critio: What’s bothering you?

MNEMO’s THIRD OBJECTION: POWER LAWS DO NOT PROVE
CRITICALITY
Mnemo: You’ve given me a nice story, but this is hardly proof. As
you said, the existence of power laws is a necessary, but not suffi-
cient condition for criticality. So, just because we’ve found some
power laws in neural data, the existence of those power laws not
prove that the neural systems are operating at the critical point. I
don’t know about you, but I don’t like to affirm the consequent.

Critio: You are right to be skeptical. As I said, the power laws are
consistent with the idea that the neural networks that have been
studied are operating near the critical point, but the existence of
these power laws is not proof.

Mnemo: Sure, it seems like now would be a good time for you
to tell me about the many other ways in which power laws can be
generated.

1Critio: As a brief aside, I’m very interested in models of Epilepsy. In epileptic tis-
sue, seizures exist that take the form of widespread coordinated activity. So, when
modeling epileptic neural activity, we must be careful to incorporate seizures into
our understanding of when the model is critical. For instance, during seizures, the
activities of many neurons are highly correlated, so the dynamic correlation between
model neurons is very high, but, by examining other parameters of the network, the
network is not at a critical point.

Critio: There are so many ways to generate power laws that it
is hard to know where to begin. People have written entire arti-
cles devoted largely to this topic (Mitzenmacher, 2004; Newman,
2005; Stumpf and Porter, 2012). Perhaps the simplest mecha-
nism to start with would be successive fractionation. Consider
a stick of some length. Now break it into two parts at a ran-
domly chosen location. Then break each of these parts in two,
again at randomly chosen locations. If you keep successively doing
this, you will eventually produce a power law distribution of
fragment lengths. Related to this, multiplicative noise can also
produce power laws (Sornette, 1998). In one of the papers that
challenged the existence of power laws in neural data that we
discussed earlier, the authors used a random process that, when
thresholded, also produced power law distributions (Touboul and
Destexhe, 2010). Another way to get power laws is through a
combination of exponentials (Reed and Hughes, 2002). As you
know, exponential processes are ubiquitous. If you have a process
that grows exponentially over time, but is terminated at random
times drawn from a negative exponential distribution, then you
will also get a power law distribution of sizes. Reed and Hughes
explored this in a paper whose title included “. . .Why power laws
are incredibly common in nature” (Reed and Hughes, 2002). As
just one more example, consider an array of processes that all
decay exponentially, but with different time constants. Under the
right conditions you can add these decay processes together and
they will produce a power law as well (Fusi et al., 2005). There
are several other mechanisms proposed to generate power laws
(Mitzenmacher, 2004). So you are completely right to be skep-
tical. Just showing a power law by itself doesn’t tell you all that
much.

Mnemo: It now seems that you have dug yourself into a hole
from which you cannot escape. If power laws are so unexceptional,
then why should I be so excited about seeing them in neural data?

CRITIO’s RESPONSE TO MNEMO’s THIRD OBJECTION: EVIDENCE FOR
CRITICALITY BEYOND POWER LAWS
Critio: The fact that other non-critical systems also produce power
laws is very important. Fortunately, recent experiments by several
groups have addressed this issue directly. There are three main
ways to demonstrate that the power laws observed in neural tissue
are the result of a critical mechanism: the ability to tune the net-
work from a subcritical regime through criticality to a supercritical
regime, the existence of mathematical relationships between the
exponents of the power laws for a system, and the existence of a
data collapse within neural data.

Tuning the network through criticality
Critio: First, recall that in a system that displays criticality, the
power law will only occur when the system is between phases, in
other words, at the phase transition point. So, for systems that
really are critical, we should be able to observe different phases on
either side of the critical point and get distributions there that do
not follow power laws.

Mnemo: And you have evidence of this?
Critio: Actually, yes. By blocking excitatory synaptic transmis-

sion, you can dampen network excitability, leading to smaller
avalanches (Mazzoni et al., 2007). Here is a figure I saw from a
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poster at the conference. [Critio pulls out a small copy of the
poster and points to Figure 7.]

In Figure 7A, the resulting distribution of avalanche sizes is
curved downward and has a smaller mean than in the control case
shown in Figure 7B. In Figure 7A, the distribution is beginning to
deviate from a power law. This looks like the subcritical or damped
phase of the system, where activity dies out quickly. Conversely, by
blocking inhibitory synaptic transmission, in Figure 7C, it is pos-
sible to make the tissue hyperexcited, leading to larger avalanches
(Beggs and Plenz, 2003). The resulting distribution here is not a
power law either, but has a big bump out in the tail, indicating that
many extremely large avalanches occur. This looks like the super-
critical phase, where activity is often amplified until it spans the
entire system. The existence of these two phases, on either side of
the critical point, which is shown in Figure 7B, strongly suggests
that the power law arises from a mechanism that is related to a
phase transition.

Critio: Related to this, there have been some very elegant exper-
iments that have shown how information processing functions in
the tissue approach optimal behavior near the critical point (Shew
et al., 2009, 2011). This also suggests that different phases can be
produced in the network.

Mnemo: What do you mean by that? And how is it related to
the idea of phases?

Critio: Shew and colleagues looked at information transmis-
sion through cortical slice networks under three different condi-
tions: where excitatory transmission is reduced; where there is no
manipulation; and where inhibitory transmission is reduced. They
showed that there was a peak in information transmission in the
unperturbed condition, and that information transmission fell to
either side of this point as perturbations increased. In many ways,
they observed behavior just like that seen in the correlation func-
tion in the Ising model that we talked about earlier from Figure 4.
Remember the plot that showed a sharp peak in the middle? – Their
results are similar. In other experiments from the same group, they
demonstrated that dynamic range in the network – similar to sus-
ceptibility in the Ising model – peaks in the unperturbed condition
and declines as perturbations are increased. All of this suggests
that these networks can be tuned from one phase to another, or

left between phases at the critical point. And it underscores why
it would be advantageous for brains to operate near the critical
point, because that is where information processing is optimal.
The presence of different phases indicates that the power law is
related to a phase transition, because the power law is only seen
between the phases. These peaks in information processing func-
tions also occur between the phases, under the same conditions
where the power law occurs.

Mnemo: So it seems that you need to be able to move the system
from one phase to another if it is going to show a critical point.
What you have been telling me is that these neural systems can be
moved in this way.

Critio: That’s right. If a system displays criticality, then it must
be tunable in some sense. Typically, a “control parameter” can be
adjusted to determine the phase of the system. In the Ising model
that we discussed earlier, the temperature is the control parame-
ter. Sweeping the temperature from 0 to some high value would
bring the system from the subcritical, ordered, phase, up to the
critical point, and then into the supercritical, disordered, phase.
The “order parameter” is what tells you the phase. In the case of
the Ising model, the order parameter would be the net magnetic
field produced by all the spins, called the magnetization. In the
subcritical phase, all the spins are aligned and the magnetization
has a large magnitude. In the supercritical phase, all the spins are
pointing in random directions and the magnetization is 0. Near
the critical point, we see the transition of the magnetization from
some large magnitude toward 0. If a system is indeed critical, then
all of the variables that could indicate its phase will depend on the
control parameter.

Mnemo: To continue with the analogy, what would be the
control parameter in neural systems?

Critio: That is a very good question. At the moment, it seems
that the balance between excitation and inhibition can serve as a
control parameter (Mazzoni et al., 2007; Shew et al., 2009; Benay-
oun et al., 2010; Hobbs et al., 2010). Too much inhibition will
cause the system to be subcritical. Too much excitation will cause
the system to be supercritical. A balance between them would lead
to the critical point. But I must say that there is still a lot of work
to be done in this area. Other things, like connection strengths

A B C

FIGURE 7 | Avalanche size distributions in local field potential data

collected with a 60-channel microelectrode array from rat cortical

slice networks. (A) Subcritical regime; excitatory antagonist (3 mM

CNQX) applied. (B) Critical regime; normal network. (C) Supercritical
regime; inhibitory antagonist (2 mM PTX) applied (Haldeman and Beggs,
2005).
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(Haldeman and Beggs, 2005; Beggs et al., 2007; Chen et al., 2010),
or the density or pattern of connections in the network (Gray
and Robinson, 2007; Larremore et al., 2011; Rubinov et al., 2011),
might also serve as control parameters. The key point is that exper-
iments have shown the system can indeed display different phases,
so it is tunable.

Mnemo: So you cannot tune the other, non-critical stochas-
tic systems, like successive fractionation, or a combination of
exponentials?

Critio: Well, you could tune them in some sense, but such tun-
ing would only change the exponent of the resulting power law
distribution. For example, let’s return to the combination of expo-
nentials model proposed by Reed and Hughes (2002). Recall that
there is a process that grows exponentially, let’s say with exponent
α, and it is terminated at random times that are drawn from a
distribution that has exponential decay, let’s say with exponent β.
If you increase α or decrease β, you will decrease the exponent of
the size distribution (thereby making the slope of the size distrib-
ution less steep when plotted logarithmically), but it will still be a
power law. As long as such a process is adequately sampled, it will
never curve downward or curve upward to produce a hump at the
end of the distribution. So this type of non-critical process fails to
show different phases. Therefore it cannot serve as a good model
for what has been observed in the neural data, where clear phases
exist. All of the non-critical models that have been proposed to
generate power laws are like this – they fail to show phases.

Mnemo: I think I get it: if they don’t have different phases, then
they are not operating at a phase transition point, even though
they may produce power laws. That all sounds reasonable. But
you told me that there were additional arguments to support your
point, right?

Mathematical relationships between power law exponents
Critio: Yes, the second main argument comes from a slightly dif-
ferent aspect of critical phenomena. It will take me a minute or
two to explain, but I think it will be helpful. As I said previously,
if a system is truly critical, it will display power law distribu-
tions in more than one variable of interest (Stanley, 1971, 1999;
Goldenfeld, 1992; Nishimori and Ortiz, 2011). For example, recall
that in the Ising model the correlation as a function of distance
followed a power law at the critical point. The domain size dis-
tribution also follows a power law at the critical point. Also, the
susceptibility, the specific heat, and other variables will exhibit
power laws as well. All of these power laws may have differ-
ent exponents, and so will have different “characteristic” expo-
nents. Far away from the critical point, these power laws break
down. Right near criticality, though, there are multiple power
laws.

Mnemo: Why are there multiple power laws?
Crito: Remember how I said that the phase of a critical system

can be determined by a control parameter? Let me describe how
important that parameter is. If we go back to that curve of the
correlation length, recall that it had a sharp peak near Tc, the crit-
ical temperature. This type of curve is observed experimentally in
diverse critical systems (Stanley, 1971; Yeomans, 1992) and would
be expected to go to infinity right at Tc if you had an infinitely
large system. A simple way to describe such a curve would be with

an equation like this:

Γ =
[

Tc

T − Tc

]ξ

(2)

As T approaches Tc, the denominator goes to 0, and the corre-
lation length, Γ, shoots up to infinity. The exponent ξ is another
value that would be obtained from experimental data, and in gen-
eral it would not always be 1. For convenience, physicists often
use something called the “reduced temperature” given here by t, in
describing critical phenomena:

t ≡ T − Tc

Tc
(3)

In general, we don’t know precisely how the correlation length
will depend on the reduced temperature, but I am able to write the
correlation length as a power series in t, like this:

Γ = Atλ
(
1 + Btλ2 + Ctλ3 + · · ·) (4)

Near the critical point, the reduced temperature t approaches
0, so all the higher-order terms of this series become very small.
We can then approximate the whole power series by something
like this:

Γ ≈ Atλ (5)

And you should recognize that this as a power law relationship.
Using similar methods, other power laws can be found that relate
other variables associated with the system, such as the relationship
between the dynamic correlation value and distance between lat-
tice sites in the Ising model (Figure 6). Furthermore, in the process
of deriving these power laws, mathematic relationships between
the exponents of the power law distributions can also be derived. It
would take me a while to explain the details of how these exponent
relationships come to be (Griffiths, 1965; Stanley, 1971; Yeomans,
1992), but for now it should be enough to say that near the critical
point, many power laws exist, and they are mathematically related
to one another.

Mnemo: Why wouldn’t successive fractionation produce a
relationship between exponents?

Critio: In that simple, one-dimensional system, there is only one
power law, and that is related to the lengths of the sticks. There is
only one exponent, so it can’t be related to other exponents.

Mnemo: But what about something like a combination of
exponentials?

Critio: Recall that in that model the exponents α and β are the
rates at which exponential processes increase and decrease, not
exponents of power laws observed in variables associated with the
system. The event size distribution is a power law whose exponent
is related to the ratio of α/β. So, again there is only one exponent,
so it can’t be related to other exponents. In addition, α and β are
independent input parameters in the model, so there can be no
relationship between them.

Mnemo: Let us assume for the moment that I agree that you
should have exponent relationships if your system is truly critical.
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Is there any evidence for this type of relationship in neural data
collected so far?

Critio: In fact there is. There is a recent article (Friedman et al.,
2012) where the investigators were recording neuronal avalanches
of spikes from individual neurons. They showed that the expo-
nent for the avalanche size distribution, α, and the exponent for
the avalanche lifetime distribution, β, could be used to predict the
exponent of the power law that related avalanche size to avalanche
lifetime, γ, using Eq. 6.

γ = (β − 1)

(α − 1)
(6)

They found that the exponent γ, predicted in this way, fit rea-
sonably well to the actual data. So, this is another piece of evidence
suggesting that the system can display critical behavior (Friedman
et al., 2011, 2012).

Mnemo: Alright, this makes sense. It seems to be another way
to assess whether or not the system is critical. But I would still like
to hear more. What is your third argument that the neural data are
collected from a critical process?

Data collapse
Critio: Remember when I said that power law distributions were
scale-free? Recall that this was related to fractals that showed
self-similarity?

Mnemo: Yes, I do. I have read some popular articles about frac-
tals, so I am not completely new to this (Mandelbrot, 1982; Stewart,
2001).

Critio: Good, then I can build on your existing knowledge
to explain my last argument about why the neural data suggest
criticality. It goes like this: The critical point is characterized by
power laws in many variables, all of which express fractal rela-
tionships. We know that neural activity propagates dynamically
through networks of neurons in cascades of activity. If these cas-
cades, or avalanches, are truly critical then there should be some
way to capture a relationship between the avalanches in a frac-
tal way. What if we could take something like avalanche shapes
and show that they were fractal? If we could do this, it would
allow us to go beyond power laws, and show a scaling rela-
tionship that captured the dynamics of these non-equilibrium
systems.

Mnemo: This sounds pretty abstract! Could you give me a more
concrete example of what you are talking about?

Critio: Yes, of course. Let me describe what I mean by the
avalanche shape. Consider how an avalanche of neural activity
might evolve. It could start with one or a few spiking neurons.
These could activate others, so the number of active neurons would
increase over time. Eventually this would decline to 0, marking
the end of the avalanche. If we plotted the average number of
active neurons over time, we might get something that looked
like an inverted parabola. This is what I mean by the average
avalanche shape. Now if the network is at the critical point, then
I should be able to take average avalanche shapes from differ-
ent durations and show that they are all fractal copies of each
other. In other words, I should be able to rescale them with
the appropriate critical exponents and get them all to lie on top

of each other, in what is called a data collapse. [Critio sketches
Figure 8.]

Critio: These are average avalanche shapes taken from
avalanches of different durations. See how they look like they
might have roughly the same shape?

Mnemo: Yes, sort of. They could be copies of one another at
different scales, but how are you going to show this?

Critio: Well, if we divide each curve by its duration, then they
will be rescaled to all have the same length. Then if we rescale their
heights by their duration raised to an exponent, γ from Eq. 2, that
is related to the critical exponents α and β that we discussed earlier,
then we get a picture that looks like this. [Critio draws Figure 9.]

FIGURE 8 | Average avalanche shapes for avalanches of three distinct

durations (Friedman et al., 2012).

FIGURE 9 | Rescaled avalanche shapes from Figure 8 (Friedman et al.,

2012).
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Mnemo: The curves do seem to lie on top of one another pretty
closely. Each curve is an average of how many avalanches?

Critio: Yes, each average avalanche shape is produced by hun-
dreds of avalanches. So this data collapse is highly unlikely to
have occurred by chance. In fact, when the spike train times from
the original data are randomly jittered by 50 ms, the curves no
longer look like copies of each other, suggesting that this scal-
ing relationship has relatively tight temporal precision (Friedman
et al., 2012). This type of data collapse, based on average avalanche
shape, has been explored for several years in a variety of dif-
ferent systems (Perkovic et al., 1999; Kuntz and Sethna, 2000;
Mehta et al., 2006), and has recently been applied to Barkhausen
noise experiments with good success (Papanikolaou et al., 2011).
The fact that it also can be applied to some neural networks
strongly suggests that these networks are operating near the critical
point.

Mnemo: Although I can’t claim to understand all the math
behind this, it certainly seems like your argument does not now
rest on power laws alone. You have shown me a fractal relationship
that ties together both space and time in the dynamic evolution of
the avalanches. From all that you have told me, this should only
occur near the critical point.

Critio: Yes, but it again sounds like you are not fully convinced!

MNEMO’s FOURTH OBJECTION: INFLUENCE OF LOWER
LEVEL PROCESSES THAT EXHIBIT POWER LAWS
Mnemo: You are correct – I still have another question about all
this. In particular, I seem to recall reading somewhere that fractals
are everywhere in neuroscience.

Critio: That’s right. Some have shown that a plot of the number
of spikes produced by a neuron looks roughly the same at all inter-
vals (Teich et al., 1997). When you zoom out to very large time
scales, this pattern of on and off firing appears to be just a copy
of the pattern you see at short intervals. In addition, researchers
have found that neurotransmitter secretion is fractal (Lowen et al.,
1997), and that intervals between sodium channel openings follow
a power law (Toib et al., 1998).

Mnemo: If all this is true, then I guess I shouldn’t be so sur-
prised when you tell me that some networks of neurons also
display fractal behavior. The activity in the network could just
be reflecting power law statistics that appear at other scales
below it.

Critio: You are right to bring this up – with so many frac-
tals out there, why should I get excited about a power law dis-
tribution of activity in small, local networks of neurons? Well,
I have two answers to this. First, I could say that all the evi-
dence I just mentioned about fractals in phenomena related
to individual neurons is actually in favor of my general argu-
ment. We might expect the brain and its underlying systems
to operate near a critical point to optimize information pro-
cessing. However, the existence of the expectation is certainly
not an argument against that which is expected. It seems that
many biological systems would approach optimality by oper-
ating in a regime where they produce power laws (Mora and
Bialek, 2011). That could be why so many biological systems
exhibit power laws. To give my second answer to your point, I
first want to clarify what I think you are saying. It sounds like

you are saying that these power laws at other scales might not
be produced by criticality, and that the power laws that have
been observed in neuronal avalanches are just a reflection of
these non-critical processes at other scales. Is that what you are
saying?

Mnemo: Yes, I think that is a fair description of my objection.
Critio: Ok, let us assume for the sake of argument that power

laws in spike counts, transmitter secretion and channel dynam-
ics are all produced by processes that are not critical. Is it really
clear that if we combined such processes that the resulting cas-
cades of activity on a network also would have to follow a power
law? Would the resulting network therefore not be critical? We
know from computer simulations that the pattern of network
connectivity can have a profound effect on whether the network
produces power laws or not (Teramae and Fukai, 2007; Tanaka
et al., 2009; Rubinov et al., 2011). Not every pattern of connec-
tions leads to a power law. In addition, from experiments we
know that the relative strength of inhibition to excitation can
influence whether or not a network produces power law distri-
butions (Beggs and Plenz, 2003; Stewart and Plenz, 2006; Shew
et al., 2009). These manipulations are done globally at the net-
work level, not at the lower levels, and yet they seem to have
the effect of tuning the network. If it were true that power law
behavior at the network level was simply a result of power law
behavior on the cellular level, then we shouldn’t observe such
effects by altering network level parameters. Furthermore, if the
power law behavior observed at the network level is found to
be critical using the methods discussed previously, then the net-
work level behavior is critical regardless of whether or not the
power law behavior of the underlying systems is also critical. Still,
we don’t know why the network level behavior is critical, or at
the very least why it exhibits power laws. Nor do we know how
this behavior is related to network structure and the underlying
systems.

Mnemo: Oh, is this where all that “self-organized criticality”
literature comes in (Bak et al., 1987; Bak, 1996; Jensen, 1998)? I
have heard that some physicists are extremely skeptical of that
work. So I suppose I should approach your work with similar
caution.

Critio: It is still an open question as to how the network oper-
ates at the critical point, if it is indeed operating a critical point,
and there have been several interesting proposals and experiments
related to this topic (Bienenstock, 1995; Chialvo and Bak, 1999; de
Carvalho and Prado, 2000; Bak and Chialvo, 2001; Eurich et al.,
2002; Freeman, 2005; Kozma et al., 2005; de Arcangelis et al., 2006;
Hsu and Beggs, 2006; Abbott and Rohrkemper, 2007; Buice and
Cowan, 2007, 2009; Juanico et al., 2007; Levina et al., 2007, 2009;
Pellegrini et al., 2007; Hsu et al., 2008; Stewart and Plenz, 2008;
Allegrini et al., 2009; Magnasco et al., 2009; Tanaka et al., 2009;
Buice et al., 2010; de Arcangelis and Herrmann, 2010; Kello and
Mayberry, 2010; Millman et al., 2010; Tetzlaff et al., 2010; Rubi-
nov et al., 2011; Droste et al., 2012). Whether the network gets
to criticality through self-organization or not, it does seem that
at least some networks of neurons can operate at the critical
point. But I would be surprised if this does not involve some
form of self-organization, as synaptic strengths are constantly
in flux.
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Mnemo: I suppose we will have to settle this over another lunch,
as I have to go to another talk!

Critio: Wow, it is late! Hey, do you mind if I write this up and
submit it to a journal? I think you have raised some very interesting
objections, and you have forced me to think through my positions
more thoroughly.

Mnemo: Sure, go ahead. But I am still skeptical, so don’t plan
to include me as a co-author.

Critio: Not a problem. Thanks for sharing lunch.
Mnemo: My pleasure. Good bye.

SUPPLEMENTARY MATERIAL
The Movies S1–S3 for this article can be found online
at http://www.frontiersin.org/Fractal_Physiology/10.3389/fphys.
2012.00163/abstract

Movie S1 | Simulation of an Ising model at low temperature.

Movie S2 | Simulation of an Ising model at high temperature.

Movie S3 | Simulation of an Ising model at the critical temperature.
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