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The brine shrimp Artemia is a micro-crustacean, well adapted to the harsh conditions
that severely hypersaline environments impose on survival and reproduction. Adapta-
tion to these conditions has taken place at different functional levels or domains, from
the individual (molecular-cellular-physiological) to the population level. Such conditions are
experienced by very few equivalent macro-planktonic organisms; thus, Artemia can be
considered a model animal extremophile offering a unique suite of adaptations that are the
focus of this review.The most obvious is a highly efficient osmoregulation system to with-
stand up to 10 times the salt concentration of ordinary seawater. Under extremely critical
environmental conditions, for example when seasonal lakes dry-out, Artemia takes refuge
by producing a highly resistant encysted gastrula embryo (cyst) capable of severe dehydra-
tion enabling an escape from population extinction. Cysts can be viewed as gene banks that
store a genetic memory of historical population conditions. Their occurrence is due to the
evolved ability of females to “perceive” forthcoming unstable environmental conditions
expressed by their ability to switch reproductive mode, producing either cysts (oviparity)
when environmental conditions become deleterious or free-swimming nauplii (ovovivipar-
ity) that are able to maintain the population under suitable conditions. At the population level
the trend is for conspecific populations to be fragmented into locally adapted populations,
whereas species are restricted to salty lakes in particular regions (regional endemism).The
Artemia model depicts adaptation as a complex response to critical life conditions, inte-
grating and refining past and present experiences at all levels of organization. Although we
consider an invertebrate restricted to a unique environment, the processes to be discussed
are of general biological interest. Finally, we highlight the benefits of understanding the
stress response of Artemia for the well-being of human populations.

Keywords: Artemia, animal extremophile, evolution, adaptation, salty lakes, stressful environments

INTRODUCTION
Because the processes of life are complicated there is no simple
solution to the problem of surviving, as individuals and species,
the unpredictable challenges that environments pose to popula-
tions. Human-induced perturbations (Allendorf and Hard, 2009;
Darimont et al., 2009; Stenseth and Dunlop, 2009) have increased
environmental uncertainty, greatly compromising species, ecosys-
tem resilience, and the ability to withstand such perturbations
(Berkes et al., 2003). Both natural (evolutionary) and unnatural
(human-driven) forces are constantly putting pressure on popu-
lations and species to evolve toward new adaptive peaks or fitness
optima (Schuler and Conte, 2009). Iconic examples of human-
induced impacts are biodiversity and habitat loss (see biodiversity
outlook 3), introduction of exotic species that end-up as pest (Gar-
cia de Leaniz et al., 2010) and modification of animal behavior
and human-wildlife interactions-brought about by urbanization
(Ditchkoff et al., 2006) and climate change (Thuiller, 2007). The
“fight or flight” response of humans (males mainly) is a clas-
sical behavioral and physiological response to a threat, be it a
predator or a natural disaster, that activates a complex cascade
of events (McEwen, 2007). In urban modern life, social factors,
life events, and illness are causally related and therefore stress is

considered a general adaptation syndrome (Rabkin and Struening,
1976; McEwen, 2007).

Adaptation means stability in a given environment at any par-
ticular time, a state reached by evolutionary change on organismal
attributes, from gene to phenotypes, led by Natural Selection.
Locally adapted or ecologically divergent populations are the first
step to a journey leading to new species, a major component of
biodiversity. Adaptation is a complex response to environmental
changes or threats that encompasses past and present experi-
ences imprinted in the genome that cannot be understood by its
component parts alone. As a matter of fact, it involves a highly
interactive network of events at different hierarchical levels, from
individuals, populations, and species to ecosystems (Terradas and
Peñuelas, 2009; Bard, 2010). For example, although morphology
and other life history traits are tested first by natural selection,
“bodies express ecology” suggest Piersma and van Gils (2011), the
gene-phenotype relationship is equally complex with pleiotropic
and epigenetic effects as examples of genomic events interacting
with the environment at different levels in the network (Dowell
et al., 2010). Phenotypes also reflect historical solutions to envi-
ronmental pressures, explaining why certain phenotypic responses
become inefficient under rapidly changing conditions.
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This article addresses the complex adaptive response evolved
by the brine shrimp Artemia (Crustacea, Anostraca) to thrive in
hypersaline lakes (from here onward referred as salty lakes), a “for-
bidden environment” for most organisms (Eads, 2004). Indeed,
Artemia is the sole macro-planktonic inhabitants of salty lakes, and
hence a good example to discuss what is critical for life, the subject
of this issue. The two relevant elements of the evolutionary process
and adaptation are dissected: the environment and the organism
itself (see Figures 1 and 2). Sadly, the biology, geology, chemistry,
and hydrography of salty lakes are all poorly known and one rea-
son for this is their commonly remote locations, particularly those
inland, whilst the most visited ones have rarely been monitored on
a regular basis, with the exception of the Great Salt Lake in Utah,
USA,where Artemia is commercially exploited,chiefly for aquacul-
ture purposes (Dhont and Sorgeloos, 2002) to be described here
later. Based on the available information on natural sites (Lenz
and Browne, 1991; Trianthaphyllidis et al., 1998; Van Stappen,
2002), laboratory-based experiments and records obtained from
artificial environments like salt ponds, reasonable information,
albeit imperfect, exists on the range of environmental conditions
experienced by Artemia (life box, sensu Wharton, 2007).

For the organism, we review the suite of adaptations expressed
at different domains (molecules, cells, organs, individuals, and
populations) to understand how they account for the complex
adaptive phenotype that is generated and maintained by natural
selection, though sometimes Artemia populations experience

cycles of expansion and contraction favoring drift. In other words,
we attempt to integrate what textbooks show in independent dis-
ciplinary chapters (see for example Abatzopoulos et al., 2002).
“Nothing makes sense in biology except in the light of evolution”
said Dobzhansky (1973), and within this conceptual framework
it is clear that complex responses to challenging environments
began from simpler ones as Darwin stated (“descent with modifi-
cation”), in a process that follows simple natural rules: the gradual
accumulation of randomly generated variations due to mutations,
constantly sorted out by natural selection (Avise and Ayala, 2009).
Mutations are the chance (random) component of evolution, a
concept coined by Monod (1971), see also Ayala (2009), that set
the stage for the action of natural selection which plays, instead,
the deterministic (necessity) role of selecting favorable variations
available at a given time and place (differential reproduction).
Hence, randomly produced mutations play an innovative role by
producing evolutionary novelties. But since such novelties appear
at a slow pace, evolution is seen as a slow process by the syn-
thetic theory of evolution, the leading conceptual framework until
today (but see an alternative view in Dean and Thorton, 2007).
However, the wealth of molecular information now available has
shown that the innovation process can be greatly accelerated by
new genomic events such as incorporation of alien genes (gene
replacement) or even entire organisms, whilst epigenetic events
modify the ability of the genome to perform its various functions
(Ryan, 2006; Terradas and Peñuelas, 2009; Staples et al., 2010; see

FIGURE 1 |The life cycle of a salty survivor: the extremophile Artemia. Different stages of the cycle are actively involved in survival and reproduction under
critical environmental conditions.
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FIGURE 2 | Salty lakes impose critical conditions on reproduction of individuals, populations, and species. Adaptation to such conditions has evolved a
network of different functional and hierarchical domains.

also Shapiro, 2011 for an updated review on how bacteria studies
have contributed to new insights on evolution). It is also known
that some genes are more prone to mutate than others (Stern and
Orgogozo, 2009). The interaction of the resulting novelties within
populations modifies selection rates; hence, ecological divergence
can lead to reproductive isolation (speciation) in relatively short
times (Hendry et al., 2007).

SALTY LAKES, ONLY FOR SALT-LOVERS
Hypersaline lakes are distributed in all continents even in the
Antarctic, mostly in tropical and sub-tropical areas where solar
radiation is high enough to favor high evaporation rates which are
required to maintain high salt concentration. But striking excep-
tions exist, such as the very high altitudes of Chile and Tibet.
There are currently about 500 sites were Artemia has been reported
(Van Stappen, 2002) but it is certain that many more exist around
the world. Their recognition as extreme ecosystems becomes evi-
dent from their low eukaryotic biodiversity, to the point that, in a
few cases, Artemia is the only macroscopic representative. Hence,
Artemia is rightly referred to as a model animal extremophile or
“halophile” (salt-lover; Wharton, 2007), whilst the relatively high
prokaryotic biodiversity observed in salty lakes (DasSarma and
Arora, 2001; Demergasso et al., 2004) indicates different evolu-
tionary capabilities or strategies in these organisms. Salty lakes
with Artemia are, therefore, considered good biodiversity labora-
tories due to their simple web structure (Gajardo et al., 2006).

Nevertheless, Artemia tolerates very well the very large environ-
mental variations that exist in many salty lakes, achieving very
large population sizes. The range of environmental variation is
due in some degree to latitude and the associated climatic con-
ditions. Some salty lakes are permanent, where Artemia flourish
year-round, while others are seasonal and dry-out in a predictable
or unpredictable manner (Lenz and Browne, 1991). Some loca-
tions are coastal or thalassohaline (NaCl major salt) while others
are far inland, athalassohaline (rich in anions other than chlo-
ride), such as those that are found at 4,500 m above sea level in
the Tibetan Plateau. This area has been recently highlighted as
the “third pole” because it has the third largest reserve of ice on
earth after the Arctic and Antarctic, and it is alarming that the
ice is melting quickly (Qiu, 2008). Closer to the stratosphere than
any other Artemia site, this is a special location subject to high
UV radiation and peculiarly cold for its latitude. In the Tibet area
around 352 saline lakes exist (Van Stappen, 2002). By contrast at
the other extreme of the globe, the Atacama Desert in Chile is
one of the driest areas in the world, and Artemia is found there at
about 2,500 m altitude in a unique environmental setting (Gajardo
and Beardmore, 1993; Demergasso et al., 2004). In contrast to
the melting down of ice in the Tibet by indirect human causes
like climate change, salty lakes in the Atacama Desert are increas-
ingly perturbed by water drainage associated with mining activities
(deposits of NaCl and lithium salts). Two other quite unusual
Artemia locations are found in Chilean Patagonia (Amarga and
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Cisnes lagoons; Gajardo et al., 1999, 2002; Clegg and Gajardo,
2009; Beristain et al., 2010) that experience severe weather con-
ditions, rather unusual for Artemia standards (cold, rainy, and
extremely windy). To complete this very brief account of Artemia
environmental variability, there are also man-made salt ponds or
salinas, where salt is produced by evaporation of seawater, and
where Artemia can exist in certain salty ponds that approach the
precipitation point of NaCl, 340 g L−1(Clegg and Trotman, 2002).
However, in order for Artemia reproduction to occur the salinity
must be well below that, although still very high.

Characteristic examples of natural lakes are found in Asia in
areas such as China, Tibet, Iran, and Kazakhstan. All these contain
four of the seven sexual Artemia species currently known, mak-
ing evident both the peculiarities of salty lakes and the ecological
divergence or specificity of Artemia species. The Mediterranean
area, where Artemia probably originated, contains the fifth sex-
ual species (Abreu-Grobois and Beardmore, 1982; Abreu-Grobois,
1987; Gajardo et al., 2002; Van Stappen, 2002; Baxevanis et al.,
2006), and the other two species are found in Lake Grassmere
in New Zealand, Chaplin Lake in Canada, the Great Salt Lake in
Utah, USA, and the already mentioned Chilean sites. These are just
examples – there are many other cases.

Although salinity seems to be the major driver of Artemia distri-
bution, other critical factors are particularly severe in specific areas,
as evidenced above. Most of them have synergistic effects, difficult
to evaluate in nature, but amenable to study under laboratory
conditions (Lenz and Browne, 1991). Salinity, ionic composition
and temperature are the critical factors highlighted by Van Stap-
pen (2002), whilst Hebert et al. (2002) additionally considers UV
radiation as being of utmost evolutionary importance, since it
increases mutation rates, the novelty factor, and/or the raw mate-
rial, on which natural selection acts. Accordingly, Hebert et al.
(2002) observed higher rates of DNA sequence divergence in the
halophilic Anostraca from Australia and North America compared
to their fresh-water relatives (Daphniids).

For the purpose of this article we group these critical factors as
follows:

(i) Reversible stressors, when reaching the upper or lower limit
tolerated by Artemia (temperature and salinity).

(ii) Mutagenic stressors, affecting DNA replication fidelity (ionic
composition and UV light, but salt concentration plays a role as
well). On the positive side they could generate variability (new
functional variants), whilst their negative effects are filtered
out by selection.

Salinity ranges widely (1–mM–5 M) (Hebert et al., 2002)
because of latitudinal variation and other considerations, and
so Artemia can be found with other planktonic animals at low-
medium salinities. The optimum is estimated under laboratory
conditions at 60 g L−1 in experiments where several fitness para-
meters were compared (Lenz and Browne, 1991), the maximum
being close to NaCl saturations in solar ponds (340 g L−1), whilst
the lower limit depends on the upper salinity tolerance of fish
predating on Artemia, in extreme cases being as high as 100–
130 g L−1 as reported by Van Stappen (2002). As it will be shown
later in Section“Artemia: A Survival Machine”Artemia has evolved

efficient solutions to these challenges, from molecules to fractal
physiological processes (see also Figure 2). A major impact of high
salinity is osmotic stress,desiccation, low oxygen tension, increased
metabolic rate to cope with the high energy demand required to
maintain the osmoregulatory system at full capacity, and alteration
of DNA-protein relationship that lowers DNA replication fidelity
(Hebert et al., 2002).

The temperature box ranges widely (5–40˚C), the lower limit
being consequences of the extreme habitats already discussed such
as those in the Tibetan Plateau, Atacama Desert, and Patagonia,
in northern and southern Chile, respectively. The upper limit is
often seen in man-made salinas where Artemia thrives in shal-
low ponds. The optimal temperature for at least some species of
Artemia has been established at about 25˚C (Lenz and Browne,
1991; Van Stappen, 2002), but extremely high temperatures can
overlap the effects of extreme salinity that drastically reduce the
size of Artemia populations. Extremely low temperatures, includ-
ing freezing, are overcome by the production of encysted embryos
(see below). Depending on the prevailing anions, salty lakes are
classified as chloride, sulfate, or carbonate-rich, including the
possibility of combinations of two or even three major anions.
Variation in ionic composition is therefore wide and likely the
highest among metazoans (Cole and Brown, 1967; Van Stappen,
2002).Ultraviolet light is normally high in salty lakes as these are
mainly located in areas of high solar radiation, but it is particularly
high in those at high altitude due to the reduction in stratospheric
ozone. UV radiation reduces metabolic activity and induces the
formation of dimers of DNA more efficiently at 254 nm. UV-B
(280–320 nm) produces irreversible damage and death, and the
effect is greater in naupliar stages than adult (lower LD50; Dat-
tilo et al., 2005). The ability to repair such mutations explains,
in part, differential survival observed between individuals and
populations.

In addition to the molecular-cellular and physiological impact
of these stressors on individuals, there can be population/species
effects such as ecological divergence (Schuler and Conte, 2009).
This has been recognized as a speciation mode in Artemia
by Abreu-Grobois (1987), Mono Lake in California, USA, a
carbonate-rich lake described as an evident example of ecological
isolation (Browne and Bowen, 1991).

HOW MANY ARTEMIA SPECIES ARE THERE?
Gajardo et al. (2002, p. 226, Table 1) listed some of the attributes
that make Artemia a good model to study adaptation and speci-
ation. This organism is also considered a paradigmatic species in
understanding the evolutionary biology of arthropods and related
groups (Marco et al., 1991; Chen et al., 2009). A look at the existing
Artemia species and their distribution shows three striking facts
in which the species (life history and genetic background) and the
environment are tightly linked:

(1) there are six sexual species, a relatively low number, most of
them geographically restricted to salty lakes in specific regions
in Eurasia (regional endemism) at, or close to, the Mediter-
ranean area where Artemia species diverged from the ancestral
species some 80 million years ago (Baxevanis et al., 2006).
These are the so-called Old World species:

Frontiers in Physiology | Fractal Physiology June 2012 | Volume 3 | Article 185 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Gajardo and Beardmore Artemia: adapted to critical life conditions

Artemia urmiana (Günther, 1890), Lake Urmi, Iran, where
there are also parthenogenetic populations. But also the
species would be present in Ukraine.
Artemia tibetiana (Abatzopoulos et al., 1998, 2003), Tibetan
Plateau.
Artemia sinica (Cai, 1989), PR of China, and Mongolia.
Artemia salina (Leach, 1819), Mediterranean Basin.
Artemia sp. Kazakhstan (Pilla and Beardmore, 1994), since
only a single sample from Kazakhstan was studied the specific
status is still under discussion.

(2) There are parthenogenetic populations as well, as indicated
above, and these originated in multiple events in Central Asia
either from A. urmiana or the Kazakhstan population (Muñoz
et al., 2010), and probably from all of the sexual species indi-
cated above (Baxevanis et al., 2006). Parthenogens would have
migrated to the Mediterranean Basin where a dramatic salin-
ity increase and habitat subdivision (Abreu-Grobois, 1987)
would have facilitated their expansion, very likely in the form
of cysts (Muñoz et al., 2010). The estimated time for the
appearance of asexual forms varies according to the genetic
markers and the methodology of analysis considered: three
MYA (Baxevanis et al., 2006), 40 MYA (Badaracco et al., 1987)
or very recently (Muñoz et al., 2010). The importance of
unusual habitats (different from those occupied by parental
sexual species) seems essential for the generation and main-
tenance of a parthenogenetic mode (Muñoz et al., 2010), and
also is evident from the fact that parthenogenetic forms tend
to co-exist, and even displace sexuals under special conditions
(Amat et al., 2005).

(3) Two species are found in the Americas (New World species):
A. franciscana and A. persimilis, the former widely divergent
from the Old World species (Gajardo et al., 2002), though
some similarity with all Asian species and parthenogens has
been found by comparing mitochondrial ITS1 sequences and
16 S RFLP markers (Baxevanis et al., 2006). A. persimilis is
closer to Old World species, in fact it is the most widely diver-
gent of all Artemia species as determined by the use of different
genetic markers (Gajardo et al., 2002; Baxevanis et al., 2006;
Muñoz et al., 2008; Kappas et al., 2009), and is restricted to
southern latitudes in South America, particularly Argentina
and Chile. Although bar coding and other genetic markers
are useful for assessing genetic distance between species, data
of this nature need to be viewed with some caution, taking
into account recent observations showing that not all genes
are equal in the light of evolution. In other words, evolution-
arily relevant mutations tend to accumulate in hotspot genes
and at specific locations within genes (Stern and Orgogozo,
2009). Having said that, we note that A. franciscana has a very
distinctive feature separating it from all other species. This
feature is its chromo centre number, i.e., highly repetitive het-
erochromatin, which is known to play a role in chromosome
segregation and reorganization, nuclear and cellular organi-
zation, and regulation of gene expression (MacGregor and
Sessions, 1986; see Hayden, 2010, for humans). Thus, non-
coding regions matter significantly, and because of that it
is highly relevant to note that this trait varies significantly
with latitude in A. franciscana (Gajardo et al., 2001), the most

widely distributed species (also found invading non-native
areas like the Mediterranean, Amat et al., 2005). Due to its
repetitive nature, heterochromatin is prone to expansions and
contractions (Parraguez et al., 2009, and references therein),
thus representing an opportunity for rapid genomic change.

ARTEMIA: A SURVIVAL MACHINE
The suite of responses Artemia has evolved to cope with the
harsh conditions imposed by salty lakes is schematically shown
in Figure 1. The most visible response is the ability of females of
all species, including parthenegenetic forms, to switch reproduc-
tive mode, or offspring quality (Gajardo and Beardmore, 1989),
depending on whether the environment is perceived as stable, gen-
erally the case of permanent lakes, or stressful, like seasonal lakes
that dry-out. Lack of food, low oxygen tension, extremely high
or low salinity and temperature (even lack of available mates) are
stressors as well. In the first case females produce predominantly
offspring in the form of free-swimming nauplii (ovoviviparity)
or as cysts (oviparity). We subscribe to the statement of Clegg
and Trotman (2002) that cysts are “the most resistant of all ani-
mal life history stages to environmental stress,” at least based
on the experience with A. franciscana, the most studied species,
whilst motile stages (nauplii and other larval stages and adults)
are “the best osmoregulators in the animal kingdom.” Both life
history stages are schematically treated in the “organism” com-
partment of Figure 2, but also because they have different adaptive
repertoires as they are programmed to face different environmen-
tal conditions as indicated above. Salty lakes modulate also the
population and species compartment (Figure 2). With regard to
organisms, there are 324 protein-coding genes associated with dia-
pause and post-diapause influencing cell components, molecular
functions, such as antioxidant activity that protect desiccated cysts
from molecular oxygen, and biological processes like development,
growth, response to stimulus and interaction between individuals,
as reported by Chen et al. (2009). Some of these proteins are stored
in cysts and utilized after their reactivation, or are involved in anti-
desiccation and diapause mechanisms. Just to mention a few of
them: cathepsin-like cysteine proteinase involved in yolk utiliza-
tion in embryos, proteases, protease inhibitors, and chaperones
(p26, Hsp70) that prevent protein aggregation. In stressed cells,
Hsp70 and p26 move to the nucleus to stabilize matrix proteins.
Maintaining cell membrane fluidity (or prevent it from vitrifi-
cation) in the encysted embryo by means of the sugar trehalose
(Clegg and Trotman, 2002) involves critical fractal physiological
processes that protect from the destructive effects of dehydration,
chiefly through its ability to serve as a substitute for structural
water associated with the membrane surface. Likewise, adaptation
of nauplii to brine is another magnificent process that began to be
studied long ago (Croghan, 1958a,b). It is achieved by maintain-
ing hemolymph at concentrations and compositions considerably
lower and qualitatively different from the external hyperosmotic
medium and this requires retaining or taking up water, while excess
ions are eliminated to the medium against huge concentration gra-
dients (reviewed by Clegg and Trotman, 2002).The key component
in this ion-transporting process in larval stages is the salt gland and
its enzyme Na, K-ATPase that first appears in emerged embryos,
increases dramatically as the larvae hatch and pass through the
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first instar epithelia of animals in general (Conte, 1984). High
salinity imposes the extra challenge of reduced dissolved oxy-
gen, hence efficient oxygen uptake (Dwivedi et al., 1987) becomes
vital to avoid impairment of critical functions such as swimming
and feeding. As salinity increases and oxygen tension diminishes,
hemoglobin synthesis increases. However, respiratory rates differ
between nauplii and adults, and between females and males, a
process mediated by three hemoglobin types, resulting from the
permutation of subunits α and β, differing in their oxygen affinity,
and so affecting the physiological response to oxygen availability
(Clegg and Trotman, 2002).

With regard to the population and species compartment
(Figure 2), the most striking phenomenon here is that overall
high genetic diversity (see Gajardo et al., 2002; Baxevanis et al.,
2006; Muñoz et al., 2010) of the species is heterogeneously distrib-
uted over the different component populations. In other words,
the species gene pool is distributed over different safety baskets
along the distribution range. Such ecological divergence is the
mode of speciation evolved by the group as proposed by Abreu-
Grobois and Beardmore (1982) and Abreu-Grobois (1987), see
also Gajardo et al. (2002). Ecologically adapted populations retain
local adaptations in a process modulated by differential selective
pressures of each environment. Local populations are caused by
geographic isolation of the island-like nature (Gajardo et al., 2002)
of salty lakes that restrict gene flow mediated by water birds, the
natural cyst dispersers together with wind. Cycles of extinction
and re-colonization, expansion and contraction, observed in sea-
sonal lakes or ponds that dry-out, are also significant drivers of
genetic differentiation. Such ecological specificity has trade-offs,
the price paid is isolation and solitude; in other words, Artemia
is prevented from interaction with other species, for good or
bad. There would be restrictions between populations as well, as
reported by Rode et al. (2011). These authors performed crosses
between females and males hatched from cysts collected at differ-
ent times, and found that females survived better and had longer
inter brood intervals when mated with their contemporary males
compared to when they were mated with males from the future or
the past. A similar example in Drosophila showed that females
adapted to specific ecological conditions, and therefore with a
particular bacterial composition in the gut, mate preferentially
with males with the same similar gut composition (Sharon et al.,
2010).

ARTEMIA, STRESS, AND SOCIETY
Response to stressful situation maximizes fitness advantages of
animals in nature, survival, behavior, and reproduction being the
obvious outcome. Artemia for example is an example of stress
response of an animal low in the tree of life that, however, exhibits
similarities to humans that are up in the biological hierarchy mak-
ing evident that evolution builds complex solutions from simpler
ones, and such solutions heavily depend on the complexity of
the environment. The Artemia environment is relatively simple
in terms of the number of known stressors or stresses affect-
ing it, though it is clear the environment is multidimensional.
Instead, the human physical and cultural environment has evolved
faster than adaptation to them, and the consequence is a mal-
adaptive response or disease (adaptation syndrome; see McEwen,
2007). Alike Artemia, the brain plays a key role in coordinating the

behavioral and physiological response to stressors. Another strik-
ing phenomenon is the ability of Artemia females to recognize and
select peers as a way to maintain ecological adaptation, which is
somewhat found in humans as well.

Finally, understanding the mechanisms of adaptation to stress-
ful environments in Artemia has some indirect benefits to human
societies because of the role it plays in the aquaculture of marine
fish and crustaceans (Dhont and Sorgeloos, 2002). Larval stages
of some of these species cannot utilize pelleted first feed but need
a live diet. Artemia larvae (which can be nutritionally enhanced)
provide not only basic nutritional requirements but also enzymes
and other valuable dietary elements as well forming an attractive
prey for predatory fish larvae. Artemia production is a highly prof-
itable industry. In the developed world cysts are harvested from
sites such as the Great Salt Lake in Utah and after canning and
vacuum packing are sold in quantity worldwide. In developing
nations such as Vietnam and Thailand, cheaper cysts are produced
in artisanal saltworks.

CONCLUDING REMARKS
As a major macro-faunal inhabitant of salty lakes, the brine shrimp
Artemia provides a unique example of how to develop a strategy in
dealing with critical conditions needed for survival. Being adapted
to the harsh conditions that salty lakes impose on survival and
reproduction of individuals, but also on populations and species,
constitutes a complex evolutionary response that integrates dif-
ferent levels of biological organization. Such a highly integrated
response has evolved from more simple solutions in a process
that requires the constant availability of innovations (through
mutation and other genomic events) and the filtering process
of natural selection. The relatively high diversity of prokaryotic
life in salty lakes is an example of simpler though extremely suc-
cessful solutions, but also the co-existence of sexual species and
parthenogenesis in Artemia, shows the importance of variation in
reproductive modes for evolution to proceed. Parthenogenesis has
been successful under certain environmental conditions, some of
which remain in certain areas or lakes as to allow this reproductive
mode to persist. The long time co-existence of parthenogens and
the sexual species from which they originated, is a phenomenon
that some biologists (at least of those working on salty lakes) find
it difficult to accept considering the widespread adoption of sexual
reproduction by most taxa.

The following aspects of salty lakes and the extremophile
Artemia, the two relevant actors in our evolutionary play, are
highlighted in this article:

1. Salty lakes offer a quite restrictive range of ecological condi-
tions, salinity being often recognized as a critical stressor. How-
ever, additional stressors such as specific ionic conditions also
favor the differentiation of locally adapted populations (ecolog-
ical isolation) that thrive in chloride, carbonate, or sulfate-rich
lakes. A better characterization of salty lakes should provide
further details on how adaptation proceeds in Artemia.

2. The ability of females to “perceive” forthcoming environ-
mental difficulties is amazing though it is an example of
the signaling process species have evolved through a highly
interactive and dynamic process. This is yet a field to be
explored.
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3. The ability of females to switch offspring quality, i.e., to pro-
duce cysts or nauplii, is a good example of the importance of
the above (2). Cysts and nauplii are equipped with a differential
suite of adaptations to cope with the environment immediately
ahead, in the case of nauplii (often a stable one), or in relatively
uncertain immediate environments or that to be faced in the
years to come (Rode et al., 2011).

4. Cysts are arguably the most resistant of all animal life history
forms to environmental stress, whilst motile stages (nauplii,
larval stages, adults) are the best osmoregulators in the ani-
mal kingdom as stated by Clegg and Trotman (2002). Cysts are
gene banks that store a genetic memory of historical popula-
tion conditions, but also are survival vehicles. They aid in the
dispersal of Artemia, but also are reservoirs of genetic variabil-
ity (Gajardo and Beardmore, 1989), the fuel for evolutionary
change and resilience.

5. There are few genetically divergent Artemia species restricted
to specific regions (regional endemism), but highly divergent

populations adapted to the specific ecological conditions of
salty lakes (see 1). Hence, it seems the strategy of the species to
persist is to distribute the gene pool in different baskets (salty
lakes) that are well adapted to more specific conditions.

6. To avoid loss of these adaptations by genetic flux (a role attrib-
uted to water birds and wind), the island-like nature (geograph-
ical isolation), and the local ecological pressures in particular
prevent immigrants from surviving and, therefore, prevent or
limit cross-breeding.
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