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Biological thinking is structured by the notion of level of organization.We will show that this
notion acquires a precise meaning in critical phenomena: they disrupt, by the appearance
of infinite quantities, the mathematical (possibly equational) determination at a given level,
when moving at an “higher” one. As a result, their analysis cannot be called genuinely
bottom-up, even though it remains upward in a restricted sense. At the same time, criti-
cality and related phenomena are very common in biology. Because of this, we claim that
bottom-up approaches are not sufficient, in principle, to capture biological phenomena. In
the second part of this paper, following (Bailly, 1991b), we discuss a strong criterium of
level transition. The core idea of the criterium is to start from the breaking of the sym-
metries and determination at a “first” level in order to “move” at the others. If biological
phenomena have multiple, sustained levels of organization in this sense, then they should
be interpreted as extended critical transitions.
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1. INTRODUCTION
From our point of view, the topic of this special issue, “Is
life a globally critical phenomena, and if so why?” raises a
question of principles in theoretical biology. Because of that,
we think that this subject goes beyond the realm of biophys-
ical models and concepts, which are mostly inherited from
physics, and leads to questions that are proper to biological
theoretizing.

There are at least two reasons for considering that biologi-
cal matter can be considered as a globally critical phenomena.
The first reason emerges from the question of the fundamen-
tal theoretical symmetries in biology. We examined this point in
Longo and Montévil (2011), Longo et al., 2012; see also Bailly and
Longo, 2011). We will quickly sum up some of our arguments
right below for the sake of completeness, as they also constitute
an answer to the question raised by this special topic. The second
reason stems from the intuition that living systems have differ-
ent “levels of organization.” This is the main aspect our paper
deals with.

Let’s first summarize our proposal on the role that symmetries
play in biology, by contrast with the situation in physics. In theo-
retical physics, symmetries are stable: they are the foundation on
which the theories are grounded. It is fair to say that symmetries
allow to constitute theoretical objects. Indeed, theoretical objects
in physics are defined by their equational determination and the
latter relies on the fact that, for various transformations (symme-
tries) applied to the equations and from the right, well-chosen
points of view, the situation remains the same (it is invariant).

This invariance is what we call the genericity of physical objects1.
Besides, such an equational determination is valid also because
it determines the specific trajectory followed by a given object, in
principle a “geodetics.”

By contrast, we proposed in Longo and Montévil (2011), Longo
et al. (2012), that in biological situations the relevant theoretical
symmetries are not stable, but broken by the temporal flow. We
proposed that this amounts to make the hypothesis that biological
objects are specific: their theoretical symmetries change and they
become defined/specified along (and by) their history. In other
terms, the theoretical symmetries change with the flow of time.
And, by considering that phase spaces are defined with respect to
symmetries, we were lead to the conclusion that there is no stable
phase space which would allow to capture or theoretically deter-
mine the trajectory of a biological object (Bailly and Longo, 2011;
Longo et al., 2012).

Now, physical critical situations also appear, in particular, when
the symmetries of a given object change2. However, critical sit-
uations still pop out from a pre-given phase space, where they
appear as a singular point in a background of regular behaviors. By

1The fall of Newton’s apple is a pictural representation of that: an apple and a planet
are the same object (i.e., they are generic) as regards both mechanics and gravitation,
but with different parameter’s value (different masses in this case).
2Indeed, the theoretical determination relies on the available, relevant symmetries,
and their change means either that a new quantity appears (via fluctuations), or
on the contrary that a relevant quantity vanishes and relaxes its constraints on the
system (which again leads to fluctuations).
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contrast, we claimed that in biology, criticality, in the above sense
of symmetry changes, is pervasive, and not restricted to points
in a predetermined phase space. We called such a situation with
pervasive, non-punctual, symmetry changes, an extended critical
transition (Bailly and Longo, 2011; Longo and Montévil, 2011;
Longo et al., 2012). In short, see the references, critical transi-
tions in biology are not confined to a point, as required by the
mathematical treatment of physical criticality, but to a non-trivial
interval of one or more control parameters. Such a situation, we
argue, implies a major methodological change with respect to
physical theoretizing.

As we mentioned earlier, there is a second reason to consider
that organisms are in extended critical transitions. This reason is
based on the notion of levels of organization and on the possibil-
ity (or not), to use bottom-up approaches in order to understand
these systems. Theoretical accounts3 on living systems are diverse
and these accounts crucially depend, in particular, on the scale
and/or level of study the biologist focuses on (think, for instance,
to a molecular approach compared to a tissular or an organis-
mal one). However, when different accounts are meant to deal
with what is supposed to be the same biological matter, we are
faced with the question of pinpointing the relationships between
these approaches, and the possibility to understand one scale/level
of description in the terms of another, which could give the pri-
macy to bottom-up approaches. The first part of this paper deals
with this question. The second part deals with the question of the
nature of the levels of organization in living systems and provides
a strong definition of the change of level of organization. We will
also explore some theoretical implications of the coexistence of
several levels of organization in a living system.

First, it should be noticed that “scales” and “levels,” despite
some laxity in the literature, are not commutable terms. Scales
appear through quantities varying in magnitude; they can have the
dimensionality of, e.g., space, time, energy, mass, etc. By contrast,
levels of organization appear through qualitative changes between
objects that are organized in a hierarchical manner (for examples
atoms, molecules, organelles, cells, organs, organisms, etc.). As we
will see below, these two notions of scales and levels of organiza-
tion are not equivalent, especially in biology. As a first example of
this difference, we can mention the allometric relationships. These
relationships describe the change of certain quantities (such as the
metabolic rate) through scales (usually measured by the mass),
while the level of organization is kept fixed (usually, allometries
are drawn at the level of organisms, see for example Savage et al.,
2004).

In biology, scales are usually not seen as problematic, since
they are mostly inherited from physically defined quantities. Con-
trariwise, the notion of levels of organization, while widely used,
appears to be loosely defined, and its relevance in principle, beyond
mere heuristics, is still a matter of debate (Bailly, 1991b; Brig-
andt and Love, 2008). Therefore, in the first part of the paper,
we will remain neutral as to the notion of level of organization
and will restrict ourselves to inter-scale theoretical relationships.

3We purposely avoid the term “theory” here as theoretical accounts in biology do
not (yet?) yield fully integrated theories (Brigandt and Love, 2008).

To examine this point, we will make a detour through physics,
as the conceptual stabilization of this field by mathematization
makes it easier to clarify conceptual issues. We will then come
back to the question of inter-level theoretical relationships, and to
the question of their validity in principle.

2. CRITICAL PHENOMENA AND BOTTOM-UP APPROACHES
In this part we consider the question of the possibility and the
modalities of understanding the whole as a combination of the
parts. We will argue that critical phenomena are peculiar with this
regard.

2.1. BOTTOM-UP APPROACHES IN PHYSICS
Here, we do not intend to provide a comprehensive picture of
bottom-up approaches in physics. On the contrary, we will focus
on situations which are relevant for our purpose. In this field, the
question is mainly that of the mathematical derivability of the
upper-scale determination from the combination of interactions
of the parts. The modalities of the integration of the parts will
determine if and in what sense bottom-up approaches are used.

2.1.1. A paradigmatic case: from molecules to thermodynamics
The main way to understand an upper-scale phenomenon via a
lower-scale model is to use some form of statistical averages over
the lower-scale properties,provided that the number of lower-scale
entities is sufficient. The reconstruction of thermodynamics by
statistical mechanics is one of the most (supposedly) paradigmatic
examples of such a procedure4.

The principles of statistical mechanics are the following (see, for
example, Sethna, 2006). We consider elementary objects (micro-
scopic objects), which live in a given phase space and, therefore,
have a state which is described in this phase space. A microstate is
given by the state of all elementary objects. Each one of these ele-
mentary objects has a determined energy function, which depends
on its state and on the states of other elementary objects (interac-
tions). The sum of all these elementary energetic contributions
defines the energy of the considered microstate. Energy, as a
function of the state, is called a Hamiltonian (it is a function,
not a value). The crucial hypothesis is that all microstates with
the same energy have equal probability. Therefore, the macro-
scopic equilibrium state corresponds to the most numerous set of
macroscopically similar microscopic states, at fixed energy (micro-
canonical ensemble). This leads to Boltzmann’s interpretation of
entropy, where entropy is the logarithm of the number of state at
fixed energy. The most probable state is, therefore, the one with
the highest entropy. Then, the (inverse) temperature can be intro-
duced as a quantity associated to energy (Lagrange multiplier), and
the distribution of states follows by generic optimization princi-
ple (for a large number of particles). All statistical properties are
then given by the partition function Z=

∑
s∈Mexp(H(s)/kbT ),

where M are the microstates. The probability of each state is
exp(H(s)/kbT )/Z.

The point is that the distribution depends only on the Hamil-
tonian, and the conjugated variable, the temperature (when

4Note that this example has been challenged, notably as soon as 1961 by Feyerabend
(1985), see Cat (2007) for a review.
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relevant, other parameters can be introduced). Moreover, the
thermodynamical quantities can be obtained straightforwardly as
averages, sums, variance, etc., from this distribution. Mathemat-
ically, this is elegantly obtained by elementary operations on Z :
differentiation, application of the logarithm, multiplication by the
inverse temperature, etc. For example, the macroscopic energy is
the expected value of the energy of the microstates 〈E〉 = − ∂ ln Z

∂1/kb T ,

see any textbook or Sethna (2006) for other examples.
The probability of deviating from the most probable state

decreases exponentially, depending on the number of lower-level
entities (this result is known as the fluctuation theorem). Thus,
here, the bottom-up approach corresponds to the determination
of the macrostate by microscopic energies and is, in this case,
mathematically achieved and controlled.

Notice that the elements “include,” in a sense, macroscopic or at
least mesoscopics aspects in their mathematical description. The
hallmark of this is the dependence on temperature. Similarly, when
one approaches the microscopic level with classical mechanics, cer-
tain notions and hypotheses have to be introduced5. The main one
are the thermodynamic limit (the assumption of an infinite num-
ber of particles leads to a coincidence of averages and macroscopic
states) and the notion of ergodicity (that is a symmetry assump-
tion between time average and phase space average). The latter
allows to go from the properties of a trajectory to the properties
of the phase space and vice versa. Therefore, in both cases, the
elements are defined in such a way that they embed the “shadow”
of macroscopic aspects. However, and this is the point we want
to make, the mathematical situation here is so that it allows to
fruitfully perform these audacious conceptual operations.

2.1.2. When means fail: critical phase transitions
There are some cases in physics where approaches of the kind
described above fail. This is particularly the case in some second-
order phase transitions, in thermodynamics (Toulouse et al.,
1977).

An example is as follows: a piece of iron can be considered
as composed of a large number of elementary magnets at fixed
positions. These elementary magnets tend to be in line with their
neighbors (that is the lowest energy state), but temperature tends
to break down this alignment (it increases the propensity to high
energy states). Below a given temperature, the elementary mag-
nets are predominantly aligned, and the piece of iron is globally
magnetizable. Above this temperature, the thermic agitation is
large enough to prevent the elementary magnets to be collectively
aligned. The transition between these two behaviors (macroscopic
order versus disorder) does not occur progressively but at a precise
temperature, which defines the critical point. When approaching
this point, the correlation lengths tend to infinity, which means
that the elementary magnets fluctuate in an increasingly collective
manner. At the critical point, there are fluctuations at every scale,
which means that there is a tendency to obtain magnetic align-
ments of every size. Moreover, some physical quantities become
infinite at the critical point (susceptibility to an external field, for

5Because of the novelty of concepts involved in the analytic process, it is tempting
to view this process as a unification rather than a reduction. In any cases, see Cat
(2007) for a review of the philosophical positions on unification.

example, which is a measure of the effect of an external field going
from 0 to±ε).

But, can a system with fluctuation of any sizes be effectively
described by averages?

Landau theory aims to do so. Landau’s strategy is the following:
he assumes that we can obtain such a purely macroscopic account
and then derives the consequences of this assumption. The latter
leads to a first determination of the mean of considered variables,
and allows to compute the local (in the sense of the correlation
length) structure of the fluctuations near the mean6, when tending
toward the critical point. If the means dominate the local behavior,
then the approach based on them is valid. However, when the fluc-
tuations dominate the local behavior, it implies that they dominate
“local” behavior of arbitrary sizes, since we are tending toward the
critical point, where the correlation length diverges. In the latter
case the approach is therefore not consistent.

The distinction between the mean dominated and the fluc-
tuation dominated situations is given by the Ginzburg criterion
(a mathematical criterion, which depends, in particular, on the
dimension of space; see Als-Nielsen and Birgeneau, 1977).

A related approach to phase transition is the mean-field theory.
The basic idea of this approach is to consider microscopic interac-
tions and to replace the non-linear (bilinear typically) interactions
between particles by interactions with a global parameter repre-
senting their mean (e.g.,

∑
SiSj=

∑
SiS). This usually leads to

consistency equations (given by S=〈Si〉). This approach, initiated
by Landau and Ginzburg, is also clearly related to the validity of the
macroscopic, mean parameter. Landau theory can also be techni-
cally assimilated to it (Landau theory is in this sense a mean-field
theory)7.

Thus, for systems undergoing a second-order phase transi-
tion, we have a criterion which allows us to determine where
bottom-up approaches (here, by the uses of macroscopic means)
succeeds. In the preceding section, however, we said that the
description by statistical mechanics converges nicely when the
number of elementary objects increases. Why, then, is this descrip-
tion so badly broken here? The point is that the convergence
toward the mean is based on a certain independence of the
microscopic degrees of freedom, which essentially leads to a sta-
tistical convergence (central limit theorem). However, when the
fluctuations dominate, we have a coherent mesoscopic structure
(non-independence). When we approach the critical temperature
and the thermodynamic limit simultaneously, we obtain a sys-
tem whose statistical properties are dominated by fluctuations.
Mathematically, this corresponds to singularities of the partition
function at the critical point and thermodynamic limit, which,
therefore, gives infinite quantities for certain statistical quantities
(variance typically).

6It means that we are considering the fluctuations from this mean. The approxima-
tion signifies that we are not considering how fluctuations can interact with each
other and build up even stronger fluctuations.
7Paradoxically, it is precisely in order to study criticality that mean-field approaches
where developed. They thus playa role in the understanding of phase transitions, as
a first, technically unsophisticated approach, and, of course, are even more useful
where they are valid – in our example, in dimensions four and above (see Als-Nielsen
and Birgeneau, 1977).
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Systems undergoing second-order phase transition thus fall
below the scope of classical bottom-up approaches, since our abil-
ity to understand the system (when its elementary components
are put together) is undermined by divergences generated by their
combination.

2.1.3. Bottom-up vs. renormalization
We will now examine how systems at a critical point are under-
stood. This will allow us to determine to what extent the theoretical
approaches used for these systems can be considered as bottom-up,
top-down, or something quite different.

In order to study critical phase transitions, renormalization
methods8 are used. We can describe them as follows. One starts
with a system described by a model at a given scale (which can
be chosen arbitrarily; for instance, one can choose the resolution
of the measurement apparatus). This model is composed of a
set of parameters and of a function that determines the behav-
ior of the system (e.g., the Hamiltonian). Instead of solving the
model at this scale, as one usually does, one looks at the way the
parameters and functions change when the system is described
at an upper-scale. The way models change as a function of scales
is formalized by a mathematical operator: the renormalization
operator.

In usual cases (like para-ferromagnetic transitions), the model
is asymptotically invariant by renormalization. This means that
when considering larger scales, the models obtained converge
toward a fixed point. Such an asymptotic invariance corresponds
to scale invariance. In this case, the physical properties of the
system are determined by the behavior of the operator in the
neighborhood of the fixed point.

The conceptual meaning of renormalization in critical situa-
tions is the following. We cannot mathematically obtain what the
combination of elementary constituents leads to, because it gener-
ates singularities (at the thermodynamic limit), or in other words,
because this combination does not converge nicely. In terms of
fluctuations, the situation is not tractable because the local behav-
ior is dominated by fluctuations that occur also at scales above
the scale considered (whatever the latter is). We can nevertheless
consider a limited part of the system’s interactions, bounded by
arbitrary scale cutoffs. This limited part of interactions is then
integrated and the result constitutes one of the new elementary
parts of a new model. We cannot know what these new elemen-
tary components exactly do (solve the model), but we can relate
them to the rest of the determination of the system (transform the
equations that determine the system). In short, since one cannot
consider all interactions of the system’s elements, one consider a
limited part of these interactions. Then, one mathematically sim-
plify this part, in order to produce a new equational determination.
This renormalized equations are, however, as complicated as the
original one since we have an infinite number of degrees of free-
dom. In general, the operation is performed in order to conserve
the equational form of the determination, but with renormalized
parameters and variables.

8These methods were first used in quantum physics and were successfully trans-
posed in the field of criticality by Wilson, who was awarded the 1982 Nobel Prize in
Physics for this feat. This subject is presented, for example, in Toulouse et al. (1977).

If some of these parameters vanish asymptotically, when we
iterate the procedure, then the fixed point is simpler than the orig-
inal equation. This procedure can also be applied in the case where
the situation is not critical. The result is a simplified determination
which justifies the smooth behavior obtained by Landau theory,
for example. On the contrary, in the case of critical phenomena,
which are of interest to us here, the resulting determination (the
fixed point) remains essentially as complex as the initial one: we do
not lose the fluctuations in the process because, as we said earlier,
they dominate the behavior of the system at all scales. Why, thus,
is this operation still a tremendous progress toward the determi-
nation of the global behavior of the system under study? When
we are at the fixed point, by definition, the iteration of renormal-
ization does not change the equational determination. As we said
earlier, iterating renormalization consists in taking more interac-
tions into account. Therefore, when we consider the fixed point, we
are considering a stabilized situation with respect to the contribu-
tion of supplementary interactions. When we add interactions to
the fixed point, in its renormalization, the changes defined by the
renormalization operator takes into account their effects (because
we have a fixed point). Therefore, the renormalization operator is
a description of these interactions. In this sense, asymptotically,
all the interactions are images (copies) of the interactions that
are taken into account in the renormalization of the fixed point.
Therefore, we have an explicit account of all the relevant (large
scales) interactions in the system9, even though this account is
not and cannot be given by a description at a single scale, that
is this account is not an actual combination of all the relevant
interactions in the system.

Finally, it is worth emphasizing that one can consider different
models as starting points (possibly but not exclusively at differ-
ent scales), for if they have the same asymptotic behavior through
renormalization, then they lead to the same physical properties
and are grouped into a unique class of universality (there is an
infinity of models in a class of universality since, among a plethora
of others, the renormalized model at any scale can be indifferently
considered as a starting point, Lesne, 2003).

One can consider renormalization methods as a bottom-up
approach, given that the study of the system mainly depends on
the starting point, which is the lower-scale model. However, this
starting point is largely contingent and arbitrary, both because one
can start from any scale as a minimal scale and because one can
change the starting model as long as it remains in the same class of
universality. It is in the generic properties of the universality class
that the objectivity of renormalization lies.

The renormalization approach has a holistic flavor, in that
the local situation at the critical point depends upon the global
situation (the coherence structure). Such a coherence structure
takes place because correlation lengths are infinite. More precisely
the system is “so global” that we cannot combine its interac-
tions entirely, we can only, but explicitly, find the form of the
contributions of all (large scale) interactions.

The radically new aspect of renormalization methods is that
one does not, stricto sensu, try to solve a model anymore, but

9Of course in practice, approximations are usually performed.
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rather to know the behavior of the transition from one model
to an upper-scale model. In this respect, the system is studied
at the level of a meta-model: what matters, in fine, is not the
intra-model relationships, but the behavior through scales of this
inter-model relationship. This meta-model allows to start from a
subjective model (shaped by approximations and pragmatic con-
straints) and to reach, through asymptotic properties, objective
knowledge about the class of universality and physical properties
of the system.

Quantum field theories deal with situations which also require
the use of renormalization methods (where they were actually
first invented). The point is that, when we are considering more
and more microscopic10 interactions we are faced with diver-
gences (comparable to divergences of critical phenomena). This
means that the behavior at a scale cannot be given, in this the-
ory, by the contribution of objects of arbitrarily small space scale
(this would disrupt the equational structure, by the appearance
of infinities). However, we can handle a part of the interactions,
and consider the stability and the transformations of the equa-
tional forms and “constants” when we look at more and more
interactions. The possibility for theories to be renormalized is a
condition of their theoretical validity, here. The point we want
to emphasize is that the standard model handles three of the
four fundamental physical forces in this manner, where there is
no objective smallest, fundamental scale. On the contrary, the
introduction of a peculiar small scale behavior is in opposition
with the manner in which the theory understand microscopic
phenomena (Zinn-Justin, 2007). Of course, this does not pre-
clude paradigmatic changes, especially because the introduction
of gravity leads to non-renormalizability (taking more interac-
tions into account leads to a complexification of the equational
form, by the introduction of new variables). In this sense, the cur-
rent understanding of microscopic phenomena is bottomless in
terms of small scale.

In short, renormalization allows to provide an explicit (and
measurable) account of all relevant interactions in a system when
the actual combination of all relevant interactions is mathemat-
ically impossible. In other words, from the point of view of the
theoretical determination, the whole is not the sum of the parts
(the sum diverges) but it can be understood by successive partial
sums of its parts (which become symmetric to all partial sums of
parts at large scales). By this and in fine, the whole is not under-
stood by the sum of its parts but by sums of its parts. In the process,
the modelization of the microscopic scale appears for a large part
contingent and arbitrary (and renormalization allows to single
out objective aspects from it, that is the invariants of the process).
For these reasons, we consider renormalization methods at the
edge of bottom-up strategies. These methods appear as a mean
to go beyond standard bottom-up approaches while keeping a

10The nature of divergences in this domain can be diverse, but we are interested in
going from small scales to large scales here. Notice that small scale, here, is equivalent
to large energy. The reason for this is that the quantum momentum is the spatial
derivation operator (associated with the constant h). A small scale behavior means a
behavior with a high derivative (e.g., d sin(x/λ)

dx = cos(x/λ)/λ) so that the energy is
high. From the field point of view, the classical potential diverge when we are going
toward the punctual source of the field.

relatively bottom-up flavor (integration of interactions), though
a considerably weakened one. In particular, renormalization in
quantum field theory is associated with a bottomless situation (the
small scale behavior cannot be integrated in the sense of an actual
combination).

2.2. CONSEQUENCES FOR BIOLOGY
Now, what holds for physics does not necessarily hold for biology
or, more precisely, does not need to describe “completely” the bio-
logical situation. Moreover, physical criticality implies that even
a successful physicalism would not necessarily mean that we can
understand the organism as an actual combination of the interac-
tions between its parts (as usually claimed by adepts of bottom-up
approaches).

2.2.1. Physical criticality and the living state of matter
Like physical critical systems, biological systems present a complex
structure of interactions involving different scales, both in space
and time (see for example the case of the heart; Noble, 2002).
Simple collective biological phenomena have experimentally been
described as critical in – almost – the physical sense (see Mora
and Bialek, 2011), for a review of some examples. If one consid-
ers the question of susceptibilities (sensibility to perturbations),
biological transcriptome networks (see Shmulevich et al., 2005;
Nykter et al., 2008), or hair cells (Camalet et al., 1999) provide
good examples. This kind of structure of inter-scale correlations
could explain why critical phenomena (more and more) seem per-
vasive in biology (see for example, Bailly and Longo, 2008, 2011;
Werner, 2010).

Even molecular biology can provide a somewhat paradoxical
example. Indeed, when we abandon the notion of program (and
we have substantial reasons for that, see for example Longo and
Tendero, 2007; Noble, 2008), and when we look naively at the
experimental manipulations performed, we observe that a micro-
scopic experimental manipulations (mutations by substitution,
for example, concern structures measuring 3.3 Å) can lead to dra-
matic consequences concerning the whole organism (inasmuch it
manages to survive). This implies a considerable amplification of
such perturbations over spatial scales.

Thus, the difficulty found in critical physical situations may
well be encountered also in the study of organisms. However,
the latter is more difficult since the structure of coherence of an
organism is heterogeneous and not generally scale-invariant (even
though some of its aspects have approximate scale symmetry (see
West, 2006 and the examples above). Here by heterogeneity, we
mean that different parts of a system have to be described by dif-
ferent theoretical objects (e.g., cells, collagen matrix, capillaries,
organs, etc.).

Another point is that the accounts of biological objects can be
different at different scales. This seems to be a crucial difficulty in
comparison with the theoretical leverage of scale invariance used
for physical critical systems. A pragmatic way to overcome this
scale dependence is to consider biological systems simultaneously
at different scales. This seems indeed to be, de facto, the current
approach: biology is a growing field of flourishing sub-disciplines
(Brigandt and Love, 2008). This variety corresponds also to the use
of different mathematical techniques (see Saetzler et al., 2011).
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The difficulty, when we have critical phenomena in mind, is that
the inter-scale relationships are fundamental while the pragmatic
point of view tend to consider almost unrelated slices of the phe-
nomena at different scales. From a more strictly biological point
of view, following (Soto et al., 2008; Bailly and Longo, 2011), the
circular coupling of lower and upper-scales is an essential feature
of biological phenomena. This coupling is particularly relevant
with respect to time, and when one considers its effect along
the historical constitution of the organism, during development.
Bizzarri et al. (2011) also insist that the mesoscopic aspects, in
particular fractal-like structures are key to understand biological
phenomena.

2.2.2. Conclusion on the consequences for biology
Because of these very aspects of biological systems, the renormal-
ization method cannot be used directly (except in some simple
situations) and requires at least to be deeply transformed. We will
further investigate the application of renormalization ideas to biol-
ogy in a future article. Nevertheless, we can already notice that at
least in some cases parts of biological systems behave like physi-
cal critical situations and more generally like singular, fractal-like
structures. Thus, it is fair to assume that biological systems cannot
be understood through ordinary bottom-up approaches.

2.3. CONCLUSION OF SECTION 2
In physics, we have shown that bottom-up (or upward) approaches
can lead to at least two different situations. The first corresponds to
a validity of the approach of the macroscopic system by usual sta-
tistical quantities. The second, however, corresponds to genuinely
critical situations, where a system builds up a global structure of
coherence. In this case, the direct composition of the interactions
occurring in the system leads to divergences (when going to the
thermodynamic limit). Therefore, the situation cannot be studied
by the composition of all the interactions in a model. However,
the renormalization method nevertheless allows to understand
the global structure of the interactions because it handles a partial
composition of interactions which is symmetric to other com-
positions of interactions, at larger scales (the sum of all this
interactions remains intrinsically divergent). This is also com-
bined with a certain contingency and arbitrariness of the initial
model of the interactions (as long as it remains in the same class
of universality).

The upward approach, for these reasons, can have a highly
counter-intuitive nature in this situation. As we have observed,
the determination of the system is not given by the sum of (the
determination of) its parts but by sums of its parts (in an iterative
way). Because certain biological situations have clear empirical
critical signatures, the validity of bottom-up approaches in biol-
ogy cannot be claimed, in full generality, to be stronger than this
largely weakened version.

This, however, does not mean that biology can be understood
by this form of upward understanding, and an even weaker form,
if any, may be required. Indeed, biology seems to imply a finite
class of heterogeneous, circularly coupled scales, which means,
under the hypothesis of criticality, that several scales may be fun-
damentally relevant and that their co-determination may be a
fundamental and constitutive aspect of biology.

3. LEVELS OF ORGANIZATIONS
For the moment, we remained neutral as to whether there are levels
of organization in biology, and if there are, what the nature of these
levels could be. However, the question of bottom-up approaches
in biology is typically framed in terms of levels of organization
(Brigandt and Love, 2008), not only scales. The question of the
nature of these theoretical levels is of prime importance to the
development of a science of systems, as it seems to be the aim of
the growing field of systems biology.

But, if, at first sight, the notion of level of organization seems
intuitive, it appears that we still lack objective criteria allowing us
to determine what should count as a level or not (Bailly, 1991b;
Brigandt and Love, 2008). In particular, we would like to be able
to distinguish between the complexification within a given level,
and the transition between two levels. Indeed, at a given level,
we can observe various degrees of complication, corresponding
to an accumulation of objects (see below), or, mathematically,
to an accumulation of degrees of freedoms or of iterations of a
recursive function. This question is crucial theoretically, since, for
example, there is no obvious reason why certain systems, argued
to have fundamental biological relevance, should have an orig-
inal structure of determination. For example, Piedrafita et al.
(2010) argue that peculiar chemical systems, corresponding to
a given circularity criterium, should be a (minimal) model of a
fundamental aspect of biological organization. However, since
the system is written and theoretically handled by usual reac-
tion kinetic theory, it is not clear why the system should be
biologically fundamental, and associated to a specific level of
organization.

Here, we first aim at objectivizing the notion of level of orga-
nization, following mainly the work of Francis Bailly (Bailly et al.,
1988;Bailly, 1991a,b; see also Bailly and Longo, 2011), adapted to
our own understanding.

Let us first emphasize that, here, we understand a theoreti-
cal level of organization in a unusually strong sense. A level of
organization will be, in the following, a fundamental level of
theoretical determination of objects. Typically, in physics, this
corresponds to a mathematical frame which determines the spe-
cific, theoretical trajectory of a given generic object. Note that,
by contrast with Bitbol (2012), we do not approach the prob-
lem of levels of organization from (nor by a critique of) an
ontological viewpoint. On the contrary, we are interested in the
possibility, or not, to understand a physical or biological situa-
tion on the basis of a single level of description by mathematical
means. When there is such a possibility, Occam’s Razor applies
and we choose the relatively fundamental scale/level of descrip-
tion, from the proposed perspective, that is to say the one which
enables to derive the others. From a mathematical point of view,
the lower-scale/level of description is usually more detailed in
the sense that the set of its elementary elements usually has
more degrees of freedom than the set of elements described at
a macroscopic level/scale. Moreover, if these components follow,
say, classical trajectories, then the system follows a determined
specific trajectory. The situation is, therefore, mathematically well
determined, and other levels seem confined to have only an ana-
lytic relevance. We will see, however, that the situation is not that
simple.
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3.1. COMPLEXIFICATION WITHIN A LEVEL
Following Bailly (1991b), complexification within a level of
organization involves the combinatoric accumulation of objects
defined and determined at this level. Accumulation of objects is
made possible by the generativity of the determination. For exam-
ple, classical electromagnetism accommodates any charge distri-
bution and their movements. Indeed, most if not all theoretical
structures of determination allow to accommodate combinations
of arbitrarily large (finite) numbers of objects11. A fundamen-
tal example of such accumulation within a level is an increase in
number of degrees of freedom, which leads to an accumulation of
terms in a Hamiltonian, either independent or corresponding to
interactions12.

Theoretical frames yield the pertinent observables and pro-
vide the relationships between finite quantities (number of objects,
extensive or intensive quantities, time, etc.). This can be seen as
the fundamental commensurability of the quantities which are
involved. This commensurability precisely corresponds to the abil-
ity of a frame to provide the theoretical determination of the object
described through these quantities. Now, it is crucial to keep in
mind that the frame itself articulates these quantities, so that also
“finiteness” should be understood relatively to it. For example, the
integral of a function which is singular (infinite) at a given point
can be finite, therefore if it is only this integral which is relevant
and the systems determination is not disrupted.

When some relevant quantities become infinite, some fun-
damental operations can be degenerate (e.g., ∞+∞=∞) or
undefined (e.g.,∞−∞= ?). For example, one usually does not
know, by the determination of the system we already have, what
a physical system will do after a finite time blow up (a situation
where the solution becomes infinite in finite time, and is, there-
fore, interpreted as a break down of the determination if there
are physical reasons to consider that the considered quantity must
remain finite). The crucial point is that, when no relevant infinite
quantities are involved, the accumulation of terms does not change
the structure of the theoretical frame. In quantitative terms, when
no infinite quantity is involved, causes and effects remain com-
mensurable (incommensurability would occur typically when the
ratio between a cause and an effect becomes infinite).

3.2. TWO TYPES OF INFINITY
It is worth emphasizing that at least two types of infinity should be
distinguished. The first deals with the extensive properties (sizes or
more precisely the number of objects) and occurs via the accumu-
lation of objects within a level. The second deals with the intensive
(so to speak “qualitative”) properties of objects and will appear to
relate to a change of level. “Intensive” means that the given quan-
tity, in a homogeneous system, is independent of the size of the
system, and can, therefore, be considered to be a local property
(we will come back to this point later). In particular, the ratio

11At least in principle, the analytical tractability in practice depend in particular on
the apparition of simplifying symmetries.
12It is noteworthy that such combinations are usually associated to a linear aspect
(the addition of terms in the Hamiltonian, the superposition of states in quantum
mechanics and the corresponding unitarity of the Hamiltonian operator, . . .) and of
a non-linearity, corresponding to interactions in the Hamiltonian or measurement
in quantum mechanics.

between two extensive properties is an intensive property. Typical
extensive quantities are, in thermodynamics, the volume, the mass,
the number of particles, . . .. On the contrary, intensive quantities
are the temperature, concentrations, volumic masses, volumic, or
massic thermic capacity, . . .

Infinite values have extremely different theoretical meanings
whether associated to extensive or intensive quantities.

• With extensive infinity, the theoretical structure of the com-
ponents is left unchanged, so the whole remains described by
the same interactions between the parts. However, it is worth
noticing that extensive infinity can transform a probabilistic
determination of the system into a predictable determination,
and thus can change the causal regime (typically, statistics may
average). In parallel, extensive infinity can lead to the loss of
time reversibility. These two modifications of the causal regime
(determinism and time irreversibility) are typically encountered
in the thermodynamical limit.
• By contrast, intensive infinity can disrupt the properties of the

parts and, thus, changes the structure of determination of the
system (such a disruption typically occurs, in thermodynamics
of phase transitions, when the Ginzburg criterion is not met,
typically when mean-field theory is not valid). Note that, in
statistical physics, it is necessary to have extensive infinity for
intensive infinity to be obtained (because of the analyticity of
the finite size partition function).

It is also interesting to relate these two types of infinities to the
question of the theoretical symmetries of a system. We should first
keep in mind that symmetries have, in general, a “conservative”
nature: they are transformations that can be inverted. However,
physicists are not really interested in exact solutions. Even though
they preserve all the symmetries of the initial hypotheses, they
only allow to understand special cases and not general features.
Let us consider an elementary example to illustrate this point.

The classical relaxation equation df
dt = −

1
τ

f corresponds to a
situation where the function and its derivative are proportional,
which is a symmetry. Physically, this corresponds to a decay that
is proportional to the magnitude of the quantity, so that all “small
pieces” of the corresponding quantity decay independently (think
of radioactive disintegration, for example). This symmetry is pre-
served during the trajectory and never allows the corresponding
quantity to disappear completely since the function which verifies
this symmetry is the exponential (f (t ) = f (0) exp(− t

τ
)). How-

ever, after a time t � τ, the corresponding quantity is extremely
small and, for most practical purposes, it is negligible. By the
use of infinite time limit, we can break the symmetry of this
decreasing exponential and replace the value of f by its equilib-
rium value, 0. This allows to take into account the physically
relevant behavior of the system for t � τ, since the classical
measure has a finite precision. This kind of reasoning is perva-
sive in physics. For example, renormalization is based on such
considerations: it consists in separating relevant and irrelevant
components, and the latter vanish at large scales, and, in fine, their
objectivity is not guaranteed. A more sophisticated situation is the
notion of symmetry breaking sensu (Strocchi, 2005), where infin-
ity is required in order to decidedly, physically separate objects
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corresponding to the symmetry breaking (they cannot fluctuate
from one macroscopic configuration to another). Another con-
ceptually compelling example is the breaking of time reversibility
of the Newtonian frame at the thermodynamic limit.

Last but not least, infinities should be handled carefully. In par-
ticular, when we consider two quantities that go to infinity, the way
we approach this combination of infinities matters in general, and
one cannot recklessly take any limit after the other (the limits do
not commute without specific hypothesis). In this case, we usu-
ally have a discontinuity of the limit: the behavior at the limit is
not the same and not even close to the behaviors near it (following
another path toward the limit). For example, in the case of critical-
ity, the thermodynamic limit (the number of objects n→∞) and
the singularity associated to criticality (T→Tc) need to be taken
jointly, via renormalization methods (Lesne, 2003). Qualitatively
this is natural: the thermodynamic limit allows to define ther-
modynamic relationships, between macroscopic observables, but
at the critical point fluctuations at all scale dominate the behav-
ior of the system and a purely macroscopic description is not
sufficient.

One should notice that infinite time, at least in a number of
situations, can be assimilated to an extensive infinity (see, for
example Lesne, 2003). Qualitatively, we have the same role of these
two limits (they correspond to finding generic trajectories, either
by a very long trajectory or through an accumulation of smaller
trajectories). Statistically, making 1 random experiment on n inde-
pendent similar objects, or making n successive experiments on a
memoryless object are equivalent.

3.3. TRANSITION BETWEEN TWO LEVELS
For a transition between two levels to occur (and not just a com-
plexification within a level), it is necessary to have a change in the
parts (or in their relationships). As we already mentioned, such a
change seems to only occur through the apparition of intensive
infinity; however, intensive infinity alone is not sufficient to break
the determination of a given level.

Thermodynamics of second-order phase transition provides
a good illustration of when intensive infinity can or cannot
lead to a change of level. Landau theory handles critical sys-
tems with macroscopic (uniform) variables. This account con-
stitutes a first level of determination, but it necessarily produces
a singularity at the critical point. In particular, the fluctua-
tions and correlation lengths will diverge. As a result, a first
perturbative approach13 will discriminate situations where the
mean dominates over the divergent fluctuations (in which case
there is no change of level), and situations where it is the
converse. When divergent fluctuations dominate, the macro-
scopic relationships blow up, and the theoretician must consider
new, relevant objects (via the (semi-)group of renormalization).
These objects allow to take into account the global structure
of coherence associated to the domination of scale-free corre-
lations. The theoretical determination, therefore, operates at a
new level.

13That is to say, an approach where we start from the Landau theory but try to
specify it by considering fluctuations which do not change the mean behavior of the
system, obtained in landau theory.

3.4. CRITERIA OF TRANSITION
As a conclusion, we will consider that a transition from a level to
another occurs when the two following conditions are met (Bailly,
1991b):

1. Transition to infinity : at least one intensive property that is rele-
vant to the first level should be considered as tending to infinity
(relevance here means that the given magnitude contributes to
the determination of the objects).

2. Change in relevant objects: the fact that the magnitude tends
to infinity should make obsolete the empirical and theoretical
determinations of the objects. This should introduce new, rel-
evant objects in the system’s determination; these objects will
be associated to the new level.

We want to emphasize that this criterion has two fundamental
strengths. First, it leads to observable consequences: the divergence
of intensive properties. Second, it is based on a break down of the
theoretical determination of the first level and not on its invalidity
for extrinsic reasons. Both of these aspects allow to objectivize the
understanding of a situation as constituted by multiple levels of
organization.

4. APPLICATION TO BIOLOGY
On the basis of the former analysis, we can now discuss lev-
els of organization for biological systems, and the theoretical
consequences of the way our definition leads to consider them.

4.1. BIOLOGICAL LEVELS OF ORGANIZATION AS A HYPOTHESIS
Biological functions typically tie the parts together in an integrated
whole. This justifies that biological functions can be intuitively
associated with changes of levels of organization.

Therefore, let’s first start with the idea that there are sev-
eral levels of organization within an organism (we will discuss
this intuition below) and take this as an assumption. Because an
organism, in general, experiences a range of internal and external
conditions rather than being confined to a single point, the mul-
tiplicity of levels associated to the considered organism should be
obtained within an interval of viability parameters (or a dense
subset of it). Following the aforementioned criteria, the changes
of levels of organization are associated to singularities. Therefore,
criticality (understood here as singularities in the determination)
should be obtained within a dense range of parameters, rather
than at a single critical point as in usual physical situations. The
intuition of multiple levels thus drives us to the hypothesis of
an extended criticality of organisms (see also Bailly, 1991a; Bailly
and Longo, 2008). In particular, a small effect at a given level can
have incommensurable consequences and, therefore, access to an
upper level (criterion of intensive infinity) within a dense range
of a given parameter. This is in particular exemplified by suscep-
tibilities which become infinite and describe the response to an
external perturbation.

Reciprocally, it is clear that if organisms show extended criti-
cality (that is, in the sense of symmetry changes within a dense
range of parameters, and with a condition on the strength of
the associated fluctuations), the multiplicity of levels of orga-
nization obtained in the extended critical transition is robust.
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Integration and regulation, within and by an organism, allow the
global robustness in spite of the cascades of instabilities and sus-
ceptibilities proper to the continual critical transitions of extended
criticality.

4.2. FRACTALS AND FUNCTIONS
Let’s consider the hypothesis that biological levels of organization
in the above sense are associated to biological functions.

Bailly et al. (1988) defended the thesis that the integration of
parts within a whole is achieved, in particular, through fractal
structures, because fractal structures play a fundamental role in
exchanges between different media. In our current framework,
fractal structures seems indeed to be the simplest structure asso-
ciated to singularity. It is this singular situation which fulfills our
criteria of level transition.

Reviewing several biological cases, they made the following
hypothesis:

1. to any vital function defined at a given level within an organism
(macromolecule, cell, organism), corresponds one structure
(active sites, organelles, organs) exhibiting at least one fractal
dimension associated to this function.

2. reciprocally, to any fractal dimension of a structure, corre-
sponds a vital function, which integrates this structure in a
whole.

3. moreover, the correspondence between the fractal dimension
and the functionality is to be linked with the transition between
levels of organization, as fractality enables to make compatible
properties that have to be both singular and homogeneous (see
below).

Bailly et al. (1988) then proposed to explain the occurrence
of fractal structures in organisms by the satisfying of three
constraints:

Tendency to maximal proliferation: for instance, the maximization
of an exchange surface (to enhance the efficiency and preci-
sion of exchanges). This tendency of unbounded growth can be
understood by a transition to the infinite limit.
Steric constraint : the living system is bounded (because of other
developmental or evolutionary constraints).
Homogeneity : solution structures should be homogeneous, by
which we mean that the singularities should not describe the
neighborhood of a point but have to be spread in the relevant
space. This constraint excludes solutions which fulfill only the
two preceding criteria, such as limit points or surface points,
where the asymptotic limits would play a particular role. By
contrast, fractal solutions are homogeneous (in their singular
behavior).

Examples can be found, for instance, in Bassingthwaighte et al.
(1994),West (2006). Typically surfaces of organs or organelles tend
to have fractal shapes, with infinite surfaces at the mathematical
limit. It allows them to have a very high exchange surface with a
limited volume. Now, singular behavior are also observed in tem-
poral structures, for example heart rhythm. The latter correspond
to the formation of a proper temporal structure of coherence, with
a unity of the organism extended overtime.

In the context of an organism, these structures are associated to
the functionality of the organs, and participate in constituting the
organism as an upper level of organization. The organism is there-
fore not understood as a macroscopic combination of parts, but as
constituted by the combination of multiscale, singular structures
(which can interact at various scales).

4.3. NON-GENERICITY OF PARTS
The conceptual frame we describe leads here to a crucial problem
in understanding biological systems. If they are organized in levels,
then, in some cases, perturbations can propagate through scales
and levels. Thus, if living systems are in extended critical transi-
tions, then it is expected that all levels are always “coupled.” This
coupling, on one hand, stabilizes (i.e., it contributes to setting the
margin of viability or of the extend interval of criticality of other
levels), on the other it may destabilize the other levels. For exam-
ple, even objects at the lowest levels (say, macromolecules) do not
necessarily follow specific trajectories in vivo, that is to say “effec-
tive” trajectories (in the system), described by the symmetries at
that level. As a consequence, parts do not necessarily exhibit stable
enough effective (i.e., in the system) symmetries for us to observe,
since these symmetries may be broken at the points of level tran-
sition and by level interactions. Note also that certain parts are
themselves in extended critical transitions (cells, typically).

A simple example of this feedback of extended criticality on
the effective trajectories of parts (which are stable in vitro) is the
trajectory of the structure of DNA of living organisms along evo-
lution. The evolutionary trajectory of this macromolecule is, in
particular, determined by the ability of the organism as such to
survive and reproduce in its environment (Longo et al., 2012).

However, let’s assume that in some cases we can first consider
a contingent determination at a level to obtain generic parts. The
determination is contingent in that it would be local in time and
could be limited, for example, to some cellular types, or some cel-
lular history. In particular, this can be the case if we suppose that
the rhythm of symmetry breaking is slow enough. Then we would
obtain approximately a situation close to usual criticality with level
transitions.

Now, with non-generic parts, it is through the stabilization
associated to the organism structure that a relative stability of the
structure of determination (that is to say, a relative genericity) of
parts can be obtained. For instance, parts are maintained in their
viability zones (by preventing ischemia, providing nutrients, etc.),
their proliferation is tempered (Sonnenschein and Soto, 1999), etc.
Also, in general, the determination of cells, for example as given by
huge changes like differentiation, is provided in a coupling with
the organism (Soto et al., 2008).

CONCLUSION
We have seen that bottom-up approaches, understood as the way
the parts combine to form the determination of the whole can have
at least two decidedly different forms in physics. The first, which is
a genuine bottom-up method, corresponds to the situation where
the determination of the whole can be obtained directly by the
combination of the contributions of its parts. The second, where
bottom-up approaches reach their limit, corresponds to a situa-
tion where the determination of the whole diverges and where the
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formation of global coherent structures takes place. In this case,
the theoretical and mathematical way to understand the phenome-
non consists in considering partial combinations of contributions
of parts to the change of the equational determination. In physical
critical phenomena, the global structure is thus resolved because
all the large scale contributions are symmetrical.

As for biology, it seems to us that the notion of level of organi-
zation is well grounded if a transition between levels corresponds
to, at least, a non-genuine bottom-up approach. Following Bailly
(1991b), we gave a criterion allowing to determine when one can
consider that there is a breaking of the determination at one level,
which, therefore, corresponds to a transition between two levels.
This criterion is inspired by the theory of critical phenomena, and
is based on the idea of intensive property tending toward infinity
breaks the structure of determination. In biology, such singulari-
ties are achieved, among other, by fractal structures (for instance,
the liver tends to have an infinite volumic surface of endoplas-
mic reticulum). Fractal structures appear to be connective devices
(for instance membranes) that link parts together in an integrated
whole. Singular behaviors are also encountered in temporal and
spatio-temporal structures, which can be approximately described
by physical methods. We expect, however, that the genuine theo-
retical scale symmetry of these phenomena are not as stable as
in physics of critical phenomena (where the invariance of the
exponent is sharp).

We have seen that assuming that living systems are organized
in different levels, in the sense of Bailly (1991b), naturally leads

to consider that living systems are in extended critical situation.
Criticality here means that we have strong singularities so that sev-
eral levels can coexist (for example, when the Ginzburg criterion
shows that the mean-field approach fails).

Now, as we said in introduction, extended criticality has at least
two features: continual symmetry changes and different levels of
organization. Even though this two features often go together as
far as physical criticality is concerned, they do not, emph stricto
sensu, imply each other. For instance, in the case where Ginzburg
criterion legitimates mean-field approaches (d > 4), we have a
symmetry change without a strong breaking of the structure of the
determination. In our view, these two aspects of extended critical-
ity are complementary and jointly contribute to an understanding
of biological organisms.

Extended criticality proposes to describe theoretical objects that
have very unusual features in comparison with physical objects.
The changes of their theoretical symmetries mean that they are
constituted by their history (which is not, stricto sensu, a tra-
jectory because the phase space is defined in this process). At
the same time, these changes are associated to and allowed by
critical singularities, which lead to the continuous formation of
several levels of organization. The latter are not understood as
embedded in each other, like Russian dolls, but, on the con-
trary, levels in the sense proposed here should be understood
as an inter-scale structure, following the coupling of the very
nature of the parts that concur at the structure of coherence of
organisms.

REFERENCES
Als-Nielsen, J., and Birgeneau, R. J.

(1977). Mean field theory, the
Ginzburg criterion, and mar-
ginal dimensionality of phase
transitions. Am. J. Phys. 45,
554–560.

Bailly, F. (1991a). L’anneau des disci-
plines. Revue Internationale de Sys-
témique 5.

Bailly, F. (1991b). Niveaux
d’organisation, changements de
niveaux, finalité. Philosophica 47,
31–47.

Bailly, F., Gaill, F., and Mosseri,
R. (1988). Fonctions biologiques,
niveaux d’organisation et dimen-
sions fractales. Revue Internationale
de Systémique 2, 295.

Bailly, F., and Longo, G. (2008).
Extended critical situations: the
physical singularity of life phenom-
ena. J. Biol. Syst. 16, 309.

Bailly, F., and Longo, G. (2011). Mathe-
matics and the Natural Sciences; The
Physical Singularity of Life. London:
Imperial College Press. [Preliminary
version in French: Hermann, Vision
des sciences].

Bassingthwaighte, J., Liebovitch, L., and
West, B. (1994). Fractal Physiology.
New York: American Physiological
Society.

Bitbol, M. (2012). Downward causation
without foundations. Synthese 185,
233–255.

Bizzarri, M., Giuliani, A., Cucina, A.,
D’Anselmi, F., Soto, A. M., and Son-
nenschein, C. (2011). Fractal analy-
sis in a systems biology approach
to cancer. Semin. Cancer Biol. 21,
175–182.

Brigandt, I., and Love, A. (2008).
Reductionism in Biology. Available
at: http://plato.stanford.edu/entries/
reduction-biology/

Camalet, S., Duke, T., Julicher, F., and
Prost, J. (1999). Auditory sensitivity
provided by self-tuned critical oscil-
lations of hair cells. Proc. Natl. Acad.
Sci. U.S.A. 97, 3183–3188.

Cat, J. (2007). The Unity of Sci-
ence. Available at: http://
plato.stanford.edu/entries/scientific-
unity/#UniRedLogEmp

Feyerabend, P. K. (1985). Problems of
Empiricism. New York: Cambridge
University Press.

Lesne, A. (2003). Approches multi-
échelles en physique et en biolo-
gie. Thèse d’habilitation à diriger des
recherches. University Pierre et Marie
Curie, Paris.

Longo, G., and Montévil, M. (2011).
From physics to biology by extend-
ing criticality and symmetry

breakings. Prog. Biophys. Mol. Biol.
106, 340–347.

Longo, G., Montévil, M., and Kauff-
man, S. (2012). No entailing laws,
but enablement in the evolution
of the biosphere. Proc. Genet. Evol.
Comput. Conf.

Longo, G., and Tendero, P.-E. (2007).
The differential method and
the causal incompleteness of
programming theory in mol-
ecular biology. Found. Sci. 12,
337–366.

Mora, T., and Bialek, W. (2011).
Are biological systems poised
at criticality? J. Stat. Phys. 144,
268–302.

Noble, D. (2002). Modeling the heart –
from genes to cells to the whole
organ. Science 295, 1678–1682.

Noble, D. (2008). Claude Bernard,
the first systems biologist, and the
future of physiology. Exp. Physiol. 93,
16–26.

Nykter, M., Price, N., Aldana, M., Ram-
sey, S., Kauffman, S., Hood, L.,
Yli-Harja, O., and Shmulevich, I.
(2008). Gene expression dynamics
in the macrophage exhibit critical-
ity. Proc. Natl. Acad. Sci. U.S.A. 105,
1897.

Piedrafita, G., Montero, F., Morán, F.,
Cárdenas, M., and Cornish-Bowden,

A. (2010). A simple self-maintaining
metabolic system: robustness, auto-
catalysis, bistability. PLoS Comput.
Biol. 6, e1000872.

Saetzler, K., Sonnenschein, C., and Soto,
A. (2011). Systems biology beyond
networks: generating order from
disorder through self-organization.
Semin. Cancer Biol. 21, 165–174.

Savage, V., Gilloly, J., Woodruff, W.,
West, G., Allen, A., Enquist, B., and
Brown, J. (2004). The predominance
of quarter-power scaling in biology.
Ecology 18, 257–282.

Sethna, J. P. (2006). Statistical Mechan-
ics: Entropy, Order Parameters, and
Complexity. New York: Oxford Uni-
versity Press.

Shmulevich, I., Kauffman, S., and
Aldana, M. (2005). Eukaryotic cells
are dynamically ordered or critical
but not chaotic. Proc. Natl. Acad. Sci.
U.S.A. 102, 13439–13444.

Sonnenschein, C., and Soto, A. (1999).
The Society of Cells: Cancer and Con-
trol of Cell Proliferation. New York:
Springer Verlag.

Soto, A., Sonnenschein, C., and
Miquel, P.-A. (2008). On physical-
ism and downward causation
in developmental and can-
cer biology. Acta Biotheor. 56,
257–274.

Frontiers in Physiology | Fractal Physiology July 2012 | Volume 3 | Article 232 | 10

http://plato.stanford.edu/entries/reduction-biology/
http://plato.stanford.edu/entries/reduction-biology/
http://plato.stanford.edu/entries/scientific-unity/#UniRedLogEmp
http://plato.stanford.edu/entries/scientific-unity/#UniRedLogEmp
http://plato.stanford.edu/entries/scientific-unity/#UniRedLogEmp
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology/archive


Longo et al. Levels of organization and criticality

Strocchi, F. (2005). Symmetry Break-
ing, Volume 732 of Lecture Notes in
Physics. Heidelberg: Springer Verlag.

Toulouse, G., Pfeuty, P., and Bar-
ton, G. (1977). Introduction to
the Renormalization Group and
to Critical Phenomena. London:
Wiley.

Werner, G. (2010). Fractals in the
nervous system: conceptual
implications for theoretical neu-
roscience. Front. Physiol. 1:15.
doi:10.3389/fphys.2010.00015

West, B. (2006). Where Medicine Went
Wrong: Rediscovering the Path to
Complexity, Volume 11 of Studies of
Nonlinear Phenomena in Life Sci-
ences. Teaneck: World Scientific.

Zinn-Justin, J. (2007). Phase Transi-
tions and Renormalization Group.
New York: Oxford University
Press.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any

commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 03 April 2012; paper pending
published: 30 April 2012; accepted: 10
June 2012; published online: 17 July 2012.
Citation: Longo G, Montévil M
and Pocheville A (2012) From
bottom-up approaches to levels of
organization and extended critical
transitions. Front. Physio. 3:232. doi:
10.3389/fphys.2012.00232

This article was submitted to Frontiers in
Fractal Physiology, a specialty of Frontiers
in Physiology.
Copyright © 2012 Longo, Montévil and
Pocheville. This is an open-access arti-
cle distributed under the terms of the
Creative Commons Attribution License,
which permits use, distribution and
reproduction in other forums, provided
the original authors and source are cred-
ited and subject to any copyright notices
concerning any third-party graphics
etc.

www.frontiersin.org July 2012 | Volume 3 | Article 232 | 11

http://dx.doi.org/10.3389/fphys.2010.00015
http://dx.doi.org/10.3389/fphys.2012.00232
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive

	From bottom-up approaches to levels of organization and extended critical transitions
	Introduction
	Critical phenomena and bottom-up approaches
	Bottom-up approaches in physics
	A paradigmatic case: from molecules to thermodynamics
	When means fail: critical phase transitions
	Bottom-up vs. renormalization

	Consequences for biology
	Physical criticality and the living state of matter
	Conclusion on the consequences for biology

	Conclusion of section 2

	Levels of organizations
	Complexification within a level
	Two types of infinity
	Transition between two levels
	Criteria of transition

	Application to biology
	Biological levels of organization as a hypothesis
	Fractals and functions
	Non-genericity of parts

	Conclusion
	References


