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Prenatal nutritional conditions can predispose to development of obesity and metabolic
syndrome in adulthood. Gestation with its important modifications in hormonal status is
a period of changes in normal feeding habits with pulses of consumption or avoidance of
certain categories of food. We tried to mimic in an animal model some changes in food
consumption patterns observed in pregnant women. For this purpose, Long–Evans female
rats were fed during the dark period, their usual pre-gestational food quantity, and were
allowed to complete their daily intake with either a restricted control (Cr), high-fat (HF), or
high-carbohydrate (HC) diet available ad libitum during the light period. Dams fed a control
diet ad libitum (Ca) served as controls. Body weight and composition, food intake, and
metabolic hormones (insulin, leptin) were recorded in male offspring until 20 weeks after
birth. Cr and HC females ate less than Ca females (−16%; p < 0.001) and their offspring
presented a weight deficit from birth until 6 (HC group) and 10 (Cr group) weeks of age
(p < 0.05 or less). Plasma leptin corresponded to low body weight in Cr offspring, but was
increased in HC offspring that in addition, had increased plasma insulin, blood glucose, and
subcutaneous adipose tissue mass. HF dams ate more than Ca dams (+13%; p < 0.001),
but plasma leptin and insulin were similar in their offspring. Hypothalamic Ob-Rb expres-
sion was increased in Cr, HC, and HF offspring (+33–100% vs Ca; p < 0.05 or less). HC
supplement ingestion during gestation therefore leads to insulin and leptin resistance in
adult offspring independently of lower birth weight. These hormonal changes characterize
obesity-prone animals. We therefore suggest that attention should be paid to the carbo-
hydrate snacking and overall carbohydrate content in the diet during the last weeks (or
months) preceding delivery to limit development of later metabolic disorders in offspring.

Keywords: fetal programming, high-fat, dietary preference, adipose tissue distribution, hypothalamic Ob-Rb
expression, ghrelin

INTRODUCTION
Gestation and early postnatal life are periods of development dur-
ing which sensitivity and susceptibility to environmental factors
are considerable (Cottrell and Ozanne, 2008). This has led to
the concept of fetal programming initiated by Barker more than
20 years ago for cardio-vascular diseases (Godfrey and Barker,
2000). According to this hypothesis, these early external factors
can alter the genome through epigenetic changes (methylation or
acetylation), that render people susceptible to develop metabolic
diseases later in life. Feeding conditions likely constitute one of
the most influential parameters for the future of the young in
terms of health and psychological well-being. During these early
periods of development, food supply both in terms of quantity
and quality is totally outside the control of the offspring and
depends completely on the mother’s dietary and nutritional habits.
It is also well-known that pregnancy triggers changes in feed-
ing habits, firstly in relation to the substantial hormonal changes
induced during this state, and second because of the increasing
energy needs of the developing embryo from the conception until

birth (Butte et al., 1999, 2004). Food preferences vary across the
course of pregnancy (Bowen, 1992). Food cravings and aversions
are reported by a sizable proportion of pregnant women (Dick-
ens and Trethowan, 1971; Hook, 1978; Pope et al., 1992). This
could lead to rather important changes in dietary intake both
for macro- and micronutrients. Indeed, food cravings are mainly
focused on sweet carbohydrate-rich food items (candy, choco-
late, pies, fruit juices. . .) although some of these also contain
a significant proportion of fats. The consequences for offspring
development and metabolism of these unbalanced diets enriched
in fats or carbohydrates and ingested by the mother have been
studied in some detail (Kozak et al., 1998, 2000; Wu et al., 1998;
Buckley et al., 2005; Srinivasan et al., 2006). Both behavioral and
hormonal changes have been detected in offspring following the
ingestion of such diets. The development of dietary preferences
across the whole life-time is affected by the maternal diet both
in rats and in humans (Marlin, 1983; Kozak et al., 2005; Bayol
et al., 2007; Chang et al., 2008; Nakashima, 2008; Brion et al.,
2010). The main hormonal changes in the offspring were observed
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for two important metabolic peptides, insulin and leptin, with
the development of resistance or insensitivity in offspring born
to dams fed high-fat (HF) diets (Bispham et al., 2003; Dyrskog
et al., 2005; Srinivasan et al., 2006; Cerf et al., 2009). However,
all these results come from experiments where only one diet was
fed, and where feeding was given ad libitum and imposed dur-
ing the whole of the gestation and/or suckling periods without
any choice. Such manipulations do not reflect the situation that is
generally observed during human pregnancy where food is usually
taken as three meals, generally of balanced composition with addi-
tional ingestion of unbalanced supplements (snacks) in-between
these meal time periods. This forms the rationale for the develop-
ment of an animal model that attempts to mimic, as accurately as
possible, human behavior. We fed pregnant female rats two fixed
quantities of a balanced diet provided close to the light/dark tran-
sitions when rat intake is normally high, and gave them the option
of an additional voluntary ad libitum feed of either a HF diet
or a high-carbohydrate (HC) diet during the light period when
feeding would normally be low or absent. We speculate that meal
intake may contribute to the maintenance of weight gain within
an appropriate range, whereas the ingestion of the unbalanced
supplement could contribute to overeating and/or junk eating. In
this model, we measured body weight changes in dams and pups
and investigated the consequences of these feeding conditions for
dietary preferences, and circulating leptin and insulin levels in
offspring from weaning until adulthood. The dietary treatment
was imposed on the dams during the second part of the gestation
because this period is a period of rapid fetal development, but it is
also associated with gestational diabetes and/or insulin resistance
(Leturque et al., 1980; Moses et al., 1997).

MATERIALS AND METHODS
The experiment was conducted in accordance with the Euro-
pean Community Council Directive of November 24, 1986
(86/609/EEC) for the use and care of animals in research.

ANIMALS AND PROTOCOL
Female Long–Evans rats (n= 46) were purchased from Centre
d’Elevage R. Janvier (CERJ; Le Genest St Isle, France). They were
placed in individual Plexiglas cages with wood shavings in an air-
conditioned vivarium with a 12 h light-12 h dark cycle. They were
fed a control well-balanced breeding diet ad libitum for 2 weeks
(see Table 1 for exact composition). Diet was given in a stain-
less steel cup placed on a small elevated platform in the cage to
avoid contamination with wood shavings. Tap water was available
ad libitum throughout the study except during the preference tests.

The time course of the protocol is shown in Figure 1. During
the 2 weeks of habituation, the rats were handled daily, weighed,
and their daily food intake (Q) was recorded during the second
week. Measurement of cup weight at each light/dark transition
indicated that the rats typically ingested two-thirds of their daily
intake during the dark period. At the end of habituation period, the
females were separated into four groups of body weight-matched
animals and were mated with male Long–Evans rats obtained from
the same provider and habituated to the vivarium conditions. The
presence of vaginal plugs was checked and taken to be day 1 of
pregnancy. During the first part of gestation (day 1 until day 12 of

Table 1 | Composition of the control, high-carbohydrate (HC), and

high-fat (HF) diets given to the dams during gestation.

Control HC HF

INGREDIENT (g/kg)

Carbohydrates1 560 663 188

Fats2 120 55 437

Casein 230 192 285

Salts* 40 40 40

Vitamins** 10 10 10

Cellulose 20 20 20

ENERGY (%)

Carbohydrate 54 69.1 13.1

Fat 26 12.9 68.9

Protein 20 18 18

Energy density 4.15 3.84 5.71

All diets are supplemented with 0.2% methionine. 12/3 corn starch and 1/3

sucrose; 21/3 oil and 2/3 margarine; *Salt mixture (UAR 205b; SAFE, Villemoisson

sur Orge, France); **Vitamin mixture (UAR200b).

pregnancy), all females were fed the control breeding diet ad libi-
tum. During the second part of gestation (day 12 of pregnancy
until parturition), food availability of three groups was modified.
During each of the first and last hours of the dark period, the
females of these three groups received a meal corresponding to
one-third of Q. This corresponded to consumption, during the
dark period, of the same food quantity that the rats had been
accustomed to eating during the equivalent period prior to being
mated. During the light period, they were allowed to eat ad libi-
tum either the control breeding diet [control restricted (Cr) group;
n= 15], a HF diet (HF group; n= 10), or a HC diet (HC group;
n= 10) for 6 h starting 3 h after lights-on in order to fulfill their
daily intake. The fourth group (control ad libitum (Ca) group;
n= 11) continued to be fed the control breeding diet ad libitum
during the entire light and dark periods. The exact composition
of the three diets is indicated in Table 1. The three diets were
supplemented with 0.2% methionine. Carbohydrate content was
a mixture of complex (two-third) and simple (one-third) carbo-
hydrates. Fat content was a mixture of different oils and margarine
that provided a complete spectrum of fatty acids. The HF diet has
been shown to influence plasma leptin as well as body composition
or glucose metabolism in rats (Beck et al., 1994; Stricker-Krongrad
et al., 1998).

Litter size was adjusted to 8–10 pups 3 days after parturition in
order to avoid any litter size effect on growth of offspring. From
birth of the pups, females were fed ad libitum on the control diet
until weaning at 21 days after birth.

At weaning, male pups were placed in individual wire cages in
the same vivarium as their mother. During the period of rapid
growth (first month post-weaning), they were fed the control
breeding diet (20% of protein), and then a balanced maintenance
diet (18% of protein) until 20 weeks of age.

MEASUREMENTS
During pregnancy, food intake of the HF, HC, and Cr females dur-
ing the light period was recorded daily. Food intake of the Ca group
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FIGURE 1 | Schematic representation of the experimental protocol.

was recorded daily. Intake of control diet of the four groups was
recorded twice weekly during the suckling period. Body weight of
females was measured at D0, D12, and D21 of gestation as well
as at the weaning of their pups on postnatal day (PND) 21. Pup
weight was recorded at PNDs 5, 12, and 21 (Ca group n= 76, Cr
group n= 80, HF group n= 67, and HC group n= 83).

Pups were weighed at postnatal (PN) weeks 6 (around puberty),
10 (young adult), and 20 (mature adult). At PN week 12, their
dietary preferences were tested through a two-bottle choice test.

Dietary preferences
Dietary preferences were measured in 12 week old rats from each
of the four groups according to a modification of a previously
described method (Kozak et al., 2005). The rats were given a choice
between two bottles containing solutions rich either in fat (HFS)
or carbohydrate (HCS). Solutions were isocaloric and contained
an emulsifier and a thickener for a better stability of the mix-
ture. Detailed composition is given in Table 2. The solutions were
offered in random order and placed in the cage for 1 h during
three consecutive days in the middle of the light period in order
to habituate the animals to the procedure. On the fourth day, the
rat had the choice between the two solutions for 1 h starting 3 h
after lights-on. During these 3 h, the rats had access to neither
their regular diet nor water. Small cups were placed under the
spouts of the bottles in order to recover any spillage. The same
test was performed during the first hour of the dark period on the
fifth day without prior food or water deprivation. Intakes of each
solution were corrected for spillage (if any). The water bottle was
withdrawn during each 1 h preference test.

BLOOD AND ORGANS SAMPLING
At the end of the suckling period (PND 21), randomly chosen pups
from each group were killed by decapitation after light anesthesia
3 h after the beginning of the light period. Food but not water was
withdrawn during this 3 h period in order that all animals would

Table 2 | Composition of the high-fat (HFS) and high-carbohydrate

(HCS) solutions used for the determination of dietary preferences

through the two-bottle choice test.

Ingredient (g/100mL) HCS HFS

Skimmed milk 8 8

Sucrose 40 –

Oil1 – 17.8

Glycerol monostearate2 1.3 1.3

Xanthan gum3 0.3 0.3

Water (QSF)

1ISIO4 (Lesieur – Neuilly sur-Seine, France); 2E 471 (Ets François – St Maur,

France); 3 Rhodygel (Rhone-Poulenc Group – Melle, France).

be in the same nutritional state. The remaining rats (Ca group
n= 26, Cr group n= 28, HF group n= 31, and HC group n= 26)
were killed at the end of the experiment (PN week 20), according
to the same procedure.

Trunk blood was sampled in chilled test-tubes containing apro-
tinin (5000 IU/mL, Iniprol, Laboratoires Choay, Paris) and EDTA
(1.2 mg/mL, Merck, Darmstadt). The tubes were centrifuged at
4˚C for 30 min. Plasma was then aliquoted and stored at – 20˚C
until assay. The brain was rapidly removed and immediately frozen
at−80˚C for further analysis. Different fat depots (subcutaneous,
epididymal, and perirenal) were also sampled and weighed.

ASSAYS
Hormones and plasma parameter determination
Plasma glucose, cholesterol, and triglycerides were measured
by kits using enzymatic methods (BioMérieux, Marcy l’Etoile,
France). Hormone levels were measured in duplicate by spe-
cific radioimmunoassays using commercially available kits: insulin
antibody coated tubes for immunoreactive insulin (IRI) measure-
ments (Insulin-CT; Cis bio International, Saclay, France) with rat
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insulin as standard (NOVO, Copenhagen, Denmark), a rat ghrelin
kit (RK-031-31; Phoenix Europe GmbH, Karlsruhe, Germany),
and a rat leptin kit (RL-83 K; Linco, St Charles, USA). Plasma
samples were diluted for the ghrelin assay. All the samples were
run in one assay for each hormone or plasma parameter analysis.
An insulin sensitivity index (ISI) was calculated as plasma insulin
(ng/mL) divided by plasma glucose (mmol/L).

Leptin receptor mRNA expression
Gene expression for the long form of the leptin receptor (Ob-Rb)
was measured in the brain using in situ hybridization. The protocol
used has been previously published (Mercer et al., 1996). Briefly,
coronal cryostat sections (20 µm) of hypothalamic brain tissue
were cut from eight brains in each group. Hypothalamic sections
were collected onto slides, with adjacent sections on consecutively
numbered slides. This permitted Ob-Rb mRNA to be localized
and quantified in the arcuate nucleus (ARC) of the hypothalamus.
Slides were fixed, acetylated, and hybridized overnight at 58˚C
using [35S]-labeled cRNA probes (1–2× 107 cpm/mL). Autoradi-
ographic images (Hyperfilm β-max; Amersham) were quantified
using the Image-Pro Plus system. Data were manipulated using a
standard curve generated from 14C autoradiographic micro-scales
(Amersham), and the integrated intensity of the hybridization sig-
nal computed. Results are given as a percentage of the control
ad libitum fed group (Ca).

STATISTICS
Results are given as the mean± SEM. They were compared
through variance analysis followed by a post hoc PLSD Fisher test
or Kruskal–Wallis test followed by a Mann–Whitney test when nec-
essary. A probability of less than 0.05 was considered statistically
significant.

RESULTS
BODY WEIGHT AND FOOD INTAKE VARIATIONS
Dams
The changes in energy intake and body weight in dams during
gestation are shown in Figure 2. Before gestation and during the
first part of gestation, there was no difference in energy intake
between the four groups. During the second part of gestation,
there was a significant effect of diet type (p < 0.001). HF dams
ingested 13% more energy than the Ca dams (p < 0.001), 35%
more than Cr dams (p < 0.001), and 32% more than HC dams
(p < 0.001; Figure 2A). Cr and HC dams ingested about 16% less
than Ca dams (p < 0.001). Whereas the increase in energy intake
during gestation vs before gestation amounted to 43 and 63% in
Ca and HF dams, respectively, it was only about 20% in Cr and
HC dams (Figure 2B).

During the first part of gestation, body weight gain was
not significantly different between groups (about 13–14%;
p= 0.93).Body weight gain was significantly lower in Cr and HC
dams than in Ca and HF dams during the second part of ges-
tation and during the whole gestation period (p < 0.05 or less;
Figure 2C).

Offspring
Litter size was not significantly different between groups (median
10–11 pups/litter). Growth of the animals from a few days after
birth (PND 5) until 20 weeks of age is shown in Figure 3. At
PND 5, Cr and HC pups presented a body weight deficit when
compared with Ca and HF pups (p < 0.05 or less). This deficit (5–
7%) was observed during the whole suckling period (Figure 3A),
and persisted after weaning until 6 weeks of age for both groups
(p < 0.05 or less). At 10 weeks of age, only Cr rats weighed less
than the three other groups (p < 0.05 or less). There were no body

FIGURE 2 | Energy intake [(A); mean±SEM in kcal/day) before, and
during the first (day 1 to day 12) and second part (day 12 to day 21) of
gestation (A), proportional increase in energy intake during the second
part of gestation vs before gestation (B), and body weight gain
(mean±SEM in% vs before gestation) (C) in dams fed during gestation

either a control diet (Ca group; n=11) ad libitum, or a restricted control
(Cr group; n=15), a high-fat (HF group; n= 10) or a high-carbohydrate
(HC group; n=10) diet ad libitum for 6 h during the light period, in
addition to two normal meals given during the dark period. *p < 0.05,
**p < 0.01 and ***p < 0.001 vs Ca; ##p < 0.01 and ###p < 0.001 vs HF.
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weight differences at 20 weeks of age (Figure 3B). However, at this
age, there was a significant effect of maternal dietary treatment on
adipose tissue distribution: HC rats had significantly more subcu-
taneous adipose tissue than Cr (p < 0.01), and HF rats (p < 0.03),
although weight of perirenal and epididymal fat depots did not
vary between groups (Table 3).

After weaning, energy intake was only different at 6 weeks of
age in Cr rats where it was significantly reduced by about 7% com-
pared to Ca (p < 0.01) and HF rats (p < 0.05) with no differences
at weeks 10 and 20 (Table 4).

DIETARY PREFERENCE TEST
Ingestion of the HF and HC solutions during the two-bottle tests
performed during either the light or the dark period at 12 weeks
of age is shown in Figure 4. During the light period (Figure 4A),
all rats preferred the HC solution (p < 0.001) but there were no

FIGURE 3 | Postnatal (PN) body weight (mean±SEM in grams) at
different times of the suckling period [PN days 1–21; (A)] and after
weaning (B) at PN weeks 6, 10, and 20 in offspring from dams fed
during gestation either a control diet (Ca group) ad libitum, or a
restricted control (Cr group), a high-fat (HF group) or a
high-carbohydrate (HC group) diet ad libitum for 6 h during the light
period, in addition to two normal meals given during the dark period.
*p < 0.05, **p < 0.01, and ***p < 0.001 vs Ca; #p < 0.05 and ##p < 0.01 vs
HF; +p < 0.05 vs HC.

Table 3 | Subcutaneous, perirenal, and epididymal fat depot weights

(mean±SEM in grams) in offspring from dams fed either a

gestational control diet (Ca group) ad libitum, or a restricted control

(Cr group), a high-fat (HF group), or a high-carbohydrate (HC group)

diet ad libitum for 6 h during the light period, in addition to two

normal meals given during the dark period.

Fat depot Group of rats

Ca Cr HF HC

Subcutaneous 19.8±1.0 17.4±1.0 18.4±0.8 21.7±1.3§§#

Perirenal 11.5±0.4 10.6±0.4 11.7±0.4 11.4±0.3

Epididymal 9.9±0.3 9.7±0.3 9.7±0.3 10.2±0.3

Total 41.2±1.7 37.7±1.6 39.8±1.4 43.3±1.8

§§p < 0.01 vs Cr; #p < 0.03 vs HF.

differences between the four groups. HCS intake represented about
58–59% of the total intake measured during the 1 h test.

A similar preference for the HC solution was also noted dur-
ing the dark period (p < 0.001; Figure 4B) but Cr rats ingested
significantly more of the HF solution than the three other groups
(p < 0.05 or less) during this nocturnal test. This led to a signifi-
cantly higher total intake in Cr rats than in the three other groups
(p < 0.05 or less; Figure 4B).

PLASMA PARAMETERS VARIATIONS IN OFFSPRING
Plasma concentrations of glucose, triglycerides, cholesterol, and
hormones are shown in Table 5. At weaning, there was no dif-
ference between the four groups for any parameter. At the end
of the experiment (20 weeks of age), HC rats presented a basal
hyperglycemia when compared with Ca rats (p < 0.01; Table 5),
and their insulin concentration was significantly higher than that
in Ca (p < 0.05), Cr (p < 0.05), and HF (p < 0.001) rats (Table 5).
The calculated ISI was significantly higher in HC rats than in HF
rats (2.04± 0.15 vs 1.46± 0.09; p < 0.005). It was also higher in Ca

Table 4 | Post-weaning energy intake (mean±SEM in kcal/day) in

offspring from dams fed either a gestational control diet (Ca group)

ad libitum, or a restricted control (Cr group), a high-fat (HF group), or

a high-carbohydrate (HC group) diet ad libitum for 6 h during the light

period, in addition to two normal meals given during the dark period.

Age Group of rats

Ca Cr HF HC

Postnatal week 6 62.9±1.4 57.9±1.2** # 62.4±1.2 61.2±1.1

Postnatal week 10 68.6±1.4 69.5±1.0 66.5±1.2 69.9±1.5

Postnatal week 20 72.0±1.3 72.1±1.3 70.4±1.3 71.0±1.4

**p < 0.01 vs Ca; #p < 0.05 vs HF.

FIGURE 4 | Intakes (mean±SEM in grams) of high-fat (HFS) and
high-carbohydrate (HCS) isocaloric solutions during dietary preference
tests performed during light (A) and dark (B) periods in offspring from
dams fed during gestation either a control diet (Ca group) ad libitum,
or a restricted control (Cr group), a high-fat (HF group) or a
high-carbohydrate (HC group) diet ad libitum for 6 h during the light
period, in addition to two normal meals given during the dark period.
6=p < 0.001 between HF and HC intakes for the same group; **p < 0.01,
and ***p < 0.001 vs Ca; #p < 0.05 vs HF; ++p < 0.01 vs HC.
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Table 5 | Blood glucose and plasma concentrations of triglycerides, cholesterol, immunoreactive insulin, and ghrelin (mean±SEM) in offspring

from dams fed either a gestational control diet (Ca group) ad libitum, or a restricted control (Cr group), a high-fat (HF group), or a

high-carbohydrate (HC group) diet ad libitum for 6 h during the light period, in addition to two normal meals given during the dark period.

Time Group of rats

Ca Cr HF HC

WEANING

Blood glucose (mmol/L) 7.8±0.1 7.8±0.3 7.6±0.4 7.7±0.5

Triglycerides (mmol/L) 1.2±0.1 1.3±0.2 1.1±0.1 1.5±0.3

Cholesterol (mmol/L) 3.0±0.3 3.1±0.2 2.9±0.1 3.1±0.2

Insulin (ng/mL) 3.1±0.3 4.0±0.4 3.2±0.5 2.8±0.6

POSTNATAL WEEK 20

Blood glucose (mmol/L) 8.3±0.3 9.1±0.3 8.9±0.2 9.6±0.3**

Triglycerides (mmol/L) 3.5±0.2 3.5±0.3 3.3±0.2 3.3±0.2

Cholesterol (mmol/L) 2.8±0.1 2.6±0.1 2.6±0.1 2.8±0.1

Insulin (ng/mL) 15.1±1.4 15.5±1.1 12.8±0.8 19.8±1.7* §###

Ghrelin (pg/mL) 810±58 667±50 761±51 681±49

*p < 0.05 and **p < 0.01 vs Ca; §p < 0.05 vs Cr; ###p < 0.001 vs HF.

rats (1.87± 0.20) than in HF rats (p < 0.04). Plasma total ghrelin
did not differ significantly between the four groups (Table 5).

PLASMA LEPTIN AND HYPOTHALAMIC LEPTIN RECEPTOR EXPRESSION
IN ADULT RATS
Plasma leptin levels and expression of the long form of the leptin
receptor (Ob-Rb) in the ARC of the hypothalamus are shown
in Figure 5. At the end of the experiment (20 weeks of age),
plasma leptin levels were greater in HC rats than in Cr and HF
rats (p < 0.001 for both; Figure 5A). Ob-Rb mRNA expression
was significantly modified by dietary treatment (p < 0.005). It was
higher in HF (+86%; p < 0.01), in Cr rats (+51%; p < 0.05), and
in HC rats (+33%; p < 0.05) than in Ca rats (Figure 5B). In HF
rats, it was also significantly higher than in HC rats (p < 0.05;
Figure 5B).

Leptin levels were correlated with total fat depot weight and
subcutaneous fat depot weight (Figures 6A,B).

Hypothalamic Ob-Rb expression was inversely correlated with
contribution of subcutaneous tissue to fat mass and with circulat-
ing leptin concentrations (Figures 6C,D).

DISCUSSION
The prevalence of obesity and metabolic syndrome continues to
increase in developed Western societies as well as in developing
countries (James, 2004; Diouf et al., 2010; Flegal et al., 2010; Pop-
kin, 2010). This phenomenon is clearly linked to the impact on
the human genotype of continuous availability of energy dense
and unbalanced diets that lead to epigenetic modifications that
increase their susceptibility to develop overweight and diabetes.
Since the pioneering work of Barker (Godfrey and Barker, 2000), it
appears that the early periods of development (gestation, suckling)
are particularly sensitive to these environmental factors. Program-
ming of metabolism is largely completed during these periods and,
the imprint of these early changes can have life-long consequences.
It is therefore of great importance to define which conditions lead
to such deleterious effects.

FIGURE 5 | Plasma concentrations of leptin [mean±SEM in ng/mL;
(A)] and mRNA expression of the long form of leptin receptor (Ob-Rb)
in the arcuate (ARC) nucleus of the hypothalamus (B) in adult offspring
from dams fed during gestation either a control diet (Ca group)
ad libitum, or a restricted control (Cr group), a high-fat (HF group) or a
high-carbohydrate (HC group) diet ad libitum for 6 h during the light
period, in addition to two normal meals given during the dark period.
*p < 0.05, and **p < 0.01 vs Ca; ###p < 0.001 vs HF; +p < 0.05 vs HC;
§p < 0.05 and §§§p < 0.001 vs Cr.

In this experimental animal model, we tried to mimic some of
the food consumption patterns observed in pregnant women in
order to study the impact of such behaviors and diets on the devel-
opment of offspring and susceptibility of offspring to metabolic
syndrome. To generate a relevant model, we modified the feed-
ing conditions of female rats during the second part gestational
days 12 to delivery of gestation. This corresponds to a period of
rapid fetal growth and the development of the main regulatory
systems, particularly in the brain. To mimic contemporary cir-
cumstances as accurately as possible, we fed pregnant females two
meals timed to coincide with normal active feeding periods, and
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FIGURE 6 | Correlations between fat depot weights and leptin
(A,B), fat depot weight and hypothalamic leptin receptor (Ob-Rb)
expression (C), and Ob-Rb expression and leptin (D) in adult
offspring from dams fed during gestation either a control diet

ad libitum, or a control, a high-fat, or a high-carbohydrate diet
ad libitum for 6 h during the light period, in addition to two
normal meals given during the dark period. AU: arbitrary unit; SC:
subcutaneous.

corresponding to two-thirds of their pre-gestational 24 h intake.
Rats were then allowed to complete their caloric intake with either
a balanced habitual diet, a HF diet or a HC diet available ad libitum
for 6 h during the light period. This 6 h time interval usually corre-
sponds to a period of less active feeding in the rats and may mimic
ingestion of extra-food out of the meal schedule in humans.

Differences were noted between females ingesting the same
adequate control diet given ad libitum throughout (Ca dams) or
during restricted time intervals (Cr dams). The Cr females ingested
less calories than the Ca females. Their intake increased by about
20% compared with before gestation, but this was about half of the
increase recorded in the ad libitum fed females. Accordingly, the
Cr pups had a body weight deficit from birth that persisted until
at least week 10 of postnatal life. This deficit may be related to the
slightly lower food intake recorded for Cr rats until PN week 6.

In the HC mothers and offspring, similar relative reductions in
body weight were observed, although the deficit was not observed
beyond 6 weeks of life in the HC offspring. For these HC off-
spring, the data are clearly different from the increased birth weight
observed in pups born to dams fed HC diet ad libitum in earlier
studies (Koski et al., 1986; Hausman et al., 1991; Kozak et al., 1998).
These results confirm the importance of carbohydrate supply for
fetal development during the late phase of gestation (Koski and
Hill, 1986).

However, the HC and Cr groups, although both growth
restricted, differed substantially in terms of leptin and insulin

levels. In Cr rats, leptin levels were consistent with their lower body
weight (Considine et al., 1996; Beck and Richy, 2008), whereas
the HC offspring were characterized by higher plasma levels of
insulin and leptin despite their lower body weight. This suggests
the development of both leptin and insulin resistance, a possibility
supported by elevated blood glucose in adult HC offspring. Similar
hyperinsulinemia has been detected in adult offspring after either
imposed moderate calorie (Palou et al., 2010) or protein (Dol-
let et al., 1987; Fernandez Twinn et al., 2005) restriction during
gestation. The divergent results between Cr and HC rats indicate
that the development of leptin resistance is not an inevitable con-
sequence of low birth weight, contrary to some data obtained in
humans (Phillips et al., 1999). Ghrelin has been shown to play a
role in the development of glucose intolerance in older animals
with increased active ghrelin levels (Reed et al., 2008). Similar
ghrelin concentrations found in the two groups in our experiment
indicate that insulin resistance was not related to changes in this
hormone.

The changes measured in dams allowed to ingest a fat-rich
dietary supplement and in their pups are rather different from
those found in the other two (HC and Cr) restricted groups. The
HF dams were the only restricted group where energy intake was
not decreased. In fact, the HF group ingested more energy than
the Ca dams and their intake was about 60% higher than before
gestation. This may reflect the high-energy density of the HF diet
(5.7 kcal/g), that may not be adequately compensated for enhanced
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palatability. Accordingly, body weights of HF offspring did not
differ from Ca offspring at any point in the study. These results
differ from those obtained from offspring of dams fed a HF diet
ad libitum throughout gestation and/or suckling periods in previ-
ous studies (Kozak et al., 1998; Wu et al., 1998; Srinivasan et al.,
2006; Howie et al., 2009), where higher or lower body weights have
been reported depending on the level of dietary fat content. HF and
Ca offspring also had similar insulin and leptin concentrations.
Thus, they did not present any signs of hormonal resistance or
disturbance contrary to what is observed in some (Wu et al., 1998;
FerezouViala et al., 2007; Cerf et al., 2009) but not all (Gregersen
et al., 2005) studies of the offspring of ad libitum HF fed dams.

A common trait amongst the three restricted groups is the
elevated hypothalamic Ob-Rb expression when compared with
ad libitum fed control (Ca) rats, an increase that appears directly
related to the feeding conditions. Gene expression was quanti-
fied in the ARC, a pivotal area involved in feeding and body
weight regulation where leptin through its binding to its receptor,
can modulate both orexigenic and anorexigenic pathways (Beck,
2005). This increase might be partly explained by caloric restric-
tion in Cr and HC rats since a recent study has shown that imposed
maternal calorie restriction up-regulates the expression of this
long form of leptin receptor (Manuel Apolinar et al., 2010). For
the HF offspring, however, a different explanation is required since
HF dams overconsume calories during pregnancy. The macronu-
trient composition of the excess calories ingested, i.e., fat-enriched,
may be the primary cause of the increased Ob-Rb expression since
dietary fat is closely linked to leptin metabolism (Ahren et al.,
1997; Stricker-Krongrad et al., 1998). These results agree with
those obtained with extended pre-and postnatal exposure of dams
to a HF diet (Page et al., 2009), but differ from those obtained
immediately after birth (PND 1) where hypothalamic leptin recep-
tor expression was diminished (Morris and Chen, 2009). This
discrepancy reveals a deleterious adaptation to solid food after
weaning. The relatively lower level of plasma leptin associated
with the increased Ob-Rb expression might constitute a counter-
regulatory mechanism to control intake and body weight gain on
an energy dense diet (Lin et al., 2000; Page et al., 2009; Shiraev et al.,
2009). This interpretation might also be valid for Cr offspring. On
the contrary, increased leptin with the smallest increase in Ob-
Rb expression in HC rats could indicate the development of leptin
resistance. It is possible that, if the HC offspring had been placed in
a feeding situation with unrestrained high-energy diet after wean-
ing, this situation would have worsened with the rats developing
a frank metabolic syndrome. This hypothesis will be examined in
our future studies with this model. The data on fat distribution
in HC offspring where subcutaneous adipose tissue is increased,
correlate well with their leptin resistance since fasting leptin lev-
els are strongly associated with subcutaneous fat but not with
intra-abdominal fat (Cnop et al., 2002), whereas visceral adipose
tissue accumulation is more likely associated to insulin resistance
or more generally to metabolic syndrome (Despres, 2006).

The observed hormonal variations had little impact on dietary
preferences in the different groups of rats in adulthood. All rats had
a preference for the sweet (HC) solution. This corresponds to the
usual food choice of rats at this life period (Leibowitz et al., 1991;
Kozak et al., 2005). Nevertheless, comparison of diet preference in
light and dark periods has revealed some interesting differences.

The Cr rats spontaneously ingested more calories than the other
three groups in the dark period. This increased intake was mainly,
but not exclusively due to an elevated intake of the fat solution.
Daily chow intake was not different between Cr and other groups.
The difference in dietary preferences might be important for future
weight gain and composition if Cr rats were provided with a choice
between various food sources. A greater intake of fat-rich food
would favor fat deposition in adipose tissue and therefore obesity
(Warwick and Schiffman, 1992; Beck et al., 1994). Such a situation
was not observed in HC rats despite a similar feeding behavior
in terms of energy intake by their mothers. This indicates that
HC diet and control diet may have programmed different feeding
mechanisms during gestation.

The new type of dietary manipulation during gestation
employed in the current study was originally conceived to resem-
ble some of the preferences and craving for sweet or fatty food
exhibited by pregnant women. It combines habitual meal and diet
intake with availability and ingestion of unbalanced diets outside
of these meal periods. Our data show that these unbalanced sup-
plement intakes do not have a negative impact on either body
weight or lipid metabolism in adulthood when a normal balanced
diet is ingested from birth. It is also clear that late pregnancy is
a sensitive period during which the HC content in the diet and,
to a lesser extent, relative calorie restriction can alter program-
ming of different hormonal systems. The extra intake of HC diet
during this period appears to program insulin and leptin resis-
tance in adult offspring and may predispose the development of
obesity and associated metabolic disorders if feeding conditions
change to palatable energy dense diets. A defective insulin and/or
leptin signaling is a primary sign of obesity-prone animals (Huang
et al., 2004; Munzberg et al., 2004; Clegg et al., 2005; Irani et al.,
2007). The data we obtained with the Cr group highlighted another
aspect of feeding behavior of pregnant women, that is, a volun-
tary diminution of their energy intake to limit (or control) weight
gain. A voluntary calorie restriction as seen in the Cr group could
play a subtle role in predisposition to obesity by modifying dietary
preferences toward increased fat and calorie intake. This might be
linked to programming of hypothalamic pathways as neuropep-
tides present in the arcuate or paraventricular nucleus are major
determinants of food choice (Beck, 2000; Beck et al., 2001). Fur-
ther experiments are necessary to confirm this hypothesis and the
importance of caloric restriction. The main finding of this exper-
iment remains that adult male rat offspring from dams on a HC
diet presented hyperglycemia and hyperinsulinemia that was asso-
ciated with increased gene expression of the leptin receptor. These
changes are indicative of metabolic syndrome. Therefore, the car-
bohydrate content in the diet should be controlled during the last
weeks (or months) preceding delivery to limit development of later
metabolic disorders in offspring.
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